
Computer Physics Communications 292 (2023) 108853
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

CRYSTALpytools: A Python infrastructure for the Crystal code ✩,✩✩

Bruno Camino a,∗, Huanyu Zhou b, Eleonora Ascrizzi c, Alberto Boccuni c, Filippo Bodo c,d, 
Alessandro Cossard c, Davide Mitoli c, Anna Maria Ferrari c, Alessandro Erba c, 
Nicholas M. Harrison b,∗
a Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
b Department of Chemistry and Institute for Molecular Science and Engineering, Imperial College London, White City Campus, 80 Wood Lane, London, W12 0BZ, 
United Kingdom
c Dipartimento di Chimica, Università di Torino, I-10125, Torino, Italy
d Department of Chemistry, Southern Methodist University, Dallas, TX, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 February 2023
Received in revised form 28 June 2023
Accepted 6 July 2023
Available online 24 July 2023

Keywords:
Crystal
Python
Jupyter Notebooks
Pymatgen
ASE
Computational materials science workflows

CRYSTALpytools is an open source Python project available on GitHub that implements a user-friendly 
interface to the Crystal code for quantum-mechanical condensed matter simulations. CRYSTALpytools
provides functionalities to: i) write and read Crystal input and output files for a range of calculations 
(single-point, electronic structure, geometry optimization, harmonic and quasi-harmonic lattice dynamics, 
elastic tensor evaluation, topological analysis of the electron density, electron transport, and others); ii) 
extract relevant information; iii) create workflows; iv) post-process computed quantities, and v) plot 
results in a variety of styles for rapid and precise visual analysis. Furthermore, CRYSTALpytools
allows the user to translate Crystal objects (the central data structure of the project) to and from the 
Structure and Atoms objects of the pymatgen and ASE libraries, respectively. These tools can be used to 
create, manipulate and visualise complicated structures and write them efficiently to Crystal input files. 
Jupyter Notebooks have also been developed for the less Python savvy users to guide them in the use of
CRYSTALpytools through a user-friendly graphical interface with predefined workflows to complete 
different specific tasks.

Program summary
Program Title: CRYSTALpytools
CPC Library link to program files: https://doi .org /10 .17632 /p2bp3fsk86 .1
Developer’s repository link: https://github .com /crystal -code -tools /CRYSTALpytools
Licensing provisions: MIT
Programming language: Python and Jupyter Notebook
Nature of problem: The Crystal code [1,2] is a powerful tool for the calculation of materials properties. 
It stands out in the condensed matter computational landscape because of the use of local basis 
sets, heavy parallelisation, efficient implementation of non-local Fock exchange, and extensive use of 
point and space symmetry. However, it currently lacks an easily programmable interface to access its 
input/output structure needed to be able to use Crystal calculations within computational materials 
science workflows. Historically, the use of Crystal in such workflows has been achieved through bespoke 
scripting implemented in a variety of languages which has hindered code reuse and sharing.
Solution method: The CRYSTALpytools project will enable the automation of Crystal calculations 
in a modular code that can be co-developed by a wide community of users worldwide. It achieves 
this by transforming standardised input and output files into python objects and providing a suite 
of functionality to manipulate them. The core implementation is based on a set of data structures 
denoted the Crystal_objects. CRYSTALpytools, in its current implementation, contains a large variety 
of functions for input/output manipulation, vibrational and thermodynamic analysis, and visualisation.

✩ The review of this paper was arranged by Prof. Blum Volker.
✩✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect .com /
science /journal /00104655).

* Corresponding authors.
E-mail addresses: b.camino@ucl.ac.uk (B. Camino), nicholas.harrison@imperial.ac.uk (N.M. Harrison).
https://doi.org/10.1016/j.cpc.2023.108853
0010-4655/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.cpc.2023.108853
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2023.108853&domain=pdf
https://doi.org/10.17632/p2bp3fsk86.1
https://github.com/crystal-code-tools/CRYSTALpytools
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:b.camino@ucl.ac.uk
mailto:nicholas.harrison@imperial.ac.uk
https://doi.org/10.1016/j.cpc.2023.108853
http://creativecommons.org/licenses/by/4.0/


B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853

Additional comments including restrictions and unusual features: The exploitation of point group and space 
group symmetry is one of the strengths of the Crystal code, therefore, all the geometry modification 
functions have been developed to optimise the use of symmetry. When a structure is downloaded from 
a database or is modified by external code, such as pymatgen [3] or ASE [4], a symmetry analysis is 
performed before transforming the structure to be an optimised Crystal_object. All such objects can be 
directly transformed to standard structures periodic in 0, 1, 2 or 3 dimensions used by Crystal (ie: .gui 
or .f34 files).

References

[1] Dovesi Roberto, et al., Quantum-mechanical condensed matter simulations with CRYSTAL, WIREs 
Comput. Mol. Sci. 8(4) (1 July 2018) e1360.

[2] Erba Alessandro, et al., CRYSTAL23: A Program for Computational Solid State Physics and Chemistry, 
J. Chem. Theory Comput., 2022.

[3] Shyue Ping Ong, et al., Python Materials Genomics (pymatgen): A Robust, Open-Source Python Library 
for Materials Analysis, Computational Materials Science 68 (2013) 314-319.

[4] Ask Hjorth Larsen, et al., The atomic simulation environment—a Python library for working with 
atoms, J. Phys.: Condens. Matter, 29 (7 June 2017) 273002.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

In the framework of condensed matter physics and chemistry 
many quantum-mechanical codes are now available to computa-
tional materials scientists to calculate the properties of extended 
systems [1–7]. Among them, the Crystal code stands out because 
of the use of a local atom centred Gaussian rather than plane 
wave basis set [8–11]. This facilitates all-electron calculations, pe-
riodicity in O, 1, 2 and 3 dimensions, the efficient calculation 
of Coulomb and non-local exchange interactions, an effective ex-
ploitation of symmetry, and a straightforward local chemical anal-
ysis of the electronic structure and related properties. The Crystal

code has been developed since the 1970s by the Theoretical Chem-
istry Group of the University of Torino (Italy) and, from 1974, in 
collaboration with the Computational Materials Science Group at 
Daresbury Laboratory and Imperial College London (UK). It has, 
throughout the years, grown to be developed by a large commu-
nity of scientists and software developers from many institutions 
worldwide.

The Crystal code allowed the computational chemistry and 
materials science communities to achieve groundbreaking results. 
These range from the early days Roothaan-Hartree-Fock atomic 
wavefunctions published in 1974 [12], which have been cited more 
than 5000 times, the first hybrid-exchange calculations performed 
in periodic systems [13], to the up-to-date self-consistent, as well 
as perturbative, treatment of spin-orbit coupling [14–16], general-
ization of the study of chemical bonding to Lanthanides and Ac-
tinides [17–19], structural optimization strategies based on molec-
ular dynamics concepts [20], treatment of thermo-elasticity [21–
23], description of anharmonic lattice vibrations [24–27], and 
many others.

Although new and exciting results are constantly obtained by 
using the Crystal code, the line separating accurate materials sim-
ulations from data science and machine learning methods becomes 
thinner every year. To be able to join these new trends, the user 
needs to be able to access the computational electronic structure 
code of choice via a user-friendly and robust programming infras-
tructure. This is a well-known issue in the computational chem-
istry and materials science community and as a matter of fact, sev-
eral interfaces are being developed for other codes [28–31]. These 
considerations have prompted the beginning of the CRYSTALpy-
tools project presented here. The initial goal of the project was 
to develop an automated way to prepare input files, and quickly 
analyse output files to be able to develop customisable work-
flows where information could be extracted efficiently at each step
to facilitate the next one. CRYSTALpytools is developed in 
2

Python as it is a well supported, flexible and easy to use language 
that has been adopted by many data science and computational 
materials projects [28,29,32–36] in addition to providing a wide 
variety of libraries for plotting and numerical analysis [37–39].

