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Supporting Information Text 

Uncertainty analysis on health impact assessment 

An uncertainty analysis of PM2.5-related mortality and morbidity was conducted 

in this study. Limited to the available data, we referred to two different studies1,2 with 

slightly different calculation functions to calculate the PM2.5-related mortality and 

morbidity separately. The parameters of exposure-response coefficient and baseline 

concentration setting were the focus of uncertainty analysis here. 

For the estimation of PM2.5-related mortality, the updated integrated exposure–

response functions1 were applied, and the impact could be calculated as follows, 

Y = Y! #1 −
"
##
& Pop                                              (1) 

RR(z) = 1 + 𝛼01 − e$(&'&!")#2                                      (2) 

where Y! is the baseline incidence rate, Pop means the exposed population, RR denotes 

the relative risk for specific health endpoint, z and 𝑧)* represent the concentration of 

PM2.5 and theoretical minimum risk exposure level, and 𝛼, 𝛽, and 𝛾 are parameters. 𝛽 

is the ratio of the integrated exposure–response functions at low to high concentrations. 

𝛽 was provided for every interval of PM2.5 concentration levels from 0 to infinity. The 

data sources remain the same with previous work3. Referring to the posterior 

distributions of parameters from Cohen et al.1, we applied the Monte Carlo method to 

repeat 10000 times calculations, obtaining the possibility distribution of mortality 

triggered by PM2.5 exposure and confidence intervals of results (Fig. S1a). 

For the estimation of PM2.5-related morbidity, we applied a log-linear exposure-

response function2 to estimate four health endpoints of morbidity as follow,  

HI = Pop × (Y − Y!)                                             (3) 

Y = Y! × e$(+'+$)                                               (4) 

where HI represents the morbidity under PM2.5 concentration level C,  Y!  is the 

baseline incidence rate, 𝛽 is the exposure-response coefficients denoting the incidence 
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change of certain health impact per μg m-3 PM2.5 increment; C! is the baseline PM2.5 

concentration. Obviously, the formula for morbidity estimation is cruder compared to 

the calculation of mortality, and 𝛽 is set singularly for each health ending, without 

specific values for the different concentration intervals. Similarly, we obtained the 

confidence intervals (Table. S1) of 𝛽 from Hao et al.2 and conducted Monte Carlo 

method by simulating 10,000 cases with randomly chosen parameter (Fig. S1b).  

According to the uncertainty analysis of exposure-response coefficient, national 

value chain induced 146.9—197.7 thousand people of mortality (95% confidence 

interval), 3.6—17.9 million people of morbidity (95% confidence interval) of mainland 

China in 2017, and a total health economic loss of 663.7 billion–886.7 billion CNY 

(95% confidence interval) (Fig. S1). Uncertainty analysis of health damage at a 

provincial scale are presented in Fig. S2 and S3. 

For the baseline PM2.5 concentration C!, we considered WHO recommendation 

and China national standard for air quality. WHO decreased the recommended annual 

PM2.5 concentration level from 10 μg m-3 in Air Quality Guidelines 20054 to 5 μg m-

3 in Air Quality Guidelines 20215. The recommendation is made in the interests of 

health, but it is difficult to reach for some countries, especially for certain developing 

countries. Regarding China, national class I and II standard for annual PM2.5 

concentration level6 is 15 μg m-3 and 35 μg m-3.  However, most of areas in China are 

far from meeting the class I standard. According to official statistics, the annual average 

PM2.5 concentration level remained 30~43 μg m-3 during 2017-2021 period, and only 

6.2% of cities reached the class I standard in 2021 according to the annual reports on 

the state of the ecology and environment published by Ministry of Ecology and 

Environment of the People’s Republic of China. Here, this study estimated the PM2.5 

exposure related morbidity based on varying levels of the baseline PM2.5 concentration: 

5, 10, 15 μg m-3. The results showed that the baseline PM2.5 concentration make little 

sense to the final conclusion (Table S2), that the upper and lower settings brought about 
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less than ±5% of change in morbidity estimation and ±1% of change in health 

economic loss. Hence, for simplicity and the minor influence of it, only the results under 

10 μg m-3 baseline PM2.5 concentration level were presented in the main text. 

Uncertainty analysis on value of statistical life 

In this study, we applied the value of statistical life (VSL) to evaluate PM2.5 

exposure-related health economic loss. Measured by willingness to pay, VSL considers 

human subjective feelings on the impact of air pollution on health, presenting spatial 

and temporal disparities, as well as distinctions among different groups of people. It is 

another source of uncertainty in this study. In Table S3, we present existing VSL 

original data for mainland China, which has been widely applied in previous studies to 

quantify the external cost of air pollutant emissions or the health benefit of emission 

reduction. 

To better compare data from different sources, we unified data into the same 

year and currency as follows 7: 

VSL, = VSL! #
-./012%
-./012$

&
3
                                          (5) 

where VSLt denotes the VSL of year t, VSL0 means the VSL of the base year, Incomet 

represents the residential disposable income of year t, Income0 means the residential 

disposable income of the base year, and e means income elasticity. 

After the year transfer, significant differences among various VSL data were 

observed, with high values 26 to 50 times the low values (see Table S4). The VSL of 

Anqing 8 served as the bottom, while the VSL of Jingzhong 9 and 

Shanghai/Jiujiang/Nanning 10 was the ceiling when income elasticity was 0.8–1.0 and 

1.2-1.6, respectively. Because these data were published for a longer time and great 

variations were observed in the VSL of one city during the period from 2005 to 2016 

11, we used the most recent results from Cao C et al. 9, which covered six cities across 
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mainland China in this study. We used the average values of these of six cities to 

evaluate health economic loss. 

In addition, income elasticity was used to transfer estimates of VSL between 

different years, different regions or different income populations. According to Table 

S4, we find that income elasticity will greatly affect VSL estimates. Here, we conducted 

a reliability analysis on data from Cao C, et al. 9 to determine the suitable income 

elasticity, and results show in Table S5 and S6. VSL reflects the present value of the 

total value of an individual’s expected remaining life years. According to Hammitt J. 

and Robinson L. 7,VSL should be greater than the current value of expected income in 

the remaining years of life because the utility of life will be greater than the utility of 

income. When income elasticity > 1.4, VSL was observed lower than expected income 

in Table S5 (highlighted in red). Therefore, we determined income elasticity to be 1.4 

to calculate VSL in 2017, which is also consistent with previous studies 12,13. 

