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Analysis of subcellular RNA 
fractions demonstrates significant 
genetic regulation of gene 
expression in human brain 
post‑transcriptionally
Karishma D’Sa 1,2,12, Sebastian Guelfi 1,13, Jana Vandrovcova 3, Regina H. Reynolds 4, 
David Zhang 4, John Hardy 1,5, Juan A. Botía 4,6, Michael E. Weale 2,14, 
Sarah A. Gagliano Taliun 7,8,9, Kerrin S. Small 10 & Mina Ryten 4,11*

Gaining insight into the genetic regulation of gene expression in human brain is key to the 
interpretation of genome‑wide association studies for major neurological and neuropsychiatric 
diseases. Expression quantitative trait loci (eQTL) analyses have largely been used to achieve this, 
providing valuable insights into the genetic regulation of steady‑state RNA in human brain, but not 
distinguishing between molecular processes regulating transcription and stability. RNA quantification 
within cellular fractions can disentangle these processes in cell types and tissues which are challenging 
to model in vitro. We investigated the underlying molecular processes driving the genetic regulation 
of gene expression specific to a cellular fraction using allele‑specific expression (ASE). Applying ASE 
analysis to genomic and transcriptomic data from paired nuclear and cytoplasmic fractions of anterior 
prefrontal cortex, cerebellar cortex and putamen tissues from 4 post‑mortem neuropathologically‑
confirmed control human brains, we demonstrate that a significant proportion of genetic regulation 
of gene expression occurs post‑transcriptionally in the cytoplasm, with genes undergoing this form of 
regulation more likely to be synaptic. These findings have implications for understanding the structure 
of gene expression regulation in human brain, and importantly the interpretation of rapidly growing 
single‑nucleus brain RNA‑sequencing and eQTL datasets, where cytoplasm‑specific regulatory events 
could be missed.

Over the last 10 years genome-wide association studies (GWAS) have successfully identified risk loci for the 
major neurological and neuropsychiatric  diseases1–5. However, in common with most complex diseases, the 
risk loci identified have been located in non-coding genomic regions. Since these loci are generally thought to 
affect disease risk through changes in gene expression, understanding the genetic regulation of gene expression 
in human brain has become an area of key interest. To date, this challenge has been primarily met through 
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expression quantitative trait loci (eQTL)  analyses6–12, which have correlated genotype to gene expression in 
order to identify loci with regulatory potential. However, as these studies measure total gene expression levels 
in post-mortem human brain, they cannot differentiate between the molecular processes driving changes in 
mRNA abundance, namely the effect of a variant on transcriptional rate as compared to another process, such 
as degradation.

In this context, it is important to recognise that mRNA abundance is the result of multiple dynamically 
regulated events taking place across different cellular compartments. Briefly, the life cycle of an mRNA molecule 
starts in the nucleus where DNA is transcribed to form pre-mRNA. This is followed by the post-transcriptional 
processes of 5’-end capping, splicing, 3’-end cleavage and polyadenylation to generate mature mRNA, which 
is exported into the cytoplasm through nuclear pores. In contrast, mRNA molecules that are incompletely 
processed in the nucleus are retained, as are many long noncoding RNAs (lncRNAs)13,14. While the former 
undergo  degradation15,16, the lncRNAs remain  stable13,14. Once in the cytoplasm, the mRNA either undergoes 
translation into protein within the cell body or may be transported to a specified subcellular location for local 
translation. In neurons, which are often large and structurally complex cells in the brain, RNA localization is 
increasingly being recognised as a key post-transcriptional process with a role in synaptic  plasticity17–20. Finally, 
mRNA molecules undergo degradation through a range of  processes15,21 including mRNA decay, which involves 
shortening of the poly(A) followed by decapping and  degradation16, and the nonsense mediated decay pathway 
(commonly triggered by premature stop codons). Collectively, these processes from transcription to degradation 
are key to maintaining mRNA abundance and must be tightly controlled for cell survival.

While a number of foundational eQTL analyses have led to the assumption that the majority of the regulatory 
sites operate by changing transcriptional  rate22, there is evidence to support the role of genetic regulation at other 
stages of the RNA life  cycle23,24. This includes genetic regulation of alternative  splicing25–28,  polyadenylation29,30, 
mRNA stability, translation, localization by 3’UTRs31,32 and  degradation33. However, many of these analyses 
require the use of in vitro model systems which prevent their application to human brain and so the molecular 
processes driving eQTLs in brain specifically have largely remained unknown. While the use of iPSC-derived 
neurons could enable relevant time course experiments to be performed, it is well documented that iPSC-derived 
neuronal cultures and even organoid cultures differ significantly from human brain, in terms of the maturity 
they achieve and their cellular complexity, making it difficult to validate their relevance. An alternative is to use 
post-mortem brain tissue directly, studying the regulation of RNA processes occurring in the natural cellular 
compartments (namely, the nucleus and cytoplasm) to broadly assess the landscape of genetic regulation of 
gene expression.