Thanks to the object-oriented logic implemented in CRYS-
TALpytools, important information contained in Crystal input 
and output files are translated into Python objects, hereafter re-
ferred to as Crystal objects (COs). Such objects are the central data 
structure of the project. These allow the user to prepare input files 
in an automated fashion, quickly analyse output files and extract, 
post-process and plot relevant information.

In addition, COs can be transformed into the pymatgen Struc-
ture [29] and ASE Atoms [28] objects and vice versa. This enables 
the user to access the large range of functions of these distribu-
tions to manipulate the geometry of the system within Crystal

workflows. For example, pymatgen and ASE can be used to ef-
ficiently build defective or adsorbed model structures, instead of 
having to construct them by hand, which is a cumbersome and 
error prone process. Conversion functions to transform pymatgen 
and ASE objects back into COs have also been developed. Further-
more, new functions have been created to export structural COs to 
commonly used formats such as .cif and .xyz that can be opened 
by most visualisation tools [40,41].

The CRYSTALpytools project also provides extra functional-
ities for data post-processing and plotting, for the electronic band 
structure, spatial dependence of mechanical properties, analysis of 
the electron density and related quantities, visualization of vector 
fields such as non-collinear magnetisation, orbital and spin current 
densities, electron transport properties, and thermodynamics.

2. Structure of the project

The CRYSTALpytools project is open source and shared 
through GitHub. The work discussed in this article can be found 
at the GitHub URL given in Ref. [42], which was created as a con-
tainer for all current and future open source developments of tools 
to interact with the Crystal code. Currently, the page contains two 
main repositories:

• CRYSTALpytools: this is a set of Python functions that pro-
vide the core functionality for the interaction with the in-
put/output structure of the Crystal code, plotting functionali-
ties, and much more. The presentation of CRYSTALpytools
is the main goal of this paper;

• CRYSTALnotebooks: this repository contains an ever grow-
ing set of Python Jupyter Notebooks each designed for a spe-

http://creativecommons.org/licenses/by/4.0/


B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853
Fig. 1. Representation of the flow of data in different modules interacting in CRYS-
TALpytools. Colour legend: orange=file, yellow=module containing specific func-
tions (e.g. the functions labelled crystal_io can be found in the file crystal_io.py file), 
light blue = python object (Crystal output), purple= output extracted from a Crys-

tal file, but not yet saved to file (e.g. a band structure displayed using Matplotlib), 
pink = python object (pymatgen Structure or ASE Atoms). (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

cific task, where the functions from CRYSTALpytools are 
used. Examples of these tasks are plotting electronic band 
structures, contour maps, computing and plotting mechanical 
properties, and many others. These Notebooks are developed 
and made available for the less Python experienced users, as 
they pre-combine functions in the right sequence, to achieve a 
given task accurately and efficiently. As a matter of fact, they 
act as an extra layer between the user and the CRYSTALpy-
tools code. For instance, through a graphical interface, the 
user can select the files needed for the task while task-specific 
cells handle the calls to the corresponding CRYSTALpytools
functions.

As mentioned above, the central data structure of the project 
is called Crystal object. A CO can either be generated by read-
ing Crystal input/output files, or by conversion from a pymatgen 
or ASE object. COs play a central role in the CRYSTALpytools
set of functions, where the underlying strategy is that the commu-
nication among functions contained in different modules (or even 
among functions belonging to the same module) passes through 
the use of COs. This is represented graphically in Fig. 1, where ex-
amples of data flows between different modules in CRYSTALpy-
tools and input/output is depicted.

3. Reading, writing, and converting

The functions to read/write from/to Crystal files are imple-
mented in the crystal_io module of CRYSTALpytools. Their main 
goal is transforming Crystal input/output files into COs and vice 
versa. They are, therefore, most likely to be used at the beginning 
and/or at the end of a workflow. The Crystal program suite also 
contains the Properties code originally designed to perform post-
SCF analysis of the converged wave function of the system. Both
Crystal and Properties have their own input/output files, which 
is why the crystal_io module of CRYSTALpytools has been or-
ganized into four main classes: Crystal_input, Crystal_output, Prop-
erties_input, Properties_output. The type of attributes, methods and 
functions of each class varies largely depending on the informa-
tion contained in the file being read or written. For instance, a CO 
obtained from the Crystal_output class can be operated on with a 
3

set of methods to extract information found in the Crystal output 
file such as the final energy, band gap, optimised geometry, etc. 
An example of how such a CO can be created and used is shown 
below:

1 from CRYSTALpytools import Crystal_output
2 Cout = Crystal_output().read_crystal_output(’file’)
3
4 ene = Cout.get_final_energy()
5 gap = Cout.get_band_gap()
6
7 cell, atnums, coord = Cout.get_last_geom()

In the script above, the first line creates a CO (namely Cout) by 
use of the read_crystal_output() method of the Crystal_output class, 
which reads a Crystal output file (file in the script above). Lines 
3 and 4 extract information from the CO, namely, the final energy 
and the band gap by acting on it with the two methods get_fi-
nal_energy() and get_band_gap(). In this case, the outcome of these 
operations is stored into variables ene and gap. In line 6, the 
get_last_geom() method is used to act on the CO, which extracts 
the final optimized geometry with information on the lattice vec-
tors stored into the cell variable, on the atomic numbers of the 
atoms in the reference cell into the atnums variable, and on the 
Cartesian coordinates of the atoms of the reference cell into the
coord variable.

The COs from the Crystal_input class are characterized by four 
attributes, corresponding to the four main blocks of a Crystal in-
put file (i.e. geometry, basis set, DFT functional, and SCF parame-
ters). These blocks can be generated either by reading an existing
Crystal input file (file1 in the script below), whose path and 
name are specified as an argument to the from_file() method:

1 from CRYSTALpytools import Crystal_input
2 Cin = Crystal_input().from_file(’file1’)

or by building it block by block explicitly uing the from_blocks()
method, which requires the four blocks to passed as its arguments. 
The same logic applies to COs generated by the Properties_input
class. Both the Crystal_input and Properties_input classes also con-
tain writing functionalities. For instance, the CO Cin in the script 
above can be written to a specific file (file2 in the script below) 
using the write_crystal_input() method as follows:

1 Cin.write_crystal_input(’file2’)

The functions contained in the convert module were developed 
in order to convert COs into different data structures characteristic 
of other Python infrastructures (e.g. pymatgen [29] and ASE [28]), 
or standard formats, such as .xyz and .cif. The opposite conver-
sion (from other python distributions to COs) is also possible. This 
allows the user to move back and forth between COs and other 
data structures in order to take advantage of existing functionali-
ties of other Python projects. For example, a Crystal user might be 
interested in optimising the geometry of a structure, convert the 
optimised geometry into a pymatgen Structure object to then use 
pymatgen functions to modify the volume of the cell, replace or 
remove atoms via a Python loop, and write the modified geometry 
back to a Crystal input file (or multiple files if several structures 
are generated in the process). In the code below, a Crystal out-
put object is converted into a pymatgen Structure object using the 
cry_out2pmg() function:

1 from CRYSTALpytools import Crystal_output
2 Cout = Crystal_output().read_crystal_output(’file’)
3 pmg = cry_out2pmg(Cout,initial=False)

The option initial=False in the script above specifies that the 
last geometry found in the Crystal output file should be used to 
generate the pymatgen Structure object. This refers to both the lat-
tice parameters and atomic positions. Intuitively, initial=True
would generate a pymatgen Structure object from the initial ge-
ometry found in the Crystal output file. In addition, this module 



B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853

Fig. 2. A) Electronic band structure of a Bi (001) bi-layer computed without spin-orbit coupling (dashed grey line), and with spin-orbit coupling as treated within the spin 
DFT (blue line), and spin current DFT (red line). B) Density-of-States (DOS) of a Weyl semi-metal: the tetragonal phase of TaAs, space group I41md; total DOS in the bottom 
panel and contributions from the atomic orbitals of Ta and As atoms in the upper panels. C) A Combined plot of the electronic band structure and DOS of TaAs.
allows the experienced pymatgen or ASE users to save their struc-
tures to files in Crystal format.