A supplementary analysis on health impact assessment under supply chain 

variation based on hypothetical extraction method (HEM) 

This study implemented a comprehensive analysis framework with a combination 

of input-output model, value chain method, the extended response surface model 

(ERSM) with polynomial functions, and exposure–response functions to explore the 

regional health impacts in the participation in domestic value chain. In the first module, 

with aid of input-output model and value chain method, we decomposed the total 

pollutants emissions into sectoral level across provincial regions along the domestic 

value chain. In the second module, the pollutants emissions are further incorporated 

into ERSM and exposure–response functions to estimate the PM2.5 exposure related 

mortality and morbidity. To be specific, the second module calculated the health effects 

for both the realistic case or baseline case (all pollutants are emitted as was) and the 

counterfactual case (pollutant emissions due to a trade activity were removed). Then, 

the health impact of certain trade activity was obtained through subtracting the certain 
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counterfactual case by baseline case. Finally, gathering the impact of every region or 

sector, we derived the overall uneven distribution of losses and gains across all the 

regions or sectors along value chain. 

Here we used counterfactual to get the difference, so as to evaluate the contribution 

(or possible proportion) of every region/sector in the value chain. It is equivalent to 

assuming that, the emissions due to the absence of one region’s producing activity is 

directly removed, and ignores the dynamicity of production network. However, for 

policy makers of every provincial region, the assumption may bring about 

overestimation or underestimation on the gains and losses of the region in the 

participation in production division of labor. For example, some other regions may 

replace the position of the original one to maintain the normal operation of supply chain, 

while the partial pollutants may float back to the original region under atmospheric 

transport.  

To improve our original finding and provide a more realistic reference for policy 

makers, this study attempted to quantitively measure the health impact assessment 

under a dynamic production network, and compared the results. Based on input-output 

table, hypothetical extraction method (HEM) is adopted here to single out the entire 

impact of a certain activity by deleting it in the tables and replacing the extracted one 

with the others14. Specifically speaking, to obtain the impacts of one provincial region 

when it supplies intermediate or final products in domestic value chain, we deleted the 

intermediate inputs and final products of it in the intra-regional trade; meanwhile, the 

deleted intermediate inputs and final products of it were allocated to the corresponding 

industries of other regions. Obviously, there are two factors determining the variation 

of the results of HEM and the original one:  

1)  First, when one region’s intermediate inputs coefficients become zero in 

domestic outflows, its total amount of international export will decrease as 

well. Thus, its pollutants emission will be lower in such a counterfactual case 
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enlarging the gap with baseline case. Consequently, the health impact assessed 

by HEM will be higher than the original one. 

2) Second, when the replacement exists in the production network, other 

provincial regions will undertake more productions and thus emit more 

pollutants. Under atmospheric transport, the rising emission from others will 

also induce higher pollution concentration for the target region, shrinking the 

gap with baseline case. As a result, the health impact assessed by HEM will be 

lower than the original one. 

Results showed that the results by HEM is -19%~7% of the estimates from 

traditional method (Table S7). It means our original results may underestimate the 

health impacts by no more than 19% and overestimate by no more than 7%. Herein, if 

we only consider the second factor (i.e., the replacement effect and the resulting other 

regions’ rising emission), our original results may overestimate the health impacts of 

every region in its participation in domestic value chain by 0%~23%.  

Given to the difficulty to integrate with value chain method and the accompanied 

more uncertainties of the dynamic system, we remained the current ways to investigate 

regional health damage in the domestic value chain with supplementing the above 

analysis as an uncertainty analysis of our results. 
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Supporting Information Figures and Tables 

Figure. S1. Uncertainty analysis of PM2.5 exposure-related health damage 

 
Figure. S1. Uncertainty analysis of PM2.5 exposure-related health damage in the 
national value chain in 2017. a. Total mortality, people; b. Total morbidity, people; c. 
Total health economic loss, CNY. Note that the morbidity presented here is estimated 
based on C! = 10 μg m-3. 
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Figure. S2. Uncertainty analysis of PM2.5 exposure-related mortality 

 
Figure. S2. Uncertainty analysis of PM2.5 exposure-related mortality at a provincial 
scale. The boxplot shows the highest value, 3/4 quartile, average (marked with a 
cross), 1/2 quartile, 1/4 quartile, and lowest value. Note that the morbidity presented 
here is estimated based on C! = 10 μg m-3.
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Figure. S3. Uncertainty analysis of PM2.5 exposure-related morbidity 

 
Figure. S3. Uncertainty analysis of PM2.5 exposure-related morbidity at a provincial 
scale. The boxplot shows the highest value, 3/4 quartile, average (marked with a 
cross), 1/2 quartile, 1/4 quartile, and lowest value. Note that the morbidity presented 
here is estimated based on C! = 10 μg m-3.
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Figure. S4. The impacts of inter-regional trade on PM2.5 concentration variation 

 
Figure. S4. The impacts of inter-regional trade on PM2.5 concentration variations.  
PM2.5 concentration variations mean the differences in PM2.5 concentration between 
basic scenario (the PM2.5 concentration of real world) and the others based on 
hypothesis extraction method (such as the simulated PM2.5 concentration when 
removing emissions of certain activity of one provincial region). The variations to 
some extend reflect the impacts of certain activity to the PM2.5 concentration. Each 
figure is the influence of one provincial region’s emission on the change in PM2.5 
concentration. Tibet and Qinghai are not presented here, the maximum influences of 
which were less than 2 μg m-3.  
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Figure. S5. Contributions to resource product exports in the national value chain 

 
Figure. S5. Contributions to resource product exports in the national value chain. a. 
Intermediate products of mining industry. b. Intermediate products of the resource 
processing industry. Provinces in North Central are highlighted by black borders.
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Table S1. PM2.5 exposure-response coefficients for each health endpoint 

Table S1. PM2.5 exposure-response coefficients for each health endpoint2 

Health endpoint Population β (CI 95%) 

Morbidity: Chronic bronchitis All 2.70E-03 (7.62E-04, 
4.64E-03) 

Morbidity: Cardiovascular (hospital 
admission) All 6.80E-03 (4.30E-04, 

9.30E-04) 

Morbidity: Asthma attack All 2.10E-03 (1.45E-03, 
2.74E-03) 

Morbidity: Acute bronchitis All 7.90E-03 (2.70E-03, 
1.30E-02) 
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Table S2. The health damage of inter-regional trade estimated under varying 
baseline concentration levels 