Allele-specific expression (ASE) analysis is a means of assessing the genetic regulation of gene  expression10,34 
which is well-suited to this type of experimental approach and has already been used for this purpose in cell 
 lines13. ASE analysis measures differential mRNA expression levels of 2 alleles of a heterozygous variant and so is 
a within individual analysis which is not affected by common confounding factors. Rather the power to infer an 
ASE at a heterozygous site is largely dependent on the read depth at that  site35–37. Importantly, pairing the nuclear-
cytoplasmic RNA fractionation process within a sample ensures that biases affecting one cellular fraction would 
also operate on the other, so increasing the power of this  analysis13. In this study, we performed ASE analysis on 
nuclear and cytoplasmic RNA fractions from 3 brain regions (anterior prefrontal cortex, putamen and cerebellar 
cortex) derived from 4 individuals. These regions were selected as they are anatomically distinct and important 
to human  disease10,38–45. Together this unique sample set was used to investigate the relative importance of 
nucleus- and cytoplasm-specific processes in the genetic regulation of gene expression across the human brain.

Material and methods
Generation and processing of RNA sequencing data. Post-mortem samples dissected from the 
anterior prefrontal cortex, putamen, and cerebellar cortex and originating from 4 donors were obtained from the 
MRC Sudden Death Brain and Tissue Bank. The brain tissue samples were collected from neuropathologically 
normal individuals of European descent, ranging in age from 41 to 57 (Supplementary Table 1). All samples had 
fully informed consent for retrieval and were authorized for ethically approved scientific investigation (National 
Hospital for Neurology and Neurosurgery and Institute of Neurology Research Ethics Committee, 10/H0716/3). 
All methods were performed in accordance with the relevant guidelines and regulations.

Paired nuclear and cytoplasmic total RNA was extracted from each tissue sample using the Norgen 
Cytoplasmic and Nuclear RNA purification kit (Norgen Biotec Comp, Canada) according to the manufacturer’s 
specifications. Following DNase I treatment, the separate cellular fractions were obtained by centrifugation and 
RNA extracted using spin column chromatography. Cytoplasmic RNA samples were assessed for RNA integrity 
using Agilent 2100 Bioanalyzer. Nuclear and cytoplasmic RNA was used separately as input for Illumina’s TruSeq 
stranded total RNA library preparation kit with Ribo-Zero (Illumina, USA), and the resulting cDNA libraries 
underwent 100 bp paired end sequencing (Illumina HiSeq4000). Real time base call and quality checks were 
performed using Illumina HiSeq Real Time Analysis software and fastq files were generated with Illumina’s 
CASAVA software to obtain ~ 234 M reads per sample.

Fastp (v 0.20.0), a fast all-in-one FASTQ pre-processor, was used for adapter trimming, read filtering and 
base  correction46 with parameters set allowing automatic detection of adapters, correction of bases in case of 
mismatches in overlapping regions of paired-end reads, exclusion of reads with lengths shorter than 36 bp and 
checks for sequence over-representation. Default settings were used for the remaining parameters. Processed 
reads were mapped to the GRCh38 human reference genome via STAR (v 2.7.0a) using gene annotations from 
Ensembl  v9747. An average of ~ 234 M reads per sample were processed (~ 193 M reads in the nuclear and ~ 275 M 
in the cytoplasmic samples) with an average of 96.2% reads per sample passing quality filters.
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Parameters were set to match ENCODE options, as described in the STAR manual. Accordingly, the 
maximum number of mismatches per pair relative to the read length was set as 0.04. Unlike ENCODE, only reads 
that mapped to a single location in the genome were included. Post-alignment quality metrics were generated 
using  RSeQC48 (v2.6.4) and  MultiQC49 (v1.8.dev0). We found that an average of 87.45% of reads were uniquely 
mapped. There was a higher percentage of reads mapping to intronic regions in nuclear samples compared to 
the corresponding cytoplasmic samples. This was expected due to the higher levels of pre-mRNA in the nuclear 
fraction. Intronic reads were also observed in the cytoplasmic fractions and this could have been due to both the 
presence of unannotated transcripts and some RNA contamination from the corresponding nuclear fractions. 
Pipeline source code can be found in https:// github. com/ RHRey nolds/ RNAse qProc essing.

DNA extraction and genotyping. Using 100–200 mg of cerebellar tissue from each individual, DNA 
extraction was performed using Qiagen’s DNeasy Blood & Tissue Kit (Qiagen, UK) according the manufacturer’s 
protocol. This was followed by the generation of whole exome sequencing libraries using Nextera Rapid Exomes 
12 and sequencing on the Illumina HiSeq4000 to generate an average of 80.3 million reads per sample. The 
resulting data was aligned to the human genome build hg19 with Novoalign and variant calling was performed 
using GATK (version 3.2–2) haplotype caller. Individual level gvcfs were merged into batches of 200 samples 
(covering 7,513 Exomes in total), and genotyping across all batches was then performed with the GATK joint 
genotyping tool. Variant sites were filtered using VQSR, with variants in the 99.9% tranche and above included 
(high quality variants). Genotypes were marked as missing if the reported genotype had a GQ <  = 15 or there 
were < 4 reads (or > 1000 reads) covering the site. Variant quality checks were performed and variants with quality 
of depth < 2 were excluded. The resulting vcf had 35,954 bi-allelic sites for the 4 individuals. DNA originating 
from each of the 4 donors was also analysed using the Omni Express Exome-8 Kit. Data from these individuals 
were batched together with that from 134 individuals that had been previously  processed6,50. The SNPs were 
assessed for strand ambiguity (http:// www. well. ox. ac. uk/ ~wrayn er/ tools/# Check ing) and those with evidence of 
ambiguity, as well as indels were removed. Finally, SNPs with MAF > 5%, HWE of 0.0001 were retained, resulting 
in 745,784 loci. The WES and genotype data for each individual were merged giving preference to variant calls 
originating from WES data. The final vcf file containing 853,243 SNPs were uploaded to the Sanger Imputation 
 Service51 and phased with  Eagle252 using the Haplotype Reference Consortium (release 1.1)51 as the reference 
panel. The resulting phased vcf contained an average of 268,240 heterozygous SNPs (hetSNPs) per individual 
after lift over of the coordinates from hg19 to hg38 using the UCSC online  tool53.

