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Abstract: Vehicle suspension systems, which affect driving performance and passenger comfort,
are actively researched with the development of technology and the insufficient quality of passive
suspension systems. This paper establishes the suspension model of a quarter of the car and active
control is realized. The suspension model was created using the Lagrange–Euler method. LQR,
fuzzy logic control (FLC), and fuzzy-LQR control algorithms were developed and applied to the
suspension system for active control. The purpose of these controllers is to improve car handling and
passenger comfort. Undesirable vibrations occur in passive suspension systems. These vibrations
should be reduced using the proposed control methods and a robust system should be developed.
To enhance the performance of the fuzzy logic control (FLC) and fuzzy-LQR control methods, the
optimal values of the coefficients of the points where the feet of the member functions touch are
calculated using the particle swarm optimization (PSO) algorithm. Then, the designed controllers
were simulated in the computer environment. The success of the control performance of the applied
methods concerning the passive suspension system was compared in percentages. The results are
presented and evaluated graphically and numerically. Using the integral time-weighted absolute
error (ITAE) criterion, the methods were compared with each other and with the studies in the
literature. As a result, it was found that the proposed control method (fuzzy-LQR) is about 84.2%
more successful in body motion, 90% in car acceleration, 84.5% in suspension deflection, and 86.7%
in tire deflection compared to the studies in the literature. All these results show that the car’s ride
comfort has been significantly improved.

Keywords: active control; LQR; fuzzy logic control (FLC); fuzzy-LQR control; particle swarm opti-
mization algorithm (PSO); quarter-car suspension system

1. Introduction

Vehicle suspension systems, which have a decisive influence on a vehicle’s ride comfort
and handling characteristics, have been researched from the past to the present with
the development of technology [1–4]. Suspension systems have the important task of
supporting the vehicle’s weight, keeping the tires in contact with the ground, and isolating
the disturbing influences on the chassis. D’Amato and Viassolo proposed a fuzzy logic
control method for the ASS using internal and external control loops [5]. A fuzzy logic
controller is applied to the model of a quarter, where the inner loop controls the nonlinear
hydraulic actuator to monitor the desired actuation force. In contrast, the outer loop
is calculated by GA-based optimization. Foda proposed a fuzzy logic control method
for controlling the suspension system of a small car and applied it in the simulation
environment [6]. Results were obtained for three different road types. The body handling
and the responses in the suspension working area exhibited good damping characteristics
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for different road conditions. Al-Holou et al. [7] proposed a fuzzy logic control method
with a neural network for ASSs. The method was applied to the model of a quarter car in
the simulation environment and contrasted with the methods of a passive system, SMC,
SMFLC, and SMNNNFLC. The simulation results show that the proposed SMNNNFLC
method provides higher ride comfort and quality than the other methods mentioned in
the article. Sam et al. [8] proposed a proportional-integral sliding mode control method
for the ASS and applied it to a quarter-car model in a simulation environment. This study
compared the controller’s performance with the linear quadratic controller (LQR) and the
existing passive suspension system. It was shown that the proposed method is more robust
compared to the linear quadratic controller method and the passive suspension system.
The constrained H∞ control of active suspensions, an LMI approach, was proposed by
Chen and Guo [9]. In a simulation environment for the LMI-optimized H∞ control of a
2-DOF-constrained suspension system, good handling, constraining the suspension stroke,
and avoiding actuator saturation were among the issues investigated. The result of this
study was that close contact of the wheels with the road was ensured, and the best possible
ride comfort was achieved when the suspension shocks and control inputs were kept within
the specified limits.