Table S2. The health damage of inter-regional trade estimated under varying baseline 

concentration levels 
 C0=5μg m-3 C0=10μg m-3 C0=15μg m-3 

Morbidity, million people 9.477 9.097 8.671 
Total health economic loss, billion CNY 761.176 760.576 759.729 
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Table S3. Original source and data of VSL 

Table S3. Original source and data of VSL 
Sources (Published year) Case Place Case Year VSL Unit 

Johnson T., et al. (1997) 15 China 1995 60000 1995 USD 
Wang H. and Mullahy J. (2006) 12 Chongqing 1998 286000 (Median) 1998 RMB 
Hammitt J. and Zhou Y. (2006) 8 Anqing (Anhui Province) 1999 15000-30000 (Mean), 4000 (Median) 1999 USD 
Hammitt J. and Zhou Y. (2006) 8 Beijing 1999 45000-60000 (Mean), 16000 (Median) 1999 USD 
Zhang X. (2002) 16 Beijing 1999 240000-330000 (Mean) 1999 RMB 
Deng X. (2006) 17 Beijing 2000 105000 2000 USD 
Kan H. and Chen B. (2004) 18 Shanghai 2001 108500(Mean) 2001 USD 

Cropper M. (2009) 10 
Shanghai/Jiujiang (Jiangxi 
Province)/ 
Nanning (Guangxi Province) 

2003 1500000 2003 RMB 

Hammitt J., et al. (2019) 11 Chengdu 2005 154000 2005 RMB 
Guo X., et al.(2006) 19 China 2005 23745 (Median) 2005 USD 

Krupnick A. and Ping Q. (2010) 20 
Shanghai/Jiujiang (Jiangxi 
Province)/ 
Nanning (Guangxi Province) 

2006 2115057 2010 RMB 

Chen Y. (2008) 21 Shanghai 2006 1482000 (Mean) 2006 RMB 

Zeng X. and Jiang Y. (2010) 22 
Shanghai/Jiujiang (Jiangxi 
Province)/ 
Nanning (Guangxi Province) 

2009 1000000 (Median) 2009 RMB 

Xie X. (2010) 23 Beijing 2010 248172 2010 USD 
Gao T., et al. (2015) 24 Beijing 2011 666667-1333333 2011 RMB 
Hammitt J., et al. (2019) 11 Chengdu 2016 3850000 2016 RMB 
Cao C, et al. (2021) 9 Beijing 2019 3810000 2019 RMB 
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Cao C, et al. (2021) 9 Jinzhong (Shanxi Province) 2019 6360000 2019 RMB 
Cao C, et al. (2021) 9 Yangzhou (Jiangsu Province) 2019 4920000 2019 RMB 
Cao C, et al. (2021) 9 Ganzhou (Jiangxi Province) 2019 6350000 2019 RMB 
Cao C, et al. (2021) 9 Shantou (Guangdong Province) 2019 5370000 2019 RMB 
Cao C, et al. (2021) 9 Siping (Jilin Province) 2019 3790000 2019 RMB 
Cao C, et al. (2021) 9 China 2019 5100000 2019 RMB 
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Table S4. Data of VSL 

Table S4. Data of VSL (2017 RMB) 
Income 

elasticity 
VSL 

0.8 1 1.2 1.4 1.6 

Min 117331 162359 224668 310890 430202 
Max 5783052 5647186 6944089 8964704 11573284 

Average 2526004 2945811 3499399 4233482 5212342 
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Table S5. Reliability analysis minimum value of VSL 

Table S5. Reliability analysis minimum value of VSL (of data from Cao C, et al. 2021) 
Year 

Current value of 

Expected income 

VSL in different income elasticity 

0.8 1 1.2 1.4 1.6 

2017 973627 3446190 3365226 3286164 3208959 3133569 

2015 789192 3101016 2949309 2805023 2667796 2537283 

2012 651416 2604130 2370929 2158611 1965307 1789312 

2010 592826 2206135 1926994 1683172 1470201 1284177 

2007 509043 1740597 1432891 1179581 971052 799388 

2005 424554 1442462 1132976 889891 698962 548997 

1995 188153 739985 491891 326975 217350 144480 
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Table S6. Reliability analysis maximum value of VSL 

Table S6. Reliability analysis maximum value of VSL (of data from Cao C, et al. 2021) 
Year 

Current value of 

Expected income 

VSL in different income elasticity 

0.8 1 1.2 1.4 1.6 

2017 973627 5783052 5647186 5514512 5384955 5258442 

2015 789192 5203816 4949236 4707110 4476829 4257815 

2012 651416 4369992 3978657 3622366 3297982 3002646 

2010 592826 3702116 3233689 2824532 2467145 2154978 

2007 509043 2920897 2404534 1979455 1629523 1341452 

2005 424554 2420596 1901247 1493327 1172928 921271 

1995 188153 1241769 825442 548697 364736 242451 
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Table S7. Social welfare allocation and health damage data for Figure 2 

Table S7. The provincial ranking based on social welfare allocation and health damage 

per capita for Figure 2a 

Social income 
(1000 

CNY/person) 

Employment rate of 

participating in 

national value chain 

(person/person) 

Health economic 

cost (triggered) 

(1000 CNY/person) 

Health economic 

cost (suffered) 

(1000 

CNY/person) 

QH 4.9 HB 0.05 XZ 0.00 XZ 0.00 

YN 5.2 QH 0.07 YN 0.13 YN 0.19 

HB 6.3 SC 0.07 QH 0.13 QH 0.20 

GS 7.5 SD 0.08 HI 0.20 XJ 0.21 

NX 7.6 NX 0.09 FJ 0.20 FJ 0.32 

SC 7.8 YN 0.09 SC 0.21 HI 0.33 

XZ 7.9 HN 0.10 GD 0.22 GD 0.40 

SD 8.4 XZ 0.10 HB 0.24 GZ 0.41 

HN 10.4 XJ 0.11 GX 0.25 GS 0.43 

GX 10.5 SX 0.11 BJ 0.32 NX 0.43 

XJ 11.7 FJ 0.13 XJ 0.37 SC 0.44 

SX 13.1 TJ 0.13 HN 0.38 SH 0.45 

GZ 13.5 GS 0.14 GZ 0.44 GX 0.46 

JX 13.7 GX 0.15 ZJ 0.44 ZJ 0.47 

HE 13.9 HL 0.15 GS 0.44 HN 0.50 

FJ 14.4 HE 0.16 SD 0.51 HB 0.53 

AH 14.8 GD 0.16 HL 0.52 CQ 0.54 

GD 14.9 HA 0.17 SH 0.52 SD 0.57 

HA 16.2 AH 0.18 LN 0.53 NM 0.59 

HL 17.0 JX 0.18 JS 0.57 JX 0.60 

LN 17.9 GZ 0.19 TJ 0.58 LN 0.60 

HI 19.8 LN 0.19 JX 0.59 TJ 0.62 



 