Generation of gene level expression measures and differential gene expression 
analysis. Transcripts were quantified in each RNA-Seq sample using  Salmon54 (v0.14.1). We used the 
mapping-based mode in which the raw reads were aligned to the reference transcriptome, Ensembl version 97. 
Salmon was run using its default variational Bayesian Expectation–Maximisation algorithm with parameters to 
correct for sequence, non-uniform coverage biases (like 5’ or 3’ bias) and GC bias in the data. The bootstrapping 
option was set to enable Salmon to assess the technical variation in the abundance estimated. The R package 
 tximport55 was used to convert transcript-specific expression values measured in transcripts per kilobase million 
(TPM) to gene-level quantification values. Following gene-level quantification, the principal component analysis 
(PCA) analysis was performed using DeSeq’s plotPCA() function to visualize sample differences. Investigating 
the sources of  variability56 we found that tissue (region) correlated best with the 1st and 3rd axes, fractionation 
(condition) correlated with the 2nd axis and RIN with the 4th (Supplementary Figure  1). Differential gene 
expression across cellular fractions was conducted using  DeSeq257 controlling for individual effects (~ individual 
ID + fraction). Genes were considered significantly differentially expressed if FDR < 0.05. The apeglm  method58 
was applied in line with DeSeq2’s recommendation to generate accurate  log2FoldChange estimates. The 
Enhanced  volcano59 R package was used to generate the volcano plots, for genes with FDR < 5% and > twofold 
expression. Functional enrichment analysis was performed using the g:Profiler R package,  gprofiler260 to obtain 
the terms associated with genes with a higher expression in the nuclear fraction and cytoplasmic fraction. This 
was done across tissues by taking the record with the minimum FDR across tissues for the gene.

Assessment of fractionation quality. Contamination between the nuclear and cytoplasmic fractions 
was investigated using the data generated by RNA-SeQC and a custom R-script to produce two metrics, the 
mtRNA rate and the rRNA rate. Mitochondria reside solely in the cytoplasm, and RNA transcribed from the 
mitochondrial genome (mtRNA) should not be present in a pure nuclear fraction. The mtRNA rate was defined 
as the difference in the proportion of reads that mapped to the mtDNA in the nuclear and cytoplasmic fractions 
of a single sample. This was examined with a view that a positive mtRNA rate would indicate low contamination. 
To ensure that reads originating from ’Nuclear mitochondrial DNA sequences’ (NUMTs) were not mistaken for 
mtRNA mapping reads, we only considered uniquely mapping reads in STAR. The rRNA rate was defined as the 
difference in the proportion of reads that mapped to ribosomal genes in the nuclear and cytoplasmic fractions 
of a single sample. As before a positive difference would indicate low contamination within the nuclear fraction, 
based on the understanding that while rRNA transcription and processing occur in the  nucleus61 assembled 
rRNAs are transported to the cytoplasm where they contribute to stable ribosome structure.

ASE signal discovery. ASE signal discovery was performed using a pipeline adapted from Guelfi et al.50. 
Briefly, trimmed reads were aligned to personal haploids (created using  vcf2diploid62 (v0.2.6a)) using STAR’s 
2-pass alignment in WASP mode with the same parameters as set during the QC alignment described above. 
The reads that aligned to the parent genomes were then merged using Suspenders  tool63 (v0.2.6) and filtered 
to select reads that passed the WASP filter. GATK’s (v3.6.0)  ASEReadCounter64 was used to count the reads 

https://github.com/RHReynolds/RNAseqProcessing
http://www.well.ox.ac.uk/~wrayner/tools/#Checking
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at the heterozygous sites in the vcf. The vcf was generated by Picard’s (https:// broad insti tute. github. io/ picard/; 
Broad Institute) liftover tool. Sites with monoallelic expression were excluded to prevent mis-calling driving 
ASE signal discovery and only sites showing bi-allelic expression with at least 15 reads were considered valid. 
The p-value was then calculated using the binomial test, and only hetSNPs with FDR < 5% were considered 
as a having an ASE signal. The ASE signals were annotated using the Variant Effect Predictor tool (McLaren 
et al., 2016) (VEP97) with Ensembl cache 97. Variants were assigned to the biotype of the transcript with the 
most severe consequence. Those with biotypes miRNA, miscRNA, piRNA, rRNA, siRNA, snRNA, snoRNA, 
tRNA and vaultRNA were grouped under other non-coding RNA (ncRNA) and of the remaining, those not 
classified as protein-coding, lncRNA or pseudogene were labelled "other". We investigated if distinct ASE signals 
across cellular compartments are driven by detection and sampling of different transcriptomes by examining 
both, the distribution of the biotypes of the genes with an ASE signal and the effect of SNP location on the 
ASE signal identification. This was done by assigning the minimum FDR to a hetSNP across samples in each 
fraction. We further examined if distinct ASE signals were driven by distinct regulatory processes. This was done 
considering signals that were valid in both fractions of a sample to ensure we are not calling an ASE difference 
across fractions because of detection limits.