Chen et al. [10] applied the constrained H∞ control to the half-car model in a simula-
tion environment using multicriteria LMI optimization. Positive results were obtained in
improving ride comfort. Yagız et al. [11] proposed a robust fuzzy sliding mode controller
for the half-car model with an ASS. The magnitudes of trunk displacement and pitching
motion were reduced and the resonance peak caused by the car body was eliminated. It was
also found that the magnitudes of trunk acceleration and pitching motion were reduced
over a wide range of frequencies, significantly improving ride comfort. Gao et al. [12]
investigated the problem of robust sampling data control for indeterminate active car
suspension systems on a quarter-car model. Using an input-lag approach, the active car
suspension system was transformed into a continuous-time system with state delay using
sampling measurements, and polytopic parameter uncertainty was used to characterize
the actual uncertain situation. Salem and Aly proposed a fuzzy logic control method for
the ASS of a quarter car and applied it in a simulation environment [13]. This method
was compared with the PID control method in two different types of railroads. The ride
comfort was improved by reducing the body acceleration caused by the car body during
road disturbances caused by smooth roads and real road bumps. Lin and Lian studied
the intelligent control of ASSs in a simulation environment [14]. This study addressed
the problem of selecting learning rate and weight distribution parameters that affect the
proposed self-organizing fuzzy controller (SOFC) performance in engineering problems.
For this reason, a hybrid self-organizing fuzzy and radial basis functional neural network
controller (HSFRBNC) was proposed in this study. SOFC and HSFRBNC methods were
compared, and HSFRBNC was found to provide better control performance in improving
the suspension system lifetime and ride comfort of a car. Sun et al. [15] applied H∞ con-
trol for active car suspension systems in the finite frequency domain with time domain
constraints to the model of a quarter car in a simulation environment. In this study, using
the generalized Kalman–Yakubovich–Popov (KYP) lemma, a state feedback controller was
designed in linear matrix inequality (LMI) optimization in H∞-norm, leading to controlled
output without distortion. Reduced results were obtained in a certain frequency band to
improve driving comfort. Li et al. [16] proposed a reliable fuzzy H∞ control method for
actuator-delayed and faulty ASSs and applied it in a simulation environment. A passive sys-
tem and an FLC method were contrasted with the approach. The simulation results showed
that the designed reliable fuzzy controller could provide better suspension performance in
the presence of changes in sprung and unsprung mass, delay, and actuator failure.

Sun et al. [17] proposed an adaptive rollback control strategy for car suspensions
with rigid conditions. The proposed controller considers suspension spacing, dynamic tire
loads, and actuator saturation as time boundary conditions. In the presence of parameter
uncertainties, the method was applied to the half-car model in a simulation environment
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in the study to stabilize vehicle performance and improve ride comfort. Sun et al. [18]
proposed a limited adaptive back-stepping control strategy for ASSs to achieve multi-
purpose control. In addition to improving ride comfort, the time-domain constraints
required for active suspension control were also guaranteed throughout the time domain
and the Lyapunov barrier function was used in this study. The method was applied to the
model of a quarter vehicle. Deshpande et al. [19] proposed a disturbance observer-based
sliding mode control method for ASSs and implemented it in a simulation and experimental
environment. In the study, three different types of road profiles and load variations were
tried and verified. The results were compared with those of passive suspension systems,
significantly improving mass displacement and acceleration performance. To shed light on
the design of suspension control systems in the existing literature, Tseng and Hrovat offered
a literature study [20] in which they shared their observations on the most recent hardware
implementations of active and semi-ASSs. Wang et al. [21] proposed a static output feedback
control strategy based on the variable substitution method and linear matrix inequality
for ASSs with limited information. The main feature of the proposed method was that it
provided a pre-assignment of the controller structure. This study, which used a half-vehicle
model, aimed to improve ride comfort and balance simultaneously. The validity of the
designed controller for different track profiles was shown by numerical examples, taking
into account other boundary conditions such as suspension preload, actuator saturation,
controller-dependent information, etc. Simulation results showed that the optimized
controller with static output feedback achieved better suspension performance than a
suitable controller with static output feedback. Palanisamy and Karuppan proposed a
fuzzy logic control method for controlling ASSs and applied it to a quarter-vehicle model
in a simulation environment [22]. The system was compared with a passive and a PID-
controlled system. The FLC method was applied to three road profiles and positive results
were obtained.