The functionalities of CRYSTALpytools discussed in this sec-
tion have been used in a recent work: the study of Li2TiS3 solid 
solutions for battery applications [43]. A workflow was generated 
to read the 4023 symmetry irreducible nuclear configurations gen-
erated by Crystal and analyse their local atomic environment (in 
terms of the Ti-Ti distance) in order to perform a cluster analysis 
and extract a subset of structures as representative of the whole 
set.

4. Data post-processing and plotting

The CRYSTALpytools library provides several functionalities 
to post-process and plot data obtained from different types of cal-
culations performed with Crystal as well as with its sub-module
Properties. Depending on the specific calculation, different output 
files are produced by Crystal and Properties. These can be read 
via the crystal_io module of CRYSTALpytools and transformed 
into COs. In this Section, the main functionalities of the plotting 
functions are discussed.

4.1. Electronic band structure and density-of-states

The visual inspection of the electronic band structure of a 
material constitutes one of the first preliminary steps of any 
quantum-mechanical investigation in a condensed matter context. 
Flexible tools to plot the electronic band structure, density-of-
states, and combination of the two were implemented in the 
plot module of CRYSTALpytools. These properties are com-
puted by the Properties module of Crystal and data is stored in 
files named BAND.DAT and DOSS.DAT. Such files can be read by 
the read_cry_band() and read_cry_doss() methods, respectively (as 
available through the Properties_output class in the crystal_io mod-
ule of CRYSTALpytools) to generate the corresponding COs. The 
different types of plots that can be generated are discussed below.

• Electronic Band Structure: A plot of the electronic band struc-
ture can be obtained from the plot_cry_band() function of 
the plot module of CRYSTALpytools. Customised plots can 
be made through a selection of arguments available in this 
4

function. For example, multiple band structures can be su-
perimposed in the same plot. Fig. 2 A) is an example where 
the electronic band structure of a strained Bi (001) bi-layer 
is shown at the onset of an insulator to topological insula-
tor phase transition, as computed without and with inclusion 
of spin-orbit coupling (SOC) [44–47,14,48] as implemented in
Crystal23 [11].
As long as the path on the x axis is consistent, the
plot_cry_band() function is also able to handle multiple band 
structures corresponding to different geometries. For instance, 
one could superimpose the electronic structure of a material 
as computed at different pressures on the same plot. The plot-
ting function would automatically scale the x coordinate to 
make them consistent across the different geometries. Techni-
cal details on how to customise such plots are reported on the 
project GitHub page.

• Density-of-States: Plots of the electronic DOS can be generated 
by using the plot_cry_doss() function on the corresponding CO 
previously generated from the reading of the DOSS.DAT file. As 
for the electronic structure, plots can be customised through a 
selection of arguments available in this function. For instance, 
if the total DOS is computed along with a set of projections 
on specific atomic orbitals, one can choose to have all data 
plotted in a single panel or as many panels as there are pro-
jections. Fig. 2 B) is an example of the latter case for the DOS 
of the TaAs Weyl semi-metal [49] where three panels are com-
bined with the total DOS (bottom) and contributions from the 
atomic orbitals of Ta and As atoms in the upper panels. Tech-
nical details on how to customise such plots can be found on 
the project GitHub page.

• Combined Plot: The electronic band structure and DOS can be 
combined in a single figure using the plot_cry_es() function 
once the two corresponding COs have been obtained by read-
ing the BAND.DAT and DOSS.DAT files. An example of this plot 
is presented in Fig. 2 C).

4.2. Elastic properties

The elastic response of any material is fully described by its 
fourth-rank elastic stiffness tensor C, whose elements Cijkl (with 



B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853

Fig. 3. A) Graphical representation of the geometrical parameters needed for the definition of the four mechanical properties: the two directions u and v and the three angles 
ϑ , ϕ , and χ . B) Young modules E , linear compressibility β , average shear modulus Gavg and maximum Poisson’s ratio νmax (all in GPa) for four systems: coesite SiO2, CO2

molecular crystal, water ice XI, and ZIF-8.
i, j, k, l = x, y, z) are the so-called elastic constants defined as sec-
ond energy derivatives with respect to a pair of lattice strains [50]. 
The Crystal program contains built-in functionalities for the auto-
mated numerical evaluation of such derivatives and for the one-
shot calculation of the whole elastic tensor at the equilibrium vol-
ume [51–53], at a given pressure [54] or temperature [21]. Once 
the elastic tensor is computed, a variety of mechanical properties 
of the system can be evaluated. Because materials are generally 
anisotropic, the value of each mechanical property depends on the 
particular crystallographic direction along which it is measured. 
The spatial dependence of these properties can be computed from 
the elastic constants and requires advanced plotting utilities to be 
properly visually analysed.

CRYSTALpytools contains functions to read the computed 
elastic tensor from an elastic Crystal calculation and to compute 
and plot several directional mechanical properties: the Young mod-
ulus E (i.e. the strain response of a solid to an uniaxial stress, 
in the direction of this stress), the linear compressibility β (i.e.
the linear strain under the application of an external hydrostatic 
stress), the shear modulus G (i.e. the strain response to a shear 
stress), and Poisson’s ratio ν (i.e. the strain response in the direc-
tions orthogonal to a uniaxial stress) [55]. The first two quantities 
depend on a single direction u (and thus on two angles ϑ and ϕ in 
spherical coordinates), whereas, the latter two depend on two di-
rections u and v (if orthogonal, the two directions can be defined 
in terms of three angles ϑ , ϕ , and χ in spherical coordinates). 
Fig. 3 A) reports a graphical definition of such geometrical quanti-
ties. For each direction (i.e. for each pair of ϑ and ϕ angles), the 
value of the Young modulus can be computed as:

E(ϑ,ϕ) = 1

uiu jukul Si jkl
, (1)

where Einstein’s notation is used according to which indices that 
are repeated are meant to be summed over, and where Sijkl are the 
5

elements of the inverse of the elastic tensor S = C−1. The value of 
the directional linear compressibility can be computed as:

β(ϑ,ϕ) = Sijkkuiu j . (2)

The directional shear modulus is computed as:

G(ϑ,ϕ,χ) = 1

ui v juk vl Si jkl
. (3)

Its dependence on three angles makes its graphical representa-
tion difficult. Here we follow the same strategy already adopted 
by other authors [56,57] where for each direction (i.e. for each pair 
of ϑ and ϕ angles) the shear modulus is computed for all values of 
the third angle χ and the maximum, minimum and average values 
are stored. Three distinct plots are possible where for each direc-
tion either the minimum, maximum or average value is reported. 
The same logic applies to Poisson’s ratio:

ν(ϑ,ϕ,χ) = −uiu j vk vl Si jkl

uiu jukul Si jkl
. (4)

In CRYSTALpytools, the get_elatensor() method of the Crys-
tal_output class reads the computed elastic tensor from the main
Crystal output file and stores it into an appropriate CO. The me-
chanical properties above can be computed and plotted in 3D by 
use of the plot_cry_ela() function. Fig. 3 B) reports some plots 
produced with this function. In particular, 3D plots of the spa-
tial dependence of the Young modules E , linear compressibility 
β , average shear modulus Gavg and maximum Poisson’s ratio νmax
are reported for four systems: coesite SiO2, CO2 molecular crystal, 
water ice XI, and ZIF-8. Different customised plots can be made 
through a selection of arguments available in the plot_cry_ela()
function. For instance, a reference elastic tensor can be provided 
to define a reference colour scale to be kept constant across mul-
tiple plots. Also the angular resolution can be customised.