In order to identify hetSNPs with significant difference in the allelic ratios between the 2 fractions we also 
used a statistical approach, applying logit transformation to the allelic ratios and calculating the differential 
z-scores65. The p value was obtained from a 2-tailed test on the z-scores, followed by correction for multiple 
hypothesis testing. We excluded an outlier hetSNP with highly significant ASE in both fractions and showing 
highly significant difference in allelic ratios between the fractions. It was located in the gene RN7SL471P, with 
most severe consequence assigned as non coding transcript exon variant by VEP, in the cerebellar cortex tissue of 
the sample IND001. Functional enrichment analysis was performed using the g:Profiler R package,  gprofiler260.

Results
Assessment of nuclear and cytoplasmic RNA fractionation quality. RNA fractionation quality 
was assessed in 22 RNA samples derived from cellular fractions of 3 brain regions and originating from four 
individuals. These samples comprised of nuclear and cytoplasmic RNA fractions of anterior prefrontal cortex 
(4 individuals), putamen (3 individuals), and cerebellar cortex (4 individuals) (Fig.  1a). Firstly, we assessed 
the expression of genes known to be preferentially localised to the nucleus (MALAT1) or cytoplasm (ACTB) 
 respectively66,67. We found an average of 1.6 fold higher expression of MALAT1 in the nuclear as compared to 
the cytoplasmic fractions in samples across tissues (Fig. 1b) (Wald test p value, corrected for multiple testing: 
1.44E-06 in anterior prefrontal cortex, 2.94E-11 in putamen, 3.70E-04 in cerebellar cortex) and an average of 
3.1 fold higher levels of ACTB in the cytoplasmic fractions as compared to the nuclear fractions across tissues 
(Wald test p value, corrected for multiple testing: 2.03E-22 in anterior prefrontal cortex, 2.26E-20 in putamen, 
7.61E-14 in cerebellar cortex). Next, we leveraged reads mapping to rRNA, which could provide a more sensitive 
measure of fractionation quality. As would be expected, we found that the rRNA rate was consistently higher 
in the cytoplasmic compared to the nuclear samples with a mean difference of 0.23 in the rRNA rate (paired 
Wilcox signed rank test p value = 9.77E-04, Supplementary Figure 2a). Finally, we used reads mapping to the 
mitochondrial genome to assess the quality of RNA fractionation. Since transcription of mtDNA is expected 
to occur only within mitochondria located in the cytoplasm, reads mapping to the mitochondrial genome but 
identified within the nuclear RNA-Seq data would indicate cytoplasmic RNA contamination. We found that 
RNA-Seq data from cytoplasmic fractions had a higher proportion of reads mapping to the mtDNA than their 
corresponding nuclear samples with a mean difference in the mtRNA mapping of 0.22 (paired Wilcox signed 
rank test p value = 9.77E-04, Supplementary Figure  2b). We note that we found no evidence of a significant 
difference in fractionation quality across the three different brain regions analysed (anterior prefrontal cortex, 
putamen and cerebellar cortex) (Kruskal–Wallis test, p value = 4.17e-01 for rRNA rate, 4.06e-01 for mtRNA 
mapping rate).

Biotype differences in the transcriptomes derived from nuclear and cytoplasmic RNA. Next, 
we investigated gene expression within the nuclear and cytoplasmic fractions. We assessed the number of genes 
detected within each tissue and within each fraction separately. As expected, we found that the vast majority of 
genes detected in a tissue were present in both fractions and that this was the case for all three tissues (99.9% in 
anterior prefrontal cortex, 96.96% in putamen, 94.4% in cerebellar cortex). However, we also identified genes 
which could be detected within all samples in a tissue (based on a normalised count > 1), but only in a single 
fraction (such that the normalised count in the other fraction = 0). Using this approach, we found that the 
cerebellar cortex had a significantly higher percentage of genes with expression restricted to the nuclear fraction 
(5.58%, 3-sample test for equality of proportions, p-value = 5.21E-318) as compared to anterior prefrontal cortex 
(0.09%) and putamen (2.98%). We also observed a very small proportion of genes with expression only in the 
cytoplasmic fraction (0.004% in anterior prefrontal cortex, 0.06% in putamen and 0.02% in cerebellar cortex). 
Given that they must be transcribed in the nucleus, this is likely due to expression levels being below detection 
limits within the nuclear fraction.

Since the majority of genes were robustly detected in both the nuclear and cytoplasmic fractions, we used the 
paired data to examine differential gene expression in each tissue, controlling for individual level effects. This 
analysis demonstrated an average of 2,803 genes with significantly higher (FDR < 5%) expression in the nucleus 
and an average of 5,559 genes with significantly (FDR < 5%) higher expression in the cytoplasm (Supplementary 
file 1). The genes with significantly higher expression in the cytoplasm were enriched for terms relating to 
ribosomal biology (p value 2.66E-86), cellular responses to stress (p value 1.65E-64) and mitochondria (p value 
7.39E-80). In contrast, genes with significantly higher expression in the nucleus were enriched for terms relating 