 

22 

 

JS 22.1 NM 0.22 JL 0.67 BJ 0.63 

ZJ 22.6 JS 0.22 CQ 0.73 JS 0.64 

JL 22.8 HI 0.24 SX 0.79 HL 0.65 

SN 23.3 SN 0.25 NX 0.87 AH 0.66 

CQ 24.1 ZJ 0.27 SN 0.89 JL 0.68 

NM 24.4 JL 0.28 AH 0.94 SX 0.69 

TJ 36.5 CQ 0.29 HE 1.07 SN 0.72 

BJ 46.5 BJ 0.35 HA 1.16 HE 0.79 

SH 51.0 SH 0.41 NM 1.29 HA 0.84 
 a It’s sort by ascending order. The above lists are corresponding to Figure 2a-d. the provincial 

name and abbreviations can be found in Figure 1. 
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Table S8. Comparison in the results of health damage assessment based on HEM 

Table S8. Comparison in the results of health damage assessmenta 

  
Replacement effect and international 

export change Replacement effect 

  Mortality Morbidity 
Health 

economic 
loss 

Mortality Morbidity 
Health 

economic 
loss 

BJ -8% -8% -8% 5% 5% 5% 
TJ -11% -11% -11% 6% 6% 6% 

HEB -13% -11% -13% 9% 8% 9% 
SX -13% -12% -13% 7% 6% 7% 
NM -11% -9% -11% 6% 4% 6% 
LN -8% -7% -8% 5% 5% 5% 
JL -13% -11% -13% 1% 1% 1% 
HL 7% 6% 7% 23% 17% 23% 
SH -12% -12% -12% 8% 7% 8% 
JS -5% -5% -5% 14% 13% 14% 
ZJ -7% -7% -7% 8% 7% 8% 
AH -5% -5% -5% 10% 9% 10% 
FJ -7% -7% -7% 7% 6% 7% 
JX -12% -11% -12% 6% 6% 6% 
SD -9% -9% -9% 11% 10% 11% 

HEN -11% -9% -11% 8% 7% 8% 
HUB -8% -9% -8% 9% 8% 9% 
HUN -7% -7% -7% 7% 6% 7% 
GD -1% -2% -1% 13% 11% 13% 
GX -8% -8% -8% 9% 8% 9% 

HAN -13% -4% -13% 2% 1% 2% 
CQ -10% -9% -10% 3% 2% 3% 
SC -3% -3% -3% 6% 5% 6% 
GZ -14% -13% -14% 2% 2% 2% 
YN -13% -7% -13% 4% 7% 4% 
XZ -11% 0% -11% 0% 0% 0% 

SNX -10% -8% -10% 6% 4% 6% 
GS -9% -1% -9% 4% 6% 4% 
QH -16% 0% -16% 1% 0% 1% 
NX -19% -11% -19% 1% 0% 1% 
XJ -15% 0% -15% 0% 0% 0% 

a The figures are calculated by: (original results-HEM results)/HEM results 
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Code 

Code for value chain decomposition 

#this code is for value chain decomposition based on R language 
 
sector = 42 
region = 31 
final.demand = 5 
 
#inputmrio 
options(digits = 22) 
mrio <- read.delim("210520-MRIO17.txt", header=FALSE) 
mrio<-as.matrix(mrio) 
 
 
df.T<-mrio[1:(sector*region),1:(sector*region)] 
FD<-mrio[1:(sector*region),(sector*region+1):(sector*region+region*final.demand)] 
df.EX<-mrio[1:(sector*region),(sector*region+region*final.demand+1)] 
df.Other<-mrio[1:(sector*region),(sector*region+region*final.demand+2)] 
df.IM<-mrio[(region*sector+1),] 
 
 
df.T[(df.T<0.0001)&(df.T>-0.0001)]<-0 
FD[(FD<0.0001)&(FD>-0.0001)]<-0 
df.EX[(df.EX<0.0001)&(df.EX>-0.0001)]<-0 
df.Other[(df.Other<0.0001)&(df.Other>-0.0001)]<-0 
df.IM[(df.IM<0.0001)&(df.IM>-0.0001)]<-0 
 
df.TO<-rowSums(df.T)+rowSums(as.matrix(FD))+df.EX+df.Other 
 
 
 
#input satellite data 
setwd("D:/B/GVC/H/20230610HEM/ori calculate 17 SI-EM-AP/data") 
Qa<-read.csv("AIR SI EM-2017-42-ceads-210520.csv",sep=',',head=FALSE) 
 
# 1 so2; 2 nox; 3 pm2.5; 4 voc; 5 nh3; 6.social income; 7.employment 
for(select_AP in 1:7){ 
   
  labelAP<-c("so2","nox","pm2.5","nmvoc","nh3","si","em") 
  print(labelAP[select_AP]) 
   
  Qa_select<-Qa[,((select_AP-1)*region+1):(select_AP*region)] 
  df.Qa<-as.vector(t(t(Qa_select))) 
   



 

 

 

  df.Q<-as.vector(df.Qa) 
   
   
  selFD<-array(0,dim=c((sector*region),region,(final.demand+2))) 
  for(i in 1:final.demand){ 
    for(j in 1:region){ 
      selFD[,j,i]<-FD[,((j-1)*final.demand+i)] 
      selFD[,j,(final.demand+1)]<-apply(FD[,((j-
1)*final.demand+1):(j*final.demand)],1,sum) 
      selFD[,j,(final.demand+2)]<-apply(FD[,((j-1)*final.demand+1):(j*final.demand-
1)],1,sum) 
    } 
  } 
   
  df.FD<-selFD[,,(final.demand+1)]############## do not consider different final 
demand categories (just analysis the gross) 
  df.FD<-as.matrix(df.FD) 
   
   
  df.T <- as.matrix(df.T) 
  df.Q<-as.matrix(t(df.Q)) 
  df.EX<-as.matrix(df.EX) 
   
  total.output <- rowSums(df.T)+rowSums(as.matrix(selFD[,,(final.demand+1)]))+df.EX 
   