B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853

Fig. 4. A-E) 2D contour maps of different electronic properties of the Urea molecular crystal: the total electron density ρ(r) (A), the deformation density �ρ(r) (B), the 
Laplacian of the density ∇2ρ(r) (C), the electron localization function ELF(r) (D), the kinetic energy density K (r) (E). F) 2D plot of the projected trajectories of the gradient 
of the electron density ∇ρ(r) on the molecular plane of the Urea molecule.
4.3. Analysis of the electron density and associated properties

Arguably, the quantum theory of atoms in molecules (QTAIM) 
represents the most comprehensive formal framework for the 
analysis of the electron density of a quantum-mechanical sys-
tem [58,59]. It is based on a topological analysis of the electron 
density ρ(r), and it is often complemented with a topological anal-
ysis of the Laplacian of the electron density L(r) = −∇2ρ(r) [60]. 
The QTAIM was implemented in the Crystal package with the
Topond module [61], which has recently been extended to par-
allel computing [62] and to high angular momentum basis func-
tions [18,17]. The Topond module performs a full topological anal-
ysis of both ρ(r) and L(r) looking for their respective critical 
6

points and allows for an atomic partitioning of all related prop-
erties.

Furthermore, starting from the ground state wavefunction ob-
tained from the self-consistent field process, the Topond module 
can compute a variety of electronic properties at a 2D grid of 
points in space, including the electron density itself ρ(r), its Lapla-
cian L(r), local kinetic, potential, and total energy densities K (r), 
V (r) and H(r), the electron localization function ELF(r). These 
are all scalar fields associating a scalar value to each point of 
space r. In CRYSTALpytools, user-friendly functions to produce 
2D contour plots of all these quantities were implemented. The 
read_cry_contour() method of the Properties_output class can read 
the output files generated by Topond (such as SURFRHOO.DAT for 



B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853

Fig. 5. A) 2D representation of the vector field of the magnetization m of the I+2 molecule (with its molecular axis along z) in the xz plane; B) 2D representation of the vector 
field of the orbital current density j of the I+2 molecule in the xz plane; C-D) top and side view of the WSe2 2D system; E) 2D representation of the vector field of the spin 
current density Jz of the 2D WSe2 in the horizontal plane passing through the W atoms.
ρ(r), SURFLAPP.DAT for the Laplacian, SURFKKIN.DAT for the local 
kinetic energy density K (r), etc.) and generate the corresponding 
COs. By acting on such COs with the plot_cry_contour() function, 
2D contour plots can be produced. As an example, Fig. 4 shows 2D 
contour plots for some of the properties discussed in this section 
for the molecular crystal of Urea.

In addition, the plot_cry_difference() function implemented in
CRYSTALpytools take two COs obtained from two separate cal-
culations as input and generate difference 2D plots. This is par-
ticularly convenient when 2D plots of deformation and interaction 
densities �ρ(r), or deformation and interaction Laplacians �L(r)
are to be analysed. Deformation properties is defined as the dif-
ference between the property of the interacting system and that 
given by the superposition of non-interacting atomic contributions. 
Interaction properties are defined as the difference between the 
property of the interacting system and that given by the superposi-
tion of non-interacting molecular contributions. The latter can only 
be defined for molecular crystals. Fig. 4 B) shows an example of 
deformation density �ρ(r) 2D contour plot for the molecular crys-
tal of Urea. Lastly, the read_cry_contour() method and plot_cry_con-
tour() function have also been generalised to be able to read and 
plot the TRAJGRAD.DAT output file from Topond to visualize tra-
jectories of the gradient of the electron density ∇ρ(r) projected 
on a plane. Fig. 4 F) shows such trajectories when projected in the 
molecular plane of the Urea molecule.

4.4. Plots of vector fields: non-collinear magnetization, orbital and spin 
current densities

Both the Hartree-Fock and DFT methods implemented in Crys-

tal have recently been generalised to a two-component spinor 
basis [46,48]. Such generalization paved the way to an effective 
self-consistent treatment of the spin-orbit interaction [14]. These 
extensions allow to compute a variety of advanced electronic prop-
erties of materials at any point r of space, such as the magnetiza-
tion vector m(r) (collinear or non-collinear based on the adopted 
approach), the orbital current density j(r), and the three spin cur-
rent densities Jx(r), Jy(r) and Jz(r). All such properties are vector 
fields represented by a Cartesian vector of three components at 
each point r of space.

The Properties module of the Crystal suite has been extended 
to compute all these properties at 2D or 3D grid of points. When 
the properties are computed on user-defined 2D grids of points 
on selected planes, data is stored in .f25 format files. These files 
can be read by the read_vecfield() function of the Properties_out-
put class. The generated CO can then be plotted. The plot_vec-
field_2D_m(), plot_vecfield_2D_j() and plot_vecfield_2D_J() functions 
7

are able to produce 2D plots of the properties listed above, where 
a colour map is used to represent the module of the property at 
each point of the selected plane. Arrows are superimposed to the 
plot to show the projections of the local 3D vectors of the prop-
erty in the plane. Fig. 5 shows selected examples of the obtained 
graphical representation.

4.5. Electron transport properties

A module for the calculation of electron transport properties 
has recently been implemented in Crystal. Such module is based 
on the semiclassical Boltzmann transport theory in the constant 
relaxation-time approximation [63]. Properties such as the See-
beck coefficient matrix S (with elements Si, j where i, j = x, y, z) 
and the electron conductivity matrix σ (with elements σi j where 
i, j = x, y, z) are computed by the Properties module. Computed 
values are saved into the output files SEEBECK.DAT and SIGMA.DAT. 
These can be read by the read_cry_seebeck() and read_cry_sigma()
functions of Properties_output class to generate the correspond-
ing COs. These quantities can be plotted in different ways: i) as 
a function of the chemical potential with functions plot_cry_see-
beck_potential() and plot_cry_sigma_potential() (as displayed in 
Fig. 6 B); ii) as a function of the charge carrier concentration with 
functions plot_cry_seebeck_carrier() and plot_cry_sigma_carrier() (as 
done in Fig. 6 A); iii) by superimposing data from multiple cal-
culations on a single plot with functions plot_cry_multiseebeck()
and plot_cry_multisigma(). The plot_cry_powerfactor_potential() and 
plot_cry_powerfactor_carrier() functions were developed to compute 
and plot the thermoelectric power factors PFi j = S2

i jσi j , as shown 
in Fig. 6 C) and D).

4.6. Thermodynamics

Thanks to the underlying robust implementation of analytical 
forces [64–68], the Crystal program can efficiently describe the 
lattice dynamics within the harmonic approximation (HA) [69,70], 
the quasi-harmonic approximation (QHA) [71–75], and, more re-
cently, some explicit anharmonic approaches [24–27]. From com-
puted phonons, thermodynamic properties of materials at finite 
temperatures and pressures can be derived via a statistical thermo-
dynamic approach. The Thermodynamics module of CRYSTALpy-
tools provides functionalities to derive harmonic and quasi-
harmonic thermodynamic properties of materials from harmonic 
phonons computed with Crystal.

In the current implementation, this module comprises three 
classes: Mode to read (from the .out Crystal output file) and store 



B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853

Fig. 6. Electron transport coefficients of Bi2Te3 for i = x and j = x at three different temperatures. A) Seebeck coefficient Sxx as a function of charge carrier concentration; 
B) Seebeck coefficient Sxx as a function of chemical potential; C) Power Factor PFxx as a function of charge carrier concentration; and D) Power Factor PFxx as a function 
of chemical potential. To differentiate transport coefficients due to n-type or p-type conduction (electrons or holes as majority carriers) dashed and solid lines are used, 
respectively. Data from Ref. [63].
frequencies and eigenvectors of harmonic vibrational modes, Har-
monic to compute harmonic thermodynamic properties of a system 
(i.e. at constant volume), and Quasi_harmonic to compute quasi-
harmonic thermodynamic properties of a system.