https://broadinstitute.github.io/picard/
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to ABC transporters (p value 0.01) and laminin interactions (p value 0.034) (Supplementary file 2). In line with 
expectation, non-coding RNAs (lncRNAs, pseudogenes) were enriched amongst those genes with significantly 
higher expression in the nuclear fractions in all tissues (p value < 2.2E-16). Conversely, protein-coding genes were 
enriched amongst the genes with significantly higher expression in the cytoplasmic fractions (p value < 2.2E-
16) (Supplementary table 2). Exploring the fold change in expression of the genes which were differentially 
expressed between the fractions, we observed that as expected, lncRNAs and pseudogenes were differentially 
expressed with a higher percentage of lncRNA-encoding genes with a fold change in expression of > 2 in the 
nucleus (in the nucleus vs cytoplasm, 82.5% vs. 17.5% in anterior prefrontal cortex, 77.9% vs. 22.1% in putamen, 
94.9%% vs. 5.1% in cerebellar cortex) (Fig. 2). These proportions were significantly different between tissues 
(3-sample test for equality of proportions, p value = 1.43E-19) with the difference being driven by cerebellar 
cortex (Benjamani-Hochberg corrected p values for the two-sample proportion test between anterior prefrontal 
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Figure 1.  (a) Experimental Overview: The cerebellar cortex (4 individuals), putamen (3 individuals) and 
anterior prefrontal cortex (4 individuals) regions of the brain, were sampled from human control brains. 
Separate cellular fractions for each tissue sampled were obtained by centrifugation and RNA extracted using 
spin column chromatography resulting in a total of 22 nuclear and cytoplasmic samples. (b) Plot showing the 
quality of fractionation assessed by examining the enrichment of ACTB in the cytoplasmic and MALAT1 in the 
nuclear fraction. A positive  log2foldchange indicates gene expression in the nucleus is higher while a negative 
value indicates the gene expression in the cytoplasm is higher.
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cortex and cerebellar cortex = 1.43E-06, putamen and cerebellar cortex = 3.67E-17, anterior prefrontal cortex and 
putamen = 4.57E-01). Conversely, protein-coding genes with > twofold higher expression within a fraction were 
primarily located in the cytoplasm (in the nucleus vs cytoplasm, 21.8% vs. 78.2% in anterior prefrontal cortex, 
24.3% vs. 75.7% in putamen, 26.9% vs. 73.1% in cerebellar cortex). Again, there was some evidence of a difference 
in the proportions between tissues (3-sample test for equality of proportions, p value = 4.76E-03). However, 
the pairwise comparison of proportions showed the significant difference in proportions was between anterior 
prefrontal cortex and cerebellar cortex (Benjamani-Hochberg corrected p values for the two-sample proportion 
test between anterior prefrontal cortex and cerebellar cortex = 1.00E-02, putamen and cerebellar cortex = 1.00E-
01, anterior prefrontal cortex and putmen = 2.11E-01). Nonetheless, all tissues had a proportion of protein-coding 
genes with evidence of > twofold expression within the nuclear fraction. Given that many protein-coding genes 
also encode non-coding transcripts this may reflect the retention of such non-coding transcripts within nucleus. 
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Figure 2.  Volcano plots showing the genes with at least double expression  (log2foldchange >|1|) per tissue. 
Positive values = expression in the nuclear fraction is higher and negative values = higher expression in the 
cytoplasmic fraction. 2 outlier datapoints (p values 7.94E-41 and 5.69E-55) have been excluded from the 
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Again, this analysis highlighted the cerebellar cortex and the high numbers of lncRNAs differentially expressed 
within the nuclear fraction.

Taken together, these findings suggest that nuclear cytoplasmic fractionation enables the capture and analysis 
of two different transcriptomes that vary significantly in terms of the biotypes of the genes sampled that also 
extends to the tissue level. In addition, we can see the nuclear transcriptome of cerebellar cortex has an abundance 
of lncRNAs that is not seen in the other brain tissues.

Distinct ASE signals across cellular compartments are partially driven by detection and 
sampling of different transcriptomes. In view of the biotype differences observed in the nuclear and 
cytoplasmic transcriptomes, we wondered whether there could be related differences in the genetic regulation 
of gene expression across the cellular compartments. To achieve this, we used ASE analysis which measures 
differential RNA expression levels between 2 alleles of a heterozygous variant to infer evidence of genetic 
regulation. As a within individual analysis which naturally pairs the nuclear-cytoplasmic RNA fractionation 
process within a sample it is ideally suited to this experimental structure. Using this approach, we found that 
of the 105,341 valid heterozygous SNPs (hetSNPs) studied across all fractions and tissues, an ASE signal was 
observed in 1.97% at an FDR of < 5% in at least one sample. We observed a significant difference in the number 
of ASE signals between the tissues (Pearson’s Chi-squared test p-value = 1.47E-39) with the highest percentage 
of ASE signals observed in cerebellar cortex (1.8%), followed by putamen (1.4%) and anterior prefrontal cortex 
(0.97%).

The ASE signals observed across all fractions and tissues equated to 1,035 genes representing 9% of all genes 
studied (and after considering all hetSNPs which could be assigned unequivocally to a single gene). While 261 
(25.2%) of the 1,035 genes of interest had a significant ASE signal detected in both fractions, we also identified 
genes with a significant ASE signal in a single fraction. These ASE-containing genes were termed ‘cytoplasm-
specific’ or ‘nucleus-specific’ with the majority being ‘cytoplasm-specific’ (59.8% cytoplasmic, 15% nuclear). 
Since the distinct ASE signals observed could be due to the specific expression of a gene or transcript within a 
fraction, we assessed the biotype of the ASE genes identified. We found that of the cytoplasm-specific ASE genes, 
4.2% were lncRNAs and 92.9% were protein coding. By comparison, 9.7% of nuclear-specific ASE genes were 
lncRNAs (2.30-fold higher) and 85.8% were protein coding (Supplementary table 3).