   
  #calculate intensity and A 
   
  intensity <- 1:(sector*region) 
  intensity[] <- 0 
  for(i in 1:(sector*region)){ 
    if(total.output[i] > 0.0000001){ 
      intensity[i] <- df.Q[i]/total.output[i] 
    } 
    else 
      intensity[i] <- 0  
  } 
  intensity <-as.matrix(t(intensity)) 
   
  A <- matrix(0,nrow = (sector*region),ncol = (sector*region)) 
  for(i in 1:(sector*region)){ 
    for(j in 1:(sector*region)){ 
      if(total.output[j] > 0.0000001){ 
        A[i,j] <- df.T[i,j]/total.output[j] 
      } 
      else 



 

 

 

        A[i,j] <- 0  
    } 
  } 
   
  
    #original: no HEM 
    A0<-A 
    df.FD0<-df.FD   
    B0 <- solve(diag(1, nrow(A0)) - A0); 
     
     
 
    #functions-----------------------------------   
    sd<-1#select one as domestic(sample.d) 
    sb<-2#select the other in a bilateral relationship with sample.d(sample.b) 
     
     
    F.F<-function(sd){ 
      return(intensity[((sd-1)*sector+1):(sd*sector)]) 
    } 
     
    F.A<-function(sd,sb){ 
      return(A0[((sd-1)*sector+1):(sd*sector),((sb-1)*sector+1):(sb*sector)]) 
    } 
     
    F.B<-function(sd,sb){ 
      return(B0[((sd-1)*sector+1):(sd*sector),((sb-1)*sector+1):(sb*sector)]) 
    } 
     
     
    F.YY<-function(sd,sb){ 
      return(df.FD0[((sd-1)*sector+1):(sd*sector),sb]) 
    } 
     
    F.EX<-function(sd){###international export 
      return(df.EX[((sd-1)*sector+1):(sd*sector),1]) 
    } 
     
    F.L <- function(sd){ 
      l<-solve(diag(1, sector) - A0[((sd-1)*sector+1):(sd*sector),((sd-
1)*sector+1):(sd*sector)]) 
      return(l) 
    } 
     
    #functions----END 
 



 

 

 

    #result1: decompose the gross emission of every region.  
    DDTOTAL<-matrix(0,region,6) 
     
    ex.region<-matrix(0,region,region) 
    B0<-as.matrix(B0) 
    df.EX<-as.vector(df.EX) 
    for(i in 1:region){ 
      for(j in 1:region){ 
        ex.region[i,j]<- intensity[((i-1)*sector+1):(i*sector)]%*%B0[((i-
1)*sector+1):(i*sector),((j-1)*sector+1):(j*sector)]%*%df.EX[((j-
1)*sector+1):(j*sector)] 
      } 
    } 
    DDTOTAL[,1]<-apply(ex.region,1,sum) 
     
    #part.1  FssLssYss, corresponding to equation(3) first term in manuscript 
    DD1<-matrix(0,region,1) 
    for(sd in 1:region){ 
      c1<-c(1:region)    ###whole 31 provinces 
      d<-which(c1==sd) 
      c2<-c1[-d]    ###31 provinces without selected domestic one 
      DD1[sd,1]<-F.F(sd)%*%F.L(sd)%*%F.YY(sd,sd) 
    }   
    DDTOTAL[,2]<-DD1 
     
    #part.2  export and then import to return, corresponding to equation(3) second term in 
manuscript 
    DD2<-matrix(0,region,1) 
    for(sd in 1:region){ 
      c1<-c(1:region)    ###whole 31 provinces 
      d<-which(c1==sd) 
      c2<-c1[-d]  
      part2<-0 
      for(i in c2){ 
        for(j in c1){ 
          part2<-part2+F.F(sd)%*%F.L(sd)%*%F.A(sd,i)%*%F.B(i,j)%*%F.YY(j,sd) 
        } 
      } 
      DD2[sd,1]<-part2 
    } 
    DDTOTAL[,3]<-DD2 
     
     
    #part.3  Fs Bss Ysr, corresponding to equation(3) third term in manuscript 
    DD3<-matrix(0,region,region) 
    for(sd in 1:region){ 



 

 

 

      c1<-c(1:region)    ###whole 31 provinces 
      d<-which(c1==sd) 
      c2<-c1[-d]  
      for(i in c2){ 
        DD3[sd,i]<-F.F(sd)%*%F.B(sd,sd)%*%F.YY(sd,i) 
      } 
    } 
    DDTOTAL[,4]<-apply(DD3,1,sum) 
     
    #part.4  Fs Bsr Yrr, part4+part5 corresponding to equation(3) fourth term in 
manuscript 
    DD4<-matrix(0,region,region) 
    for(sd in 1:region){ 
      c1<-c(1:region)    ###whole 31 provinces 
      d<-which(c1==sd) 
      c2<-c1[-d]  
      for(i in c2){ 
        DD4[sd,i]<-F.F(sd)%*%F.B(sd,i)%*%F.YY(i,i) 
      } 
    } 
    DDTOTAL[,5]<-apply(DD4,1,sum) 
     
     
    #part.5  Fs Bst Ytr, part4+part5 corresponding to equation(3) fourth term in manuscript 
    DD5<-matrix(0,region,region) 
    for(sd in 1:region){ 
      c1<-c(1:region)    ###whole 31 provinces 
      d<-which(c1==sd) 
      c2<-c1[-d]  
      for(i in c2){ 
        d1<-which(c2==i) 
        c3<-c2[-d1] 
        part5<-0 
        for(t in c3){ 
          part5<-part5+F.F(sd)%*%F.B(sd,t)%*%F.YY(t,i) 
        } 
        DD5[sd,i]<-part5 
      } 
    } 
    DDTOTAL[,6]<-apply(DD5,1,sum) 
     
    write.csv(DDTOTAL,paste0("DDTOTAL-",labelAP[select_AP],"-2017.csv")) 
   
    #result2: local and upstream sectoal decomposition, corresponding to equation(4,5) in 
manuscript 
    EEXs<-array(0,dim=c((region*sector),(region*3+2))) 



 

 

 