For the HA, relevant thermodynamic properties include zero-
point energy, phonon vibration contribution to internal energy, 
Helmholtz free energy, Gibbs free energy, vibration entropy, and 
constant-volume specific heat. The following script shows how to 
calculate and print harmonic thermodynamic properties at differ-
ent user-specified temperatures (in K):

1 Cha = Harmonic(temperature=[298,400],write_out=True,
2 filename=’file2’).from_file(’file1’)

Harmonic phonons are read from a Crystal .out file (file1 in the 
example above), thermodynamic properties are computed at 298 
and 400 K and results printed in a specified file (file2 in the 
example above).

The class Quasi_harmonic is capable of more comprehensive 
jobs at the QHA level, such as computing thermal expansion curves 
and getting high-pressure high-temperature thermodynamic prop-
8

erties. Crucially, a QHA approach relies on harmonic phonons com-
puted at different volumes. The Quasi_harmonic class can either 
read a single QHA Crystal output file or a set of independent 
harmonic Crystal calculations at different volumes. The latter ap-
proach may lead to numerical noise when running calculations 
with default settings because of overlap-based truncation thresh-
olds for bielectronic Coulomb and exchange integrals [76,77]. More 
details and possible solutions are addressed in [78]. The main QHA 
working equation expresses the Helmholtz free energy of the sys-
tem as a function of temperature and volume as:

F (T , V ) = E(V ) + 1

2

∑
i

h̄ωi(V )

+ kB T
∑

i

[
ln

(
1 − e

− h̄ωi (V )

kB T

)]
(5)

where E(V ) is the zero-temperature internal energy of the crystal 
(excluding the vibrational zero-point energy) and ωi(V ) are the 



B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853
harmonic phonon frequencies at volume V . The Gibbs free energy 
of the system is:

G(T , V , p) = F (T , V ) + pV (6)

The equilibrium volume at a given temperature and pressure, 
V (T , p), can be obtained by minimising Eq. (6) with respect to 
the volume V , keeping T and p fixed. Two different strategies 
have been devised for the calculation of quasi-harmonic thermo-
dynamic properties, implemented in two methods: I) thermo_freq; 
and II) thermo_eos.

The first strategy, implemented in method thermo_freq, involves 
three steps: i) fitting the static internal energy E(V ) to a variety of 
equations of state (EoS), as implemented in pymatgen [29], with 
third-order Birch-Murnaghan being the default one [79]; ii) indi-
vidual polynomial fitting of each harmonic frequency as a function 
of the volume, ωi(V ), where the order of the polynomial can be 
set by the user, with cubic as a default (note that this step re-
lies on the identification of matching phonons at different volumes, 
as described in [72]); iii) the minimization of G(T , V , p) with the 
BFGS and the L-BFGS-B minimisation algorithms implemented in 
SciPy [38], with the unbounded BFGS being the default option. 
The following code shows how quasi-harmonic thermodynamic 
properties of a system can be computed at given temperatures 
and pressures from a single .out file of a QHA Crystal calcula-
tion (file in the example below) via strategy I) implemented in 
method thermo_freq:

1 from CRYSTALpytools.thermodynamics import Quasi_harmonic
2 import numpy as np
3
4 Cqha = Quasi_harmonic().from_QHA_file(’file’)
5 Cqha.thermo_freq(temperature=np.linspace(10,1000,11),
6 pressure=np.linspace(0,10,6))
7
8 print(Cqha.equilibrium_volume[0,:])

In this case, quasi-harmonic thermodynamic properties are com-
puted at 11 equally-spaced temperatures in the range [10-1000] K 
and at 6 equally-spaced pressures in the range [0-10] GPa. The last 
line of the script prints the computed equilibrium volumes at the 
11 temperatures at zero pressure.

The second strategy, implemented in method thermo_eos, in-
volves three steps: i) fitting the Helmholtz free energy F (V ; T ) to 
a variety of EoS, as implemented in pymatgen [29], with third-
order Birch-Murnaghan being the default one [79], or to poly-
nomials of different orders; ii) getting the thermal pressure ana-
lytically from p̃(V ; T ) = −∂ F (V ; T )/∂V ; iii) the equilibrium vol-
ume at a given temperature and pressure V (T , p) is obtained by 
minimizing the square root residue of fitted pressure: V (T , p) =
min

{√[
p̃(V ; T ) − p

]2
}

. The following code illustrates how to get 

quasi-harmonic thermodynamic properties from four separate har-
monic phonon Crystal calculations (each performed at a differ-
ent volume) by fitting the Helmholtz free energy F (V ; T ) to the 
Birch-Murnaghan EoS, via strategy II) implemented in method 
thermo_eos:

1 from CRYSTALpytools.thermodynamics import Quasi_harmonic
2 import numpy as np
3
4 Cqha = Quasi_harmonic().from_HA_files([’file1’, ’file2’, ’

file3’, ’file4’], sort_phonon=False)
5 Cqha.thermo_eos(eos_method=’birch_murnaghan’,
6 temperature=np.linspace(10,300,7),
7 pressure=np.linspace(0,0.5,6))

Strategy II) is preferable for medium-to-large sized systems with 
low symmetry where the one-to-one identification of matching 
phonons at different volumes of strategy I) may prove critical. Ta-
ble 1 shows the comparison between the zero pressure thermal 
expansion of Form I of the paracetamol crystal as obtained with 
the two strategies presented above.
9

Table 1
Computed thermal expansion at zero pressure of Form I of paracetamol crystal with 
the two strategies, I) and II), described in the text in the temperature range [0-300] 
K.

T (K) V (Å3)

I) II)

0 773.52 773.30
50 775.06 774.63
100 778.29 777.70
150 780.79 780.30
200 782.54 782.22
250 783.80 783.64
300 784.74 784.73

Fig. 7. Volume (upper panel) and thermal expansion coefficient (lower panel) of 
Form I paracetamol crystal.

The implementation of the Thermodynamics module of CRYS-
TALpytools is flexible enough to explore new computational 
strategies. For instance, in the following example, a hierarchical 
method is adopted to determine the thermal expansion of Form 
I paracetamol crystal, which combines the static electronic energy 
from plane-wave DFT (PW-DFT) calculations and phonons from
Crystal. PW-DFT is free from the well-known basis set superposi-
tion error (BSSE) of atom-centered Gaussian orbitals, while Crystal

uses local Gaussian orbitals but implements various cost-effective 
semi-empirical corrections to the DFT [80]. Both factors are criti-
cal to predicting the thermodynamic properties of weakly bound 
materials such as molecular crystals.

Here, the thermal expansion of Form I paracetamol crystal is 
computed in two ways: i) with a consistent Crystal calculation 
of both the electronic and phonon contributions with the PBEh-3c 
composite method [81]; and ii) with a PW-DFT calculation of the 
electronic energy by Quantum-Espresso [1] (with the B86bPBE-
XDM functional, built-in PAW, and 1100 eV energy cut-off), and 



B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853
phonons from the PBEh-3c Crystal calculation. Results obtained 
with the two approaches are shown in Fig. 7 and compared to 
experimental data [82].

5. Conclusions

In this paper, the CRYSTALpytools open source Python 
project, which implements a user-friendly interface to the Crys-

tal code for quantum-mechanical condensed matter simulations 
has been presented. The project provides functionalities to write 
and read Crystal input and output files for several types of calcu-
lations, and to extract relevant information. It implements tools to 
translate Crystal objects (the central data structure of the project) 
to and from the Structure and Atoms objects of pymatgen and 
ASE, respectively. Several computed properties, including elastic 
constants and phonons, can be post-processed to get extra insight. 
All these functionalities make CRYSTALpytools a powerful tool 
to design computationally effective workflows to interact with the
Crystal program. Additionally, several tools have been developed 
to plot results in a variety of styles for rapid and precise visual 
analysis.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This research has received funding from the Project CH4.0 un-
der the MUR program “Dipartimenti di Eccellenza 2023-2027” 
(CUP: D13C22003520001).