Zhao et al. [23] proposed an adaptive neural network control method for the ASS
with actuator saturation and applied it in a simulation environment. A YSA observer was
used for state prediction using the system’s measured input and output data. The study
optimized the feedback control parameters using PSO based on the state observer. The
method was compared with the passive state suspension system, neural sliding mode
control (SMCNN), and traditional neural network (TNN) control methods. In the sim-
ulation results, body vibration was effectively suppressed, the values of the proposed
controller RMS were improved under different road conditions, and the body displacement
results were obtained at a lower value than the SMCNN controller and TNN controller.
Pan et al. [24] proposed an adaptive control method for ASSs to improve the vertical dy-
namic performance of the car in the presence of parameter uncertainties, disturbing inputs,
and non-ideal actuators. Comparative simulations were performed. Compared with exist-
ing control methods, the presented control method was adaptive to parameter uncertainties,
and it was shown to reduce the effects of non-ideal actuators in the simulation environ-
ment. Wen et al. [25] proposed a fuzzy control method for uncertain active car suspension
systems with a dynamic sliding mode approach. They applied it to a quarter-car model
in a simulation environment. This study used a T-S fuzzy method to consider the change
in masses. The sliding mode control parameters were linearly generated and a dynamic
fuzzy term was used to construct the sliding mode controller. It was found that the method
significantly reduced the spring-mass acceleration compared to passive systems and a
lower body acceleration was achieved during road disturbances.

Senthil Kumar et al. [26] proposed an Adaptive Neuro-Fuzzy Inference System (AN-
FIS) controller for a hydraulically actuated active suspension and applied it to a semi-auto
model in a simulation environment. The proposed method was compared with passive and
PID control methods for a sinusoidal trajectory profile. As a result of the simulation, it was
found that the body displacement and tilt angle of the ANFIS-controlled ASS were signifi-
cantly lower than those of the PID-controlled suspension system. Zhou et al. [27] proposed
an optimal sliding mode control (OSMC) for an ASS based on a genetic algorithm and
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implemented it in a simulation environment. From the simulation results, the comprehen-
sive performance index (RMS) of the OSMC controller was reduced by 12.73% and 33.4%
compared to the SMC controller and passive system, respectively. Nagarkar et al. [28]
implemented GA-based multicriteria optimized fuzzy logic and PID control of the active
quarter-car nonlinear suspension system in a simulation environment. It was shown that
the active FLC control system based on GA minimized the frequency-weighted RMS accel-
eration and VDV compared with PID and passive suspension systems, thus improving ride
comfort. Li et al. [29] proposed an adaptive event-driven fuzzy control method for active
vehicle suspension systems with uncertainties. They applied it to the model of a quarter
car in the simulation environment. The T-S fuzzy model was used for suspension system
uncertainties. The purpose of this method was to save communication resources. As a
result of the simulation, a reliable fuzzy controller design approach based on the adaptive
event-driven scheme was provided, which can effectively reduce the transmission load at
all frequencies.

Youness and Lobusov proposed a networked control scheme for the ASS of a complete
car model [30]. The study investigated two networked control systems. PID and LQR
control methods were used. They proposed a networked control system for the ASS using
the CAN network model. In a networked system with low network speed, the results
show that the performance of the LQR method was better than that of PID. Liu et al. [31]
proposed an adaptive neural network (NN) as a control method for a four-car model
with time-varying vertical displacement and speed limit and an ASS with unknown car
mass. The unknown car mass was inserted into the simulation environment using the
NN used in the method. Wang et al. [32] proposed and experimentally applied a new
method for active suspension systems using model-independent finite-time motion control
methods. In this method, the vertical dynamics of the suspension system, including the
external disturbances, were estimated by the time delay estimation. The estimated error
was compensated using the integral sliding mode control method. The experimental results
showed that the method performed adequately as long as the vertical displacement of the
sprung mass and the vertical car acceleration reduced the RMS error compared with the
traditional suspension system methods. Lin et al. [33] proposed the fuzzy sliding mode
control method with a proportional differential sliding mode observer for an ASS. It was
shown that the fuzzy sliding mode control method in the simulation environment could
improve the ride comfort, operational stability, and driving safety of the car, and reduce
energy consumption.