    EEX<-array(0,dim=c(region,(region*3+2))) 
     
    c1<-c(1:region)   ###c1 includes all the countries 
    for(sd in c1){ 
      d1<-which(c1==sd) 
      c2<-c1[-d1]   ###c2 includes all the countries except local (sd), and then select 
partner 
      for(sb in c2){ 
        d2<-which(c2==sb) 
        c3<-c2[-d2]   ###c3 includes all the countries except local (sd) and its trade partner 
(sb), and then select the third 
         
        EEX1<-sweep(t(F.F(sd)%*%F.B(sd,sd)),1,F.YY(sd,sb),"*")#EEX1, corresponding 
to equation(4) first term 
        EEX2<-
sweep(t(F.F(sd)%*%F.L(sd)),1,(F.A(sd,sb)%*%F.B(sb,sb)%*%F.YY(sb,sb)),"*")#EEX
2, EEX2+EEX3 corresponding to equation(4) second term 
         
        a<-0 
        b<-0 
        c<-0 
        for(i in c3){ 
          d3<-which(c2==i) 
          c4<-c2[-d3]  ###c4 includes all the countries except local (sd) and the selected 
third country (i) 
          a<-a+F.A(sd,sb)%*%F.B(sb,sb)%*%F.YY(sb,i) 
          b<-b+F.A(sd,sb)%*%F.B(sb,i)%*%F.YY(i,i) 
          for(j in c4){ 
            c<-c+F.A(sd,sb)%*%F.B(sb,i)%*%F.YY(i,j) 
          } 
        } 
         
        EEX3<-sweep(t(F.F(sd)%*%F.L(sd)),1,(a+b+c),"*")#EEX3, EEX2+EEX3 
corresponding to equation(4) second term 
         
        EEX[sd,sb]<-sum(EEX1) 
        EEX[sd,(sb+region+1)]<-sum(EEX2) 
        EEX[sd,(sb+2*region+2)]<-sum(EEX3) 
        EEXs[((sd-1)*sector+1):(sd*sector),sb]<-EEX1 
        EEXs[((sd-1)*sector+1):(sd*sector),(sb+region+1)]<-EEX2 
        EEXs[((sd-1)*sector+1):(sd*sector),(sb+2*region+2)]<-EEX3 
      } 
    } 
 
     
    write.csv(EEX,paste0("EEX-",labelAP[select_AP],".CSV")) 



 

 

 

    write.csv(EEXs,paste0("EEXs-",labelAP[select_AP],".CSV")) 
 
     
    FEEs<-array(0,dim=c((region*sector),(region*4+3))) 
    FEE<-array(0,dim=c(region,(region*4+3))) 
     
    c1<-c(1:region) 
    for(sd in c1){ 
      print(sd) 
      d1<-which(c1==sd) 
      c2<-c1[-d1] 
      for(sb in c2){ 
        d2<-which(c2==sb) 
        c3<-c2[-d2] 
         
        FEE1<-sweep(t(F.F(sb)%*%F.B(sb,sd)),1,F.YY(sd,sb),"*") 
        FEE2<-
sweep(t(F.F(sb)%*%F.B(sb,sd)),1,(F.A(sd,sb)%*%F.L(sb)%*%F.YY(sb,sb)),"*") 
         
        a<-0 
        b<-0 
        for(i in c3){ 
          a<-a+sweep(t(F.F(i)%*%F.B(i,sd)),1,F.YY(sd,sb),"*") 
          b<-
b+sweep(t(F.F(i)%*%F.B(i,sd)),1,(F.A(sd,sb)%*%F.L(sb)%*%F.YY(sb,sb)),"*") 
        } 
        FEE3<-a 
        FEE4<-b 
         
        #FEE1+FEE3: corresponding to equation(5) first term 
        #FEE2+FEE4: corresponding to equation(5) second term 
         
        FEE[sd,sb]<-sum(FEE1) 
        FEE[sd,(sb+region+1)]<-sum(FEE2) 
        FEE[sd,(sb+2*region+2)]<-sum(FEE3) 
        FEE[sd,(sb+3*region+3)]<-sum(FEE4) 
        FEEs[((sd-1)*sector+1):(sd*sector),sb]<-FEE1 
        FEEs[((sd-1)*sector+1):(sd*sector),(sb+region+1)]<-FEE2 
        FEEs[((sd-1)*sector+1):(sd*sector),(sb+2*region+2)]<-FEE3 
        FEEs[((sd-1)*sector+1):(sd*sector),(sb+3*region+3)]<-FEE4 
      } 
    } 
     
    write.csv(FEE,paste0("FEE-",labelAP[select_AP],".CSV")) 
    write.csv(FEEs,paste0("FEEs-",labelAP[select_AP],".CSV")) 
 



 

 

 

} 
 

Code for HEM 

#The code for HEM adds a process of A matrix and FD vectors based on Code for value 
chain decomposition. Here only present the code of processing. 
 
  #select local production network 
  HEM_outputmerge1<-matrix(0,region,region)#sum up 1-6(so as to see the total change) 
  HEM_outputmerge2<-matrix(0,region,region)#sum up 2-6(so as to see the domestic 
change)(include local) 
  HEM_outputmerge3<-matrix(0,region,region)#sum up 3-6(so as to see the intra-
regional change) 
   
  # HEM (remove inter-regional outflows of every region) 
   
  for (exone in 1:p){ 

print(paste0("remove province: ",exone)) 
 
 

    #build new A------ 
    HEM_A0<-A 
    #select exone's local production network 
    Aang<-matrix(0,nrow = (sector*region),ncol = (sector*region)) 
    Aang[((exone-1)*s+1):(exone*s),((exone-1)*s+1):(exone*s)]<-A[((exone-
1)*s+1):(exone*s),((exone-1)*s+1):(exone*s)] 
     
    #eliminate outflows of exone region 
    HEM_A0[((exone-1)*s+1):(exone*s),]<-0 
     
    #merge the above two: remian the local but remove the inter-regional outflows of 
exone 
    HEM_A<-HEM_A0+Aang 
     
    #A gap 
    sumA<-matrix(0,nrow = (sector),ncol = (sector*region)) 
    sumA_HEM<-matrix(0,nrow = (sector),ncol = (sector*region)) 
    for(i in 1:s){ 
      for(j in 1:p){ 
        sumA[i,]<-sumA[i,]+A[((j-1)*sector+i),] 
        sumA_HEM[i,]<-sumA_HEM[i,]+HEM_A[((j-1)*sector+i),] 
      } 
    } 
    sumA_gap<-matrix(0,nrow = (sector),ncol = (sector*region)) 
    sumA_gap<-sumA-sumA_HEM 
     