References

[1] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, 
G.L. Chiarotti, M. Cococcioni, I. Dabo, et al., J. Phys. Condens. Matter 21 (39) 
(2009) 395502.

[2] J. Hafner, G. Kresse, in: Properties of Complex Inorganic Solids, Springer, 1997, 
pp. 69–82.

[3] X. Gonze, F. Jollet, F.A. Araujo, D. Adams, B. Amadon, T. Applencourt, C. Au-
douze, J.-M. Beuken, J. Bieder, A. Bokhanchuk, et al., Comput. Phys. Commun. 
205 (2016) 106–131.

[4] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K. Madsen, L.D. Marks, J. Chem. 
Phys. 152 (7) (2020) 074101.

[5] S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, M.C. 
Payne, Z. Kristallogr. Cryst. Mater. 220 (5–6) (2005) 567–570.

[6] E. Apra, E.J. Bylaska, W.A.D. Jong, N. Govind, K. Kowalski, T.P. Straatsma, M. Va-
liev, H.J.J. van Dam, Y. Alexeev, J. Anchell, et al., J. Chem. Phys. 152 (18) (2020) 
184102.

[7] J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, Wiley Interdiscip. Rev. 
Comput. Mol. Sci. 4 (1) (2014) 15–25.

[8] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V.R. Saunders, C.M. Zicovich-Wilson, 
Z. Kristallogr. 220 (5–6) (2005) 571–573.

[9] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. 
Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, 
B. Kirtman, Int. J. Quant. Chem. 114 (19) (2014) 1287–1317.

[10] R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, 
M. Rérat, S. Casassa, J. Baima, S. Salustro, B. Kirtman, Comput. Mol. Sci. 8 (4) 
(2018) e1360.

[11] A. Erba, J.K. Desmarais, S. Casassa, B. Civalleri, L. Doná, I.J. Bush, B. Searle, L. 
Maschio, L. Edith-Daga, A. Cossard, et al., J. Chem. Theory Comput. (2022).

[12] E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14 (3) (1974) 177–478.
[13] J. Muscat, A. Wander, N. Harrison, Chem. Phys. Lett. 342 (3–4) (2001) 397–401.
[14] J.K. Desmarais, J.-P. Flament, A. Erba, Phys. Rev. B 101 (23) (2020) 235142.
[15] J.K. Desmarais, A. Erba, J.-P. Flament, B. Kirtman, J. Chem. Theory Comput. 

17 (8) (2021) 4697–4711.
10
[16] J.K. Desmarais, A. Erba, J.-P. Flament, B. Kirtman, J. Chem. Theory Comput. 
17 (8) (2021) 4712–4732.

[17] A. Cossard, J.K. Desmarais, S. Casassa, C. Gatti, A. Erba, J. Phys. Chem. Lett. 
12 (7) (2021) 1862–1868.

[18] A. Cossard, S. Casassa, C. Gatti, J.K. Desmarais, A. Erba, Molecules 26 (14) (2021) 
4227.

[19] J. Desmarais, A. Erba, R. Dovesi, Theor. Chem. Acc. 137 (2018) 28.
[20] C. Ribaldone, S. Casassa, AIP Adv. 12 (1) (2022) 015323.
[21] M. Destefanis, C. Ravoux, A. Cossard, A. Erba, Minerals 9 (2019) 16.
[22] P.A. Banks, J. Maul, M.T. Mancini, A.C. Whalley, A. Erba, M.T. Ruggiero, J. Mater. 

Chem. C 8 (2020) 10917–10925.
[23] J. Maul, D. Ongari, S.M. Moosavi, B. Smit, A. Erba, J. Phys. Chem. Lett. 11 (20) 

(2020) 8543–8548.
[24] A. Erba, J. Maul, M. Ferrabone, P. Carbonniére, M. Rérat, R. Dovesi, J. Chem. 

Theory Comput. 15 (2019) 3755–3765.
[25] A. Erba, J. Maul, M. Ferrabone, R. Dovesi, M. Rérat, P. Carbonnière, J. Chem. 

Theory Comput. 15 (2019) 3766–3777.
[26] J. Maul, G. Spoto, L. Mino, A. Erba, Phys. Chem. Chem. Phys. 21 (48) (2019) 

26279–26283.
[27] R.G. Schireman, J. Maul, A. Erba, M.T. Ruggiero, J. Chem. Theory Comput. 18 

(2022) 4428–4437.
[28] A.H. Larsen, J.J. Mortensen, J. Blomqvist, I.E. Castelli, R. Christensen, M. Dułak, 

J. Friis, M.N. Groves, B. Hammer, C. Hargus, E.D. Hermes, P.C. Jennings, P.B. 
Jensen, J. Kermode, J.R. Kitchin, E.L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, 
J.B. Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. 
Schiøtz, O. Schütt, M. Strange, K.S. Thygesen, T. Vegge, L. Vilhelmsen, M. Wal-
ter, Z. Zeng, K.W. Jacobsen, J. Phys. Condens. Matter 29 (27) (2017) 273002.

[29] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. 
Chevrier, K.A. Persson, G. Ceder, Comput. Mater. Sci. 68 (2013) 314–319.

[30] X. Shao, O. Andreussi, D. Ceresoli, M. Truscott, A. Baczewski, Q. Campbell, M. 
Pavanello, QEpy: quantum ESPRESSO in python, https://gitlab .com /shaoxc /qepy, 
2022.

[31] S.P. Huber, S. Zoupanos, M. Uhrin, L. Talirz, L. Kahle, R. Häuselmann, D. Gresch, 
T. Müller, A.V. Yakutovich, C.W. Andersen, et al., Sci. Data 7 (1) (2020) 1–18.

[32] A.W. Sousa da Silva, W.F. Vranken, BMC Res. Notes 5 (1) (2012) 1–8.
[33] M. Ceriotti, J. More, D.E. Manolopoulos, Comput. Phys. Commun. 185 (3) (2014) 

1019–1026.
[34] H.L. Röst, U. Schmitt, R. Aebersold, L. Malmström, Proteomics 14 (1) (2014) 

74–77.
[35] D. Lampert, M. Wu, Environ. Model. Softw. 68 (2015) 166–174.
[36] S. Kundu, S. Bhattacharjee, S.-C. Lee, M. Jain, Comput. Phys. Commun. 233 

(2018) 261–268.
[37] C.R. Harris, K.J. Millman, S.J. van der Walt, R. Gommers, P. Virtanen, D. Cour-

napeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, R. Kern, M. Picus, S. Hoyer, 
M.H. van Kerkwijk, M. Brett, A. Haldane, J.F. del Río, M. Wiebe, P. Peterson, P. 
Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, 
T.E. Oliphant, Nature 585 (2020) 357–362.

[38] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, 
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, 
J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, 
C.J. Carey, İ. Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. 
Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, 
F. Pedregosa, P. van Mulbregt, Nat. Methods 17 (2020) 261–272.

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. 
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., J. Mach. Learn. Res. 12 
(2011) 2825–2830.

[40] K. Momma, F. Izumi, J. Appl. Crystallogr. 41 (3) (2008) 653–658.
[41] M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchi-

son, J. Cheminform. 4 (1) (2012) 1–17.
[42] https://github .com /crystal -code -tools, 2023.
[43] R. Rocca, M. Sgroi, B. Camino, M. D’Amore, A. Ferrari, Nanomaterials 12 (2022) 

1832.
[44] W.P. Comaskey, F. Bodo, A. Erba, J.L. Mendoza-Cortes, J.K. Desmarais, Phys. Rev. 