Wang et al. [34] proposed a fuzzy sliding mode-based anti-disruptive control for a
7-DOF active car suspension system. An extended state observer was used to estimate
all disturbances in the system. The fuzzy sliding mode control for active distortion sup-
pression (FSM-ADRC) was compared with existing active distortion suppression methods
(ADRC and SM-ADRC). This comparison showed that the proposed method performed
better. Li et al. [35] proposed an adaptive optimal control with neural networks and output
feedback for ASSs and implemented it in a simulation environment. In this study, NNs
were used to identify unknown nonlinear states, and an NN state observer was used to
predict unmeasurable states. The proposed optimal control algorithm ensured the bound-
edness of the signals of the controlled system, and the power of the control input and the
amplitude of the vertical displacement was minimized. Nichiţelea and Unguritu proposed
an adaptive harmonic control for the active suspension of a quarter of a car and applied it in
a simulation environment [36]. The method was compared with the classical PI controller,
the H∞ controller, and the model predictive control method. The comparison results
showed that the harmonic controller performed better than control algorithms for some
performance criteria. Using the least squares method, Nagarkar et al. [37] optimized and
implemented a passive suspension system as an active FLC system. This study compared
passive systems, traditional FLC, optimized passive systems, and optimized FLC methods.
The optimized passive suspension system obtained 30% and 27% lower RMS acceleration
and VDV values than the original. The governor force was reduced by 38% compared to
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the original FLC system. VDV and RMS acceleration and maximum acceleration were also
reduced by 32%, 28%, and 24%, respectively.

Yuvapriya et al. [38] proposed an LQR control method using the BAT algorithm for
car suspension system control, which was applied in an experimental environment on
different road profiles. The study also compared the effectiveness of the method with
the GWO algorithm. Regarding the road profile with bumps, the percentage reduction
in the RMS value of trunk acceleration for the proposed BA-adjusted LQR was 64.6%,
while the GWO-adjusted LQR was 37.5%. Similarly, for the impulse path profile, the
BA-adjusted LQR resulted in a 43% reduction and the GWO-adjusted LQR resulted in a
25.2% reduction in the RMS value of hull acceleration compared to the conventional LQR.
The proposed control method increased the ride comfort despite the rough road profile.
Manna et al. [39] proposed an LQR control method using the active suspension system’s ant
colony optimization (ACO). They applied it to the model of a quarter car in an experimental
environment. The proposed method was experimentally compared with the classical LQR
and model predictive control (MPC) methods in three track profiles. The results showed
that the proposed method significantly reduced the acceleration of the body due to uneven
road profiles compared to the classical tuned LQR and model predictive control (MPC). It
was also shown to improve car handling and occupant comfort significantly. Ma and Li
proposed an adaptive fault-tolerant fuzzy control method for active seat suspension systems
with full state constraints [40]. The method included electromagnetic actuator failures,
constraints on the car seat, active suspension and wheel displacement, vertical vibration
velocities, and current. In control design, fuzzy logic systems approximate unknown
nonlinear dynamics because the systems have dynamic properties such as complexity
and spring nonlinearity. A new adaptive fuzzy FTC method used an adaptive recursive
backstepping design algorithm with barrier Lyapunov functions. When the electromagnetic
actuator failed, the proposed method ensured that all vertical vibration states were stable.
Kozek et al. [41] presented a neural algorithm based on reinforced learning to optimize
ASSs’ linear quadratic controller (LQR). They applied it to the system of a quarter car
in a simulation environment. The method was compared with the passive and classical
LQR control methods. The method seemed to increase user comfort by 67% compared
to the passive system and 14% compared to the non-optimized LQR. Consequently, the
comparison of these studies is provided in Table 1 to better comprehend and compare the
studies in the literature.