 

 

 

    #A shares for the rest 
    A_share<-matrix(0,nrow = (sector*region),ncol = (sector*region)) 
    for(j in 1:p){ 
      iv_sumA_HEM<-sumA_HEM^(-1) 
      iv_sumA_HEM[iv_sumA_HEM==Inf]<-0 
      A_share[((j-1)*s+1):(j*s),]<-HEM_A[((j-1)*s+1):(j*s),]*iv_sumA_HEM 
    } 
     
    A_share[is.na(A_share)]<-0 
    #colSums(A_share) 
     
    HEM_A_needreplace<-matrix(0,nrow = (sector*region),ncol = (sector*region)) 
    for(j in 1:p){ 
      HEM_A_needreplace[((j-1)*s+1):(j*s),]<-A_share[((j-1)*s+1):(j*s),]*sumA_gap 
    } 
     
     
    #HEM_A include replace 
    HEM2_A<-HEM_A+HEM_A_needreplace 
     
    #build new A-------end 
     
    #build new FD------- 
    HEM_FD0<-df.FD 
    #select exone's local production network 
    FDang<-matrix(0,nrow = (sector*region),ncol = (region)) 
    FDang[((exone-1)*s+1):(exone*s),exone]<-df.FD[((exone-1)*s+1):(exone*s),exone] 
     
    #eliminate export of exone region 
    HEM_FD0[((exone-1)*s+1):(exone*s),]<-0 
     
    #merge the above two: remian the local but remove the inter-regional outflow of exone 
    HEM_FD<-HEM_FD0+FDang 
     
     
    #y gap 
    sumy<-matrix(0,nrow = (sector),ncol = (region)) 
    sumy_HEM<-matrix(0,nrow = (sector),ncol = (region)) 
    for(i in 1:s){ 
      for(j in 1:p){ 
        sumy[i,]<-sumy[i,]+df.FD[((j-1)*sector+i),] 
        sumy_HEM[i,]<-sumy_HEM[i,]+HEM_FD[((j-1)*sector+i),] 
      } 
    } 
    sumy_gap<-sumy-sumy_HEM 
     



 

 

 

    #y shares for the rest 
    y_share<-matrix(0,nrow = (sector*region),ncol = (region)) 
    for(j in 1:p){ 
      iv_sumy_HEM<-sumy_HEM^(-1) 
      iv_sumy_HEM[iv_sumy_HEM==Inf]<-0 
      y_share[((j-1)*s+1):(j*s),]<-HEM_FD[((j-1)*s+1):(j*s),]*iv_sumy_HEM 
    } 
     
    y_share[is.na(y_share)]<-0 
    #colSums(y_share) 
     
    HEM_y_needreplace<-matrix(0,nrow = (sector*region),ncol = (region)) 
    for(j in 1:p){ 
      HEM_y_needreplace[((j-1)*s+1):(j*s),]<-y_share[((j-1)*s+1):(j*s),]*sumy_gap 
    } 
     
     
    #HEM_FD include replace 
    HEM2_FD<-HEM_FD+HEM_y_needreplace 
     
     
    #build new FD-------end 
     
     
    #ori: no HEM 
    #A0<-A 
    #df.FD0<-df.FD   
     
    #HEM 
    A0<-HEM_A 
    df.FD0<-HEM_FD     
     

Code for health impact assessment 

%this code is for health impact assessment based on MATLAB 
 
ICONC1s=[1]; 
ICONC2s=[0]; 
[POPs,TXT,RAW]=xlsread('file0.xlsx','pop','B3:B42226'); 
[AGEs,TXT,RAW]=xlsread('file0.xlsx','CRF','J2:J86'); 
[CRFs,TXT,RAW]=xlsread('file0.xlsx','CRF','D2:F86'); 
[INCs,TXT,RAW]=xlsread('file0.xlsx','CRF','I2:I86'); 
nendpoint = 5; 
STageconcs = [1, 10, 37, 48, 56]; 
EDageconcs = [9, 36, 47, 55, 85]; 
 



 

 

 

%setting formats 
result_re = csvread('file1 dataframe.csv',1,0,[1 0 31 1]); % a dataframe for regional 
results of mortality 
illresult_re = csvread('file1 dataframe.csv',1,0,[1 0 31 1]);  
illresult_re1 = csvread('file1 dataframe.csv',1,0,[1 0 31 1]);  
illresult_re2 = csvread('file1 dataframe.csv',1,0,[1 0 31 1]);  
illresult_re3 = csvread('file1 dataframe.csv',1,0,[1 0 31 1]);  
illresult_re4 = csvread('file1 dataframe.csv',1,0,[1 0 31 1]);  
result_20 = csvread('file1 dataframe.csv',1,0,[1 0 31 1]);  
illresult_20 = csvread('file1 dataframe.csv',1,0,[1 0 31 1]);  
 
result_10 = csvread('file2 matching table.csv',1,1,[1 1 42224 2]); % a matching table for 
grids and regions 
illresult_10 = csvread('file2 matching table.csv',1,1,[1 1 42224 2]);  
 
     
    pppppath = "D:\health"; 
    path = dir(pppppath); 
     
    ncase = length(path)-2; 
    cont = 2 
    nrow = 42224 % number of grids 
    AC_total = zeros(nrow,ncase); 
    AC_illtotal = zeros(nrow,ncase); 
    AC_illtotal1 = zeros(nrow,ncase); 
    AC_illtotal2 = zeros(nrow,ncase); 
    AC_illtotal3 = zeros(nrow,ncase); 
    AC_illtotal4 = zeros(nrow,ncase); 
     
    % Progress bar 
    h=waitbar(0,'Data export in progress……'); 
    pause(1); 
 
    for icase = 1:1:(ncase) 
     
        p=fix(icase/ncase*10000)/100;  
 
   str=[' The output is in progress and the current progress is ',num2str(p),' %，finished! 
',num2str(icase),'/',num2str(ncase)]; 
 
   waitbar(icase/ncase,h,str); 
 
   %------------------------ 
 
    result_1 = result_10; 
    result_2 = result_20; 



 

 