B 106 (20) (2022) L201109.
[45] J.K. Desmarais, J.-P. Flament, A. Erba, J. Phys. Chem. Lett. 10 (13) (2019) 

3580–3585.
[46] Jacques K. Desmarais, Jean-Pierre Flament, Alessandro Erba, J. Chem. Phys. 

151 (7) (2019) 074107.
[47] J.K. Desmarais, J.-P. Flament, A. Erba, Phys. Rev. B 102 (23) (2020) 235118.
[48] J.K. Desmarais, S. Komorovsky, J.-P. Flament, A. Erba, J. Chem. Phys. 154 (20) 

(2021) 204110.
[49] F. Bodo, J.K. Desmarais, A. Erba, Phys. Rev. B 105 (12) (2022) 125108.
[50] J.F. Nye, et al., Physical Properties of Crystals: Their Representation by Tensors 

and Matrices, Oxford University Press, 1985.
[51] W.F. Perger, J. Criswell, B. Civalleri, R. Dovesi, Comput. Phys. Commun. 180 

(2009) 1753–1759.
[52] A. Erba, A. Mahmoud, R. Orlando, R. Dovesi, Simulations 41 (2014) 151–160.
[53] A. Erba, D. Caglioti, C.M. Zicovich-Wilson, R. Dovesi, J. Comput. Chem. 38 (2017) 

257–264.
[54] A. Erba, A. Mahmoud, D. Belmonte, R. Dovesi, Grossular Andradite Silicate Gar-

nets 140 (2014) 124703.

http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8181FE6CB8F11E3D18A586FD95827C91s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8181FE6CB8F11E3D18A586FD95827C91s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8181FE6CB8F11E3D18A586FD95827C91s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib9E94AF9C1A2416E8A88396824EDB8BD3s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib9E94AF9C1A2416E8A88396824EDB8BD3s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib71A16A8EE702D4669AACCBC080E66659s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib71A16A8EE702D4669AACCBC080E66659s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib71A16A8EE702D4669AACCBC080E66659s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA73CF1B85197773068E935F6C50ADB68s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA73CF1B85197773068E935F6C50ADB68s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib25C920BDB897F1D682F9B67BA77E3666s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib25C920BDB897F1D682F9B67BA77E3666s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA2DAE92E4E68D8583450617742C0E1BDs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA2DAE92E4E68D8583450617742C0E1BDs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA2DAE92E4E68D8583450617742C0E1BDs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib68665DEA2EC46303B3F06C34D6359EEBs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib68665DEA2EC46303B3F06C34D6359EEBs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib345F09A1ED61F816303D2108A1D48C03s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib345F09A1ED61F816303D2108A1D48C03s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF2A88C642EF43B948D79077398B1BC91s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF2A88C642EF43B948D79077398B1BC91s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF2A88C642EF43B948D79077398B1BC91s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibB51D99914CCD150AAFBF686E6C7C81D0s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibB51D99914CCD150AAFBF686E6C7C81D0s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibB51D99914CCD150AAFBF686E6C7C81D0s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibC392BAF8F9FCCB82C97E589D41632FD6s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibC392BAF8F9FCCB82C97E589D41632FD6s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib6AB352619DD7385BC8A83F6CB85CCE54s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib1BABC899E728DF55DC1B0492929C6586s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib7587F9348498291538720BB77BE5829Fs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibCACA17F30639D144092ED288CE6DC50Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibCACA17F30639D144092ED288CE6DC50Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibD4BFDF8E5A073476814B9BDD129BED21s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibD4BFDF8E5A073476814B9BDD129BED21s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib18064B093CB7790C4A8B26A362B66206s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib18064B093CB7790C4A8B26A362B66206s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib2EAD34A481E998B73EC1A29FAAF7B38Cs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib2EAD34A481E998B73EC1A29FAAF7B38Cs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib608A325E4079340620AAD6943686D945s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibE62D62EFECD52844BBD1BF8123575290s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib916CFB94B794AB0F915B0701EE0689D0s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibDF27824D558A4EAA2242081097DE0F53s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibDF27824D558A4EAA2242081097DE0F53s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibAB28FAFEC25346747D1F28A9CFE53385s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibAB28FAFEC25346747D1F28A9CFE53385s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib54F7ADB83ECE61787416E3EC44AC2B94s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib54F7ADB83ECE61787416E3EC44AC2B94s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib1031A86C82AE140192835216CE9603C4s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib1031A86C82AE140192835216CE9603C4s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF006D11EE81FDC2546CAED5FF0BD27EAs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF006D11EE81FDC2546CAED5FF0BD27EAs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib3E3706409A7B675BB07E28781C418DFAs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib3E3706409A7B675BB07E28781C418DFAs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8EA3B58EB88F49009E0EBAB340D5BA1Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8EA3B58EB88F49009E0EBAB340D5BA1Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8EA3B58EB88F49009E0EBAB340D5BA1Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8EA3B58EB88F49009E0EBAB340D5BA1Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8EA3B58EB88F49009E0EBAB340D5BA1Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8EA3B58EB88F49009E0EBAB340D5BA1Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib94B8114C7D23A634BD0A8C4D14E1E337s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib94B8114C7D23A634BD0A8C4D14E1E337s1
https://gitlab.com/shaoxc/qepy
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib314538033642051D6218B7DAAFC00CDFs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib314538033642051D6218B7DAAFC00CDFs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibEAFF23D2694B15447FF7A065400D942Ds1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib953615CD16969178C4BD5D1554C3B2E1s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib953615CD16969178C4BD5D1554C3B2E1s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibCFA0B5DD33FAD984E82C95488FF70188s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibCFA0B5DD33FAD984E82C95488FF70188s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibBC6707ED601AFE7618890E284F5BC3DEs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibB63A555D4927A41EA1B7E5A07BA6FEDDs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibB63A555D4927A41EA1B7E5A07BA6FEDDs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib557605409C33E5C2B4B8D3ED062E4314s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib557605409C33E5C2B4B8D3ED062E4314s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib557605409C33E5C2B4B8D3ED062E4314s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib557605409C33E5C2B4B8D3ED062E4314s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib557605409C33E5C2B4B8D3ED062E4314s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib3640D5086A1422DDF6CB08587149CC52s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib3640D5086A1422DDF6CB08587149CC52s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib3640D5086A1422DDF6CB08587149CC52s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib3640D5086A1422DDF6CB08587149CC52s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib3640D5086A1422DDF6CB08587149CC52s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib3640D5086A1422DDF6CB08587149CC52s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib18CA187CDC96B3954728D462A43043D7s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibFC47882EA6D2EB08D050E2891CE0BE96s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibFC47882EA6D2EB08D050E2891CE0BE96s1
https://github.com/crystal-code-tools
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF198E3C18DE01757842CF49F3C74A3E7s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF198E3C18DE01757842CF49F3C74A3E7s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibED4C4266FEEC2906E5B5ACDAC5ECF7E6s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibED4C4266FEEC2906E5B5ACDAC5ECF7E6s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibE35BE8261A1F644E009D367D915F4794s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibE35BE8261A1F644E009D367D915F4794s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib5CCAD1E8970C38DDF40EDDDAEC369D34s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib5CCAD1E8970C38DDF40EDDDAEC369D34s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib5676CEA2BD8C844E4276B2F398B14714s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib80E098CE41E53C51C91B6A0001469C45s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib80E098CE41E53C51C91B6A0001469C45s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib94A9638095FA13700FE274AF0C51C909s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8E80F5E0358252C866E4FD83AF479E5As1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8E80F5E0358252C866E4FD83AF479E5As1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib5A3E9B20736D4B107A3048D041DEBA8Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib5A3E9B20736D4B107A3048D041DEBA8Bs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib4D50EECD9847D91A0D3E6F1D6210512Ds1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib521CAE96F99978712F10CDF886FFDFE8s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib521CAE96F99978712F10CDF886FFDFE8s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA86C97542B532638E3174BA2C1FD40BEs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA86C97542B532638E3174BA2C1FD40BEs1


B. Camino, H. Zhou, E. Ascrizzi et al. Computer Physics Communications 292 (2023) 108853
[55] R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Ox-
ford University Press on Demand, 2005.