Next, we assessed the effect of SNP location on ASE signal identification. ASE signals were assigned to a 
genic location, based on their most severe consequence (as defined by Ensembl, Yates et al., 2019). Each hetSNP 
was assigned the minimum FDR across samples within each fraction and then, as before categorized as ‘both’, 
‘cytoplasm-specific’ or ‘nucleus-specific’. While nuclear-specific ASE signals were more commonly located within 
introns (40.1% nuclear and 12.4% cytoplasmic) (Supplementary table 4, Supplementary Figure 3), cytoplasm-
specific ASE signals were more frequently located within exons (37.7% nuclear and 53.6% cytoplasmic) or 
untranslated genic regions (UTRs, 22.3% nuclear and 34% cytoplasmic). Overall, these findings were consistent 
with our expectation that distinct ASE signals within the nuclear and cytoplasmic fractions are driven in part by 
the differences in the transcriptomes being sampled, with the nuclear fraction being enriched for both lncRNAs 
and pre-mRNA.

Distinct ASE signals across cellular compartments are also driven by distinct regulatory 
processes. Next, we extended our analyses to determine whether some fraction-specific ASE signals were 
due not only to differences in the RNA content of the two fractions, but also the impact of fraction-specific 
regulatory processes. With this in mind, the data was examined in a pairwise manner only considering hetSNPs 
which could be analysed in both fractions of a sample and had a significant signal in at least one of the fractions. 
Of the 1,852 hetSNPs that could be investigated, 22.7% had ASE signals in both fractions, 63.3% had an ASE 
signal only in the cytoplasmic fraction and 13.9% had an ASE signal only in the nuclear fraction. Across all 
tissues, we identified a higher proportion of cytoplasm-specific versus nucleus-specific ASE signals with fivefold 
higher cytoplasm-specific as compared to nucleus-specific signals.

Since it is generally assumed that the majority of the genetic regulation of gene expression in human tissues 
operates through effects on transcription (which occurs in the nucleus), the high percentage of cytoplasm-
specific ASE signals was surprising. In order to investigate whether cytoplasm-specific ASE signals were being 
overestimated due to the application of a p value cut-off, we re-assessed our data focusing instead on differences 
in the allelic ratios (defined as the proportion of reference allelic counts) since they are expected to be more robust 
to the effect of read depth and consequently the power to detect an ASE signal. Using this approach and assigning 

Table 1.  Percentage of ASE signals (number of signals in brackets), seen in the pairwise analysis, in both and 
specific fractions. The table includes the percentage of signals after applying the filters for ratio of the total read 
counts in the nuclear fraction to the cytoplasmic fraction (TRC ratio). Significant value are in [italic].

ASE signal % ASE signals (n) % ASE signals with TRC ratio > 0.75 & < 1.25 (n)

In both fractions 69.9 (1,295) 60.3 (245)

Cytoplasmic-specific 22.3 (412) 25.9 (105)

Nuclear-specific 7.8 (145) 13.8 (56)

Chi-square goodness of fit p value 1.44E-255 1.34E-31
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ASE signals with nuclear-cytoplasmic allelic ratio differences of <  = 0.1 to the ‘both’ category, we estimated that 
22.3% of the hetSNPs of interest were cytoplasm-specific and 7.8% were nucleus-specific (Chi-square goodness 
of fit p value = 1.44E-255) (Table 1). This would indicate a 2.84-fold higher percentage of cytoplasm-specific as 
compared to nucleus-specific ASE signals.

Given that the use of allelic ratios might be insufficient to account for differences in read depth across the 
fractions, we further analysed a subset of the 1,852 hetSNPs of interest matching for coverage. More specifically, 
the only hetSNPs considered were those where the ratio of the total read counts in the nuclear fraction to the 
cytoplasmic fraction was > 0.75 and < 1.25 (noting that a value of 1 would indicate that the total read count was 
the same for the hetSNP in both fractions). Following application of these filters, the gene biotypes being studied 
between the fractions remained unchanged. Despite the stringency of this approach, the number of hetSNPs of 
interest assigned to the nucleus-specific, cytoplasm-specific and both categories remained significantly different 
(Chi-square goodness of fit p-value = 1.34E-31) with a higher percentage of cytoplasm-specific ASE signals 
compared to nucleus-specific signals (25.9% cytoplasm-specific; 13.8% nucleus-specific), and a fold-change of 
1.88 (Table 1).

Finally, we used a statistical approach to identify hetSNPs with significant difference in the allelic ratios 
between the 2 fractions. This was done by application of logit transformation to the allelic ratios and calculation 
of the differential z-scores65. Given that only a relatively small number of hetSNPs were tested (N = 1,852) we 
applied a FDR cut-off of 10%. Using this approach and consistent with our previous analyses, we observed a 
significant difference in allelic ratios in 162 hetSNPs across all tissues, of which the cytoplasm-specific ASEs 
were still estimated to be close to twice (1.80) as frequent as the nucleus-specific signals. This suggests that a 
significant amount of common genetic regulation of gene expression is occurring post transcriptionally through 
cytoplasm-specific processes, such as RNA degradation or localization.