In this paper, the suspension model of a quarter-car is created, and active control is
implemented. The suspension model is created using the Lagrange–Euler method. LQR,
fuzzy logic control (FLC), and fuzzy-LQR control algorithms are developed and applied to
the suspension system for active control. The purpose of these controllers is to improve
car handling and passenger comfort. Undesirable vibrations occur in passive suspension
systems. These vibrations should be reduced using the proposed control methods and a
robust system should be developed. The optimal values of the coefficients of the contact
points of the membership functions are obtained using the particle swarm optimization
(PSO) algorithm to enhance the performance of the FLC and fuzzy-LQR control methods.
Following that, the computer environment is used to simulate the designed controllers.
The success of the control performance of the applied methods concerning the passive
suspension system is compared in percentages. The results are presented and evaluated
graphically and numerically. The methods are contrasted against one another and the
research in the literature using the integral time-weighted absolute error (ITAE) criterion.
As a result, it is found that the proposed control method (fuzzy-LQR) is about 84.2% more
successful in body motion, 90% in car acceleration, 84.5% in suspension deflection, and
86.7% in tire deflection compared to the studies in the literature. All these results show that
the car’s ride comfort is significantly improved.
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Table 1. The comparison table of the existing studies.

References Proposed Control Methods Results/Findings/Limitations

D’Amato, ve Viassolo [5]
(2000) Fuzzy logic control (FLC)

Regarding the open loop, passenger comfort for small/medium
road disturbances was improved by 58%, while the maximum
bump amplitude for which the suspension limits cannot be
reached was increased by 18%.

Foda [6] (2000) FLC Both body ride and suspension workspace responses exhibited
good damping characteristics for different road inputs.

Al-Holou et al. [7] (2002)
Sliding mode neural network
inference fuzzy
logic control (SMNNNFLC)

The simulation results showed that the proposed SMNNNFLC
provided higher ride comfort and handling quality than the
other methods presented in the paper.

Sam et al. [8] (2004) Proportional-integral sliding
mode control

The method was shown to be more robust than the
benchmarked method.

Chen and Guo [9] (2005) Constrained H∞ control

As a result of this study, when the suspension strokes and
control inputs were kept within the defined limits, tight contact
of the wheels with the road was ensured and the best possible
ride comfort was achieved.

Yagız et al. [11] (2008) Fuzzy sliding-mode control
(fuzzy-SMC)

It was seen that the magnitudes of the body displacement and
pitching motion were reduced and the resonance peak caused
by the vehicle body was eliminated. It was also seen that the
magnitudes of the body and pitching motion acceleration were
reduced in a wide frequency range, thus providing a significant
improvement in driving comfort.

Salem and Aly [13] (2009) FLC Improved driving comfort by reducing body acceleration
caused by the vehicle body in road disturbances

Lin and Lian [14] (2010)
Hybrid self-organizing fuzzy and
radial basis function neural
network controller (HSFRBNC)

The challenge of finding suitable parameters for SOFC design
were eliminated. It was shown to improve the service life of the
suspension claim and the ride comfort of a car.

Zhao et al. [25] (2016) Adaptive neural network control In the simulation results, the vehicle body vibrations were
effectively suppressed, and RMS values were improved.

Palanisamy and
Karuppan [22] (2016) FLC Positive results were obtained in terms of applicability in ASSs.

Wen et al. [25] (2017) Fuzzy control with dynamic
sliding mode approach

It was observed that the spring-mass acceleration under road
disturbance was significantly reduced, and lower body
acceleration was achieved.

Nichiţelea and
Unguritu [36] (2022) Adaptive harmonic control

Using the proposed method, better results were obtained in
some performance criteria compared to other control
algorithms.