 

     
    illresult_1 = illresult_10; 
    illresult_11 = illresult_10; 
    illresult_12 = illresult_10; 
    illresult_13 = illresult_10; 
    illresult_14 = illresult_10; 
    illresult_2 = illresult_20; 
    illresult_21 = illresult_20; 
    illresult_22 = illresult_20; 
    illresult_23 = illresult_20; 
    illresult_24 = illresult_20; 
     
     
    nameicase=num2str(icase); 
    fileposition = strcat(pppppath,"\",nameicase,"201701.csv"); 
    CONCs = csvread(fileposition,2,11,[2 11 42225 11]); % Scenario Data Import 
    tmp = size(CONCs); 
    nrow = tmp(1); 
 
    conc2 = zeros(nrow,1); 
    conc1 = CONCs(:,1); 
    pop = POPs(:,1);%unit: 10000 person 
    age = AGEs(:,1); 
    inc = INCs(:,1); 
     
    %health end is death 
    AC_endpoint = zeros(nrow,nendpoint); 
    for iendpoint = 1:nendpoint 
        AC_ageconc = zeros(nrow,EDageconcs(iendpoint)-STageconcs(iendpoint)+1); 
        for iageconc = STageconcs(iendpoint):EDageconcs(iendpoint) 
            deltaconc=(min(conc1,CRFs(iageconc,2))-
max(conc2,CRFs(iageconc,1))).*(conc1>conc2).*(conc1>CRFs(iageconc,1)).*(conc2<=
CRFs(iageconc,2))... 
                     +(min(conc2,CRFs(iageconc,2))-
max(conc1,CRFs(iageconc,1))).*(conc1<=conc2).*(conc2>CRFs(iageconc,1)).*(conc1<
=CRFs(iageconc,2)); 
            rr=(1-(1./exp(CRFs(iageconc,3)*deltaconc))).*((conc1>conc2)-(conc1<=conc2)); 
            AC_ageconc(:,iageconc-
STageconcs(iendpoint)+1)=rr.*pop*age(iageconc,1)*inc(iageconc,1)/100/100000*10000
; 
        end 
        AC_endpoint(:,iendpoint)=sum(AC_ageconc,2); 
    end 
    AC_total(:,(icase))=sum(AC_endpoint,2); 
    result_1(:,1) = sum(AC_endpoint,2);%input to match file 
     



 

 

 

    %health end is illness 
    AC_ill = zeros(nrow,4); 
    E0 = [0.00694,0.00546,0.0094,0.038];% Baseline incidence 
    beta = [0.0027,0.00068,0.0021,0.0079];% Exposure-response coefficient mean value 
    C0 = 10; % PM2.5 concentration; here can set as 5, 10, 15 μg m-3 
     
    for ill = 1:4 
        Ei = E0(ill).*exp(beta(ill).*(conc1-C0)).*(conc1>C0); 
        HIi = pop.*(Ei-E0(ill)).*(Ei>E0(ill)).*10000; 
        AC_ill(:,ill) = HIi; 
    end 
    AC_illtotal(:,(icase))=sum(AC_ill,2); 
    AC_illtotal1(:,(icase)) = AC_ill(:,1); 
    AC_illtotal2(:,(icase)) = AC_ill(:,2); 
    AC_illtotal3(:,(icase)) = AC_ill(:,3); 
    AC_illtotal4(:,(icase)) = AC_ill(:,4); 
     
    illresult_1(:,1) = sum(AC_ill,2);%input to match file 
    illresult_11(:,1) = AC_ill(:,1); 
    illresult_12(:,1) = AC_ill(:,2); 
    illresult_13(:,1) = AC_ill(:,3); 
    illresult_14(:,1) = AC_ill(:,4); 
     
    %combine to 31 provinces 
    for re = 1:42224 
        if result_1(re,2) ~= 0 
            for re2 = 1:31 
                if result_1(re,2) == result_2(re2,1) 
                    result_2(re2,2) = result_2(re2,2)+result_1(re,1) ; 
                    illresult_2(re2,2) = illresult_2(re2,2)+illresult_1(re,1) ; 
                    illresult_21(re2,2) = illresult_21(re2,2)+illresult_11(re,1) ; 
                    illresult_22(re2,2) = illresult_22(re2,2)+illresult_12(re,1) ; 
                    illresult_23(re2,2) = illresult_23(re2,2)+illresult_13(re,1) ; 
                    illresult_24(re2,2) = illresult_24(re2,2)+illresult_14(re,1) ; 
                end 
            end 
        end 
    end 
     
    result_re(1:31,cont) = result_2(1:31,2); 
    illresult_re(1:31,cont) = illresult_2(1:31,2); 
    illresult_re1(1:31,cont) = illresult_21(1:31,2); 
    illresult_re2(1:31,cont) = illresult_22(1:31,2); 
    illresult_re3(1:31,cont) = illresult_23(1:31,2); 
    illresult_re4(1:31,cont) = illresult_24(1:31,2); 
 



 

 

 

    result_re(32,cont) = strcat(nameicase,"201701"); 
    illresult_re(32,cont) = strcat(nameicase,"201701"); 
    illresult_re1(32,cont) = strcat(nameicase,"201701"); 
    illresult_re2(32,cont) = strcat(nameicase,"201701"); 
    illresult_re3(32,cont) = strcat(nameicase,"201701"); 
    illresult_re4(32,cont) = strcat(nameicase,"201701");   
    cont = cont+1; 
           
    %------------------------ 
 
    end 
     
close(h); 
msgbox('finished~'); 
 
     
illresult_resep = zeros((32*4),(ncase*4)); 
illresult_resep(1:32,1:(ncase+1)) = illresult_re1; 
illresult_resep(33:64,(ncase+2):(2*ncase+2)) = illresult_re2; 
illresult_resep(65:96,(2*ncase+3):(3*ncase+3)) = illresult_re3; 
illresult_resep(97:128,(3*ncase+4):(4*ncase+4)) = illresult_re4; 
 
format long 
 
dlmwrite(strcat(pppppath,"\","deathresult_nocombine.csv"),AC_total,'precision','%.6f'); 
dlmwrite(strcat(pppppath,"\","deathresult_combine.csv"),result_re,'precision','%.9f'); 
dlmwrite(strcat(pppppath,"\","total_illresult_nocombine.csv"),AC_illtotal,'precision','%.6
f'); 
dlmwrite(strcat(pppppath,"\","total_illresult_combine.csv"),illresult_re,'precision','%.9f'); 
dlmwrite(strcat(pppppath,"\","sep4_illresult_combine.csv"),illresult_resep,'precision','%.
9f'); 
 
save AC_total; 
save result_re; 
save AC_illtotal; 
save illresult_re; 
save illresult_resep; 
 