Compartment‑specific ASE signals provide insights into tissue and genic differences in the 
usage of post‑transcriptional genetic regulation of gene expression. Next, we investigated if the 
identification of distinct regulatory processes in the nuclear and cytoplasmic fractions could provide biological 
insights. First, we investigated whether ASEs specific to a cellular fraction showed higher tissue specificity, 
which would indicate tissue differences in the dependence on post-transcriptional genetic regulation of gene 
expression. To perform this analysis, again we focused on hetSNPs which could be analysed in both fractions 
of a sample and had a significant signal in at least one of the fractions (1,852 hetSNPs, 868 genes). In order to 
maximise the number of SNPs analysed, for each tissue and each SNP, we correlated the allelic ratio (defined 
as the proportion of reference allelic counts) in the two fractions (Fig. 3) (Supplementary table 5). Considering 
ASE signals within the “both” category, we found no significant differences in the correlation between the allelic 
ratios in each fraction (ANCOVA p value 0.43). However, in the case of the signals classified as cytoplasm-
specific or nucleus-specific there were significant tissue differences in the correlations that were not explained 
by differences in fractionation quality, though we recognize our sample number is small. This finding was most 
robust amongst nucleus-specific ASE signals (nucleus-specific ANCOVA p value 5.67E-04; cytoplasm-specific 
ANCOVA p value 2.87E-02) and suggested tissue differences in the overall landscape of genetic regulation of 
gene expression in brain.

Furthermore, we wondered whether genes with evidence of nuclear- or cytoplasm-specific ASE signals 
differed in their biological functions given the growing evidence for the importance of local regulation of RNA 
levels in neurons. To address this question, we performed gene ontology enrichment analyses on each gene set 
combining data across the tissues. We obtained no significant terms for the genes with nuclear-specific ASE 
signals. However, the genes with cytoplasm-specific ASEs, showed an enrichment of synapse related terms (p 
value 0.047) (Supplementary table 6). This finding was driven by genes such as CAMK2D and DLG4. Interestingly, 
both genes have been implicated in synaptic  plasticity68–70. While CAMK2D is known to be involved in calcium 
signalling and is crucial for several aspects of plasticity at glutamatergic synapses, DLG4 encodes a member of the 
membrane-associated guanylate kinase (MAGUK) family and together with DLG2 is recruited into postsynaptic 
NMDA receptor and potassium channel clusters. These findings are highly consistent with the growing literature 
on the importance of post-transcriptional, local regulation of RNA levels at synapses to enable  plasticity71–73.

Discussion
Here, we apply ASE analysis to RNA-Seq data derived from paired nuclear and cytoplasmic post-mortem human 
brain samples to study the genetic regulation of gene expression within each fraction. We demonstrate that in 
the human brain a significant proportion of genetic regulation of gene expression occurs in the cytoplasm and 
so post-transcriptionally. We find evidence for tissue and genic differences in usage of post-transcriptional forms 
of genetic regulation of gene expression, with an enrichment for synaptic genes amongst those with cytoplasm-
specific ASE signals. Together, these findings have implications for the interpretation of eQTLs identified 
through bulk- and single-nucleus RNA-sequencing of human brain, and the use of such eQTL data to identify 
the biological processes underlying common genetic risk for human brain diseases. In particular, single-nucleus 
datasets could easily miss any regulatory events that occur in the cytoplasm.

Clearly the robustness of our analyses and resulting conclusions is affected by the quality of RNA extraction 
from the separate cellular compartments. With this in mind, we used multiple approaches to assess this. In 
common with the existing  literature67, we began by measuring the expression of genes known to localize 
specifically to the nucleus (MALAT1) or cytoplasm (ACTB). As expected, we observed significant enrichments 
in the appropriate fraction. However, this type of analysis does not sensitively account for the probable leak or 
contamination of one fraction into the other. Since RNA contamination is expected to occur primarily from 
the cytoplasm into the nucleus, as the latter only makes up approximately 10–15% of all the cellular  RNA74, we 
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focused on analysing abundant cytoplasmic RNAs, namely rRNA and mtRNA, which are usually considered 
a form of noise within RNA-Seq datasets. With this in mind, we measured the rRNA rate (defined as reads 
mapped to rRNA regions/total reads) and mtRNA rate (defined as reads mapped to the mitochondrial genome/
total reads) within each compartment, though we recognise that both metrics are likely to overestimate nuclear 
contamination: rRNA is transcribed within the nucleus, and the presence of transcribed nuclear mitochondrial 
DNA sequences (NUMTs) could also result in the appearance mtRNA expression within the nuclear fraction. 
In all samples, we found that the cytoplasmic fractions had a significantly higher rRNA and mtRNA rate 
compared to the nuclear. Therefore, although there was evidence of contamination, the specific gene enrichments 
together with the large differences in the rRNA and mtRNA rates between the fractions provided assurance of 
fractionation quality.