[56] A. Marmier, Z.A. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker, K.E. Evans, 
Comput. Phys. Commun. 181 (12) (2010) 2102–2115.

[57] R. Gaillac, P. Pullumbi, F.-X. Coudert, J. Phys. Condens. Matter 28 (27) (2016) 
275201.

[58] R.F. Bader, T. Nguyen-Dang, Quantum Theory of Atoms in Molecules–Dalton 
Revisited, Advances in Quantum Chemistry, vol. 14, Elsevier, 1981, pp. 63–124.

[59] C. Gatti, Z. Kristallogr. 220 (5–6) (2005) 399–457.
[60] P. Popelier, Coord. Chem. Rev. 197 (1) (2000) 169–189.
[61] C. Gatti, V. Saunders, C. Roetti, J. Chem. Phys. 101 (12) (1994) 10686–10696.
[62] S. Casassa, A. Erba, J. Baima, R. Orlando, J. Comput. Chem. 36 (26) (2015) 

1940–1946.
[63] G. Sansone, A. Ferretti, L. Maschio, J. Chem. Phys. 147 (11) (2017) 114101.
[64] K. Doll, Comput. Phys. Commun. 137 (2001) 74–88.
[65] K. Doll, V. Saunders, N. Harrison, Int. J. Quant. Chem. 82 (2001) 1–13.
[66] K. Doll, R. Dovesi, R. Orlando, Theor. Chem. Acc. 112 (5–6) (2004) 394–402.
[67] K. Doll, R. Dovesi, R. Orlando, Theor. Chem. Acc. 115 (5) (2006) 354–360.
[68] K. Doll, Mol. Phys. 108 (3–4) (2010) 223–227.
[69] C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders, R. Orlando, R. Dovesi, 

J. Comput. Chem. 25 (2004) 1873–1881.
[70] J. Baima, M. Ferrabone, R. Orlando, A. Erba, R. Dovesi, Phys. Chem. Miner. 43 

(2016) 137–149.
[71] A. Erba, J. Chem. Phys. 141 (2014) 124115.
[72] A. Erba, M. Shahrokhi, R. Moradian, R. Dovesi, J. Chem. Phys. 142 (2015) 

044114.
[73] A. Erba, J. Maul, R. Demichelis, R. Dovesi, Phys. Chem. Chem. Phys. 17 (2015) 

11670–11677.

[74] A. Erba, J. Maul, M. De La Pierre, R. Dovesi, J. Chem. Phys. 142 (2015) 204502.
[75] A. Erba, J. Maul, B. Civalleri, Chem. Commun. 52 (2016) 1820–1823.
[76] R. Dovesi, C. Pisani, C. Roetti, V. Saunders, Phys. Rev. B 28 (10) (1983) 5781.
[77] V. Saunders, C. Freyria-Fava, R. Dovesi, L. Salasco, C. Roetti, Mol. Phys. 77 (4) 

(1992) 629–665.
[78] In Crystal, the truncation thresholds of bielectronic Coulomb and exchange in-

tegrals is based on overlap (the TOLINTEG keyword). Finite changes in lattice 
and atomic coordinates make the consistent definition of truncation thresholds 
rather difficult, which might lead to numerical noises on the energy-volume 
curve. So far, the FIXINDEX option, which fixes the thresholds according to 
a reference geometry, is implemented for the Crystal QHA module and not 
available for multiple independent harmonic phonon calculations. The current 
implementation of CRYSTALpytools is compatible with outputs of Crystal

QHA calculations so the users can still utilise its flexibility without the prob-
lem of inconsistent truncation. Nevertheless, it should also be noted that this 
problem can be alleviated by increasing TOLINTEG and exactly computing the 
bielectronic integrals (NOBIPOLA). Both methods reduce the loss of significant 
Coulomb or exchange serials which might be cut off or approximated other-
wise.

[79] F. Birch, Phys. Rev. 71 (1947) 809–824.
[80] L.M. LeBlanc, A. Otero-de-la Roza, E.R. Johnson, J. Chem. Theory Comput. 14 (4) 

(2018) 2265–2276.
[81] S. Grimme, J.G. Brandenburg, C. Bannwarth, A. Hansen, J. Chem. Phys. 143 (5) 

(2015) 054107.
[82] C. Wilson, Z. Kristallogr. 215 (11) (2000) 693–701.
11

http://refhub.elsevier.com/S0010-4655(23)00198-4/bib373C3DF5B2F1CBA27C5285D5B5A13973s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib373C3DF5B2F1CBA27C5285D5B5A13973s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib6B3A70855AC902DB7836ADF459750F84s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib6B3A70855AC902DB7836ADF459750F84s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8BC7D9D266289A150BF08A5C5B3FE244s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib8BC7D9D266289A150BF08A5C5B3FE244s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibDE5E0A6BB5E8CF975B7088B963955E88s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibDE5E0A6BB5E8CF975B7088B963955E88s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib7DA18B7936727A9F5FD7412CE06696A7s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibDF68CB13CC89B1986D00764B39065D40s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib7AE77B6CE112FBB649E6B86190394838s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib356232B70BD18396CB638C6368AEC4F0s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib356232B70BD18396CB638C6368AEC4F0s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib9812AACCF6B644E3D3BBB2261FA6BB0Es1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib5135B7495496F4216F78CCD75A5AC4A9s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib7F4E18E82C3037ABA6DAB8E7AF007B29s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib37304350EDE74DC908805521F1DF4BE9s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibED6E53D520C132F2F51A894DDF5FA5ECs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibFF4110263C14F29C746D183C242F395Cs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib122628A6EAE120B13983EC3FEB760420s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib122628A6EAE120B13983EC3FEB760420s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA6C33D46CA8E41B12743E42B3B40891Es1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA6C33D46CA8E41B12743E42B3B40891Es1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA7777E88A4CA00317C9EC9A73371D083s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibAC8B030DE4E13044A13D4C123B382AACs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibAC8B030DE4E13044A13D4C123B382AACs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF2F424CFEA5D2EF01724EF05A7B430FBs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibF2F424CFEA5D2EF01724EF05A7B430FBs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib9F998B14DEF59A14EC53654FC98B86ECs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibE7EEFAD55F77ED1289D3BAED6A5A5A1Cs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib7E4B5866DEBF290AF6E6DA684A38A027s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibC609325223EC3BB02C8FE8B8E1CA38B5s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibC609325223EC3BB02C8FE8B8E1CA38B5s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib963AAF3DB7774C1A808B7ECDEE1AF4F8s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib1210D5D93252DD6ACDDA49CBDE03A4A3s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib1210D5D93252DD6ACDDA49CBDE03A4A3s1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA9688FB933285C8986E6565C4675465Fs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bibA9688FB933285C8986E6565C4675465Fs1
http://refhub.elsevier.com/S0010-4655(23)00198-4/bib34060417EEAE4622C4674A9C4100D2EDs1

	CRYSTALpytools: A Python infrastructure for the Crystal code
	1 Introduction
	2 Structure of the project
	3 Reading, writing, and converting
	4 Data post-processing and plotting
	4.1 Electronic band structure and density-of-states
	4.2 Elastic properties
	4.3 Analysis of the electron density and associated properties
	4.4 Plots of vector fields: non-collinear magnetization, orbital and spin current densities
	4.5 Electron transport properties
	4.6 Thermodynamics

	5 Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