Consistent with expectation, we demonstrated that the transcriptomes derived from each fraction were 
distinct. Genes detected in only one fraction were primarily a feature of the nuclear transcriptome with the 

Anterior prefrontal cortex Putamen Cerebellar cortex
both

cytoplasm
−specific

nucleus−specific

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

| Proportion of reference allelic counts in nucleus − 0.5| 

| P
ro

po
rti

on
 o

f r
ef

er
en

ce
 a

lle
lic

 c
ou

nt
s 

in
 c

yt
op

la
sm

 −
 0

.5
| 

Tissue Anterior frontal cortex Putamen Cerebellar cortex

Figure 3.  Visualising tissue differences. Plots showing the paired |allelicratio− 0.5| (where allelic ratio is 
defined as the proportion of reference allelic counts) values for each hetSNP with ASE signals in both fractions, 
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cerebellar cortex having the highest percentage of such genes (5.58% compared to 0.09% in anterior prefrontal 
cortex and 2.98% in putamen). Although this finding is explained in part by transcription being a nuclear process, 
it is also likely to be due to the expression and activity of lncRNAs specifically in the nucleus. This conclusion was 
supported by the fact that differentially expressed lncRNAs were enriched in the nuclear fraction, and that this 
was most evident in the cerebellar cortex. Thus, this analysis demonstrated that although all tissues had distinct 
nuclear and cytoplasmic transcriptomes, the nuclear transcriptome of the cerebellar cortex was particularly 
distinctive. Interestingly, this observation is consistent with a range of reports suggesting a distinct lncRNA 
expression profile within the cerebellar  cortex75–77.

Given that different transcriptomes were being sampled and analysed, the identification of distinct ASE signals 
within the two fractions is perhaps unsurprising. Furthermore, it reflected the known enrichment of pre-mRNA 
and lncRNAs in the nuclear fraction with a higher percentage of intronic ASE signals and lncRNA ASE genes 
detected in this compartment. However, we noted that the proportion of lncRNA ASE genes within the nuclear 
fraction was lower than might have been expected given the high numbers of lncRNAs with differential gene 
expression in the nucleus. While this disparity could suggest a distinct regulatory structure for this transcript 
biotype, it is most likely to be a function of the technical limitations of sequencing and analysing lncRNAs. This 
transcript class are expressed at low levels even in the nucleus, and for practical reasons ASE sites were assigned 
to a transcript and its corresponding biotype based on the most severe consequence of the hetSNP (tending to 
bias the assignment of SNPs to protein coding transcripts when multiple transcript types are possible).

Since the assessment of ASEs in each fraction separately does not in itself shed light on the regulatory 
processes unique to each fraction, we also leveraged our paired experimental design to analyse hetSNPs 
measurable in both fractions of an individual’s tissue. Using this approach, we found that while many of the 
hetSNPs identified as ASE signals could be detected in both fractions, a significant proportion were only found to 
be significant in one. Furthermore, most fraction-specific ASE signals were distinct to the cytoplasmic-fraction. 
This finding remained robust with more stringent forms of analysis, including selecting hetSNPs with very high 
read depths in both fractions and formally testing the differences in ASEs between fractions using a statistical 
approach (though the latter was limited to a small number of sites). Importantly, this analysis indicated the 
existence of different regulatory processes in nuclear versus cytoplasmic fractions as a driver of fraction-specific 
ASE signals. One limitation is that nascent RNA is likely to include nascent transcription within it, and this could 
inject additional noise into the nuclear ASE analysis.

Given our current understanding of RNA turnover, ASE signals seen in both fractions could be representative 
of the impact of genetic variation on transcriptional rate with no additional regulation occurring, while nucleus-
specific signals could be indicative of the genetic regulation of RNA transport across the nuclear membrane, and 
cytoplasm-specific signals an indication of the genetic regulation of a range of post-transcriptional processes, 
such as RNA  stability78,79 and  localization80–82. Since neurons have extensive projections where specific mRNAs 
are known to localize and undergo local  regulation83–86, the cytoplasmic ASE signals identified could be generated 
through incomplete sampling of neurons or synapse-specific processes. While further experimental work is 
required to investigate these possibilities, the enrichment of cytoplasm-specific ASE genes for synaptic gene 
ontology terms suggests that these post-transcriptional regulatory processes could be important in human brain 
tissue and more specifically  neurons73,87. Furthermore, this finding implied that tissue differences in neuronal 
proportions or types could impact on the balance of nucleus- and cytoplasm-specific ASE signals. Consistent 
with this hypothesis, the analysis of the allelic ratios identified significant tissue differences in the importance of 
fraction-specific forms of regulation of gene expression across the tissues sampled (namely anterior prefrontal 
cortex, putamen and cerebellar cortex). We found that the nucleus-specific and cytoplasm-specific ASE signals 
were significantly different across the tissues, with cerebellar cortex having weaker correlations of the allelic 
ratios in both sets of signals.

Taken together, the ASE analysis presented here has implications for our understanding of more commonly 
available bulk brain eQTL data. While these eQTLs are generally presumed to be regulating transcriptional rate, 
the significant proportion of cytoplasm-specific ASE signals, which is estimated to be almost double that of the 
nuclear signals, indicates the importance of post-transcriptional regulation of mRNA through RNA localisation 
and/or degradation. Although the latter has been analysed using eQTL and ASE-based approaches, to date 
studies have only been conducted in mice and cell  lines33,88, with this being the first study to specifically explore 
this question in post-mortem human brain. Similarly, the presence of fraction-specific transcriptomes and ASE 
signals complicates the interpretation of both single nucleus RNA-sequencing of human brain and related cell 
type-specific eQTL data, a concern which is not commonly recognised. Thus, we believe the results we have 
presented both provide novel insights into the regulation of gene expression in the human brain and demonstrate 
the importance of understanding the molecular processes underlying gene expression regulation.

Data availability
Bulk-tissue RNA-sequencing data can be accessed through the European Genome–phenome Archive (Study 
id: EGAS00001006380).
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