Yuvapriya et al. [38] (2022) BAT/GWO-LQR

In the case of the bump road profile, the percentage reduction in
the RMS value of the body acceleration was 64.6% for the
proposed BA-tuned LQR and 37.5% for the GWO-tuned LQR.
Similarly, for the pulse path profile, the reduction in the RMS
value of the body acceleration compared to the conventional
LQR was 43% for the BA-tuned LQR and 25.2% for the
GWO-tuned LQR.

The following is a concise list of the study’s main contributions.

a. By utilizing the particle swarm optimization (PSO) algorithm, obtaining the weights
of the points where the membership functions of the fuzzy-LQR control method
touch, and applying this control method to the ASS, the system gains the ability
to make its own decision to optimally determine the critically important Q and
R parameters in the control of the system. This is the first major contribution of
our study.
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b. Using the passive state of the ASS, LQR control method, PSO-based fuzzy logic
control (FLC), and PSO-based fuzzy-LQR control methods together, and comparing
the obtained results is the second important contribution of this study.

c. Comparing the methods used with each other using the ITAE performance index
and comparing the method showing the most successful performance among the
methods with the studies in the literature is another contribution of the study.

The most important contribution of this study is to combine the self-determination
capability of the fuzzy logic control method with the advantage of the LQR control method,
which is one of the optimal control methods, and to bring it to the literature in the control
of ASSs. As a result of the reasons and research given above, it was concluded that it would
be beneficial to publish the study since it is thought that it is original and will contribute
to the literature. The authors believe that this work is novel theoretically as a result. The
remaining sections of this paper are the following: Section 2 presents the mathematical
model of the suspension system. Section 3 describes the design of the LQR, PSO-based
FLC, and PSO-based fuzzy-LQR control methods. Section 4 reviews numerical simulation
results. The study’s numerical and graphical findings are presented in this section. At the
end of this chapter, a comparison table with the literature, each other, and interpretation is
also provided. Section 5 concludes by summarizing the findings. This section analyzes and
interprets the article’s findings. Additionally, tips for enhancing the method are provided
at the end of this section, along with details about upcoming research studies involving
the method.

2. Mathematical Model of the Suspension System

The mathematical model that will be utilized to control the system was obtained using
the Lagrange–Euler approach. The quarter-car model is shown in Figure 1. Our quarter-
car model has two degrees of freedom. In this model, the car is designed symmetrically
and is divided into four parts. The model includes only vertical vibration motion without
considering the pitch and roll motion of the chassis and wheel. The model of the suspension
system is given in the following equations.
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Here mb is the mass of a quarter of the car body, mw is the mass of the wheel assembly,
ks is the spring coefficient of the suspension system, bs is the damper coefficient of the
suspension system, kt is the spring coefficient of the tire, and bt is the damper coefficient
of the tire. In addition, while the state variables show the displacement (xw) movements
of the body (xb) and the wheel assembly, the input variables xr show the road roughness
(distortion) and F the control force exerted by the active element applied between the body
and the wheel.

mb
..
xb + bs

( .
xb −

.
xw
)
+ ks(xb − xw)− Fs = 0 (1)

mw
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The dynamic model of the linearly moving system is constructed in the state space
form

.
x = Ax + Bu as follows.

.
x1.
x2.
x3.
x4

 =


0 1 0 0

− ks
mb

− bs
mb

ks
mb

bs
mb

0
ks

mw

0
bs

mw

0
−ks−kt

mw

−
1
bs

mw




x1
x2
x3
x4

+


0 0
0 1

mb
0
kt

mw

− 0
1

mw

 (7)

y =

 1 0 0 0
1 0 −1 0

− ks
mb

− bs
mb

ks
mb

bs
mb




x1
x2
x3
x4

+

0 0
0 0
0 1

mb

 (8)

The dynamics of the hydraulic actuator used in active suspension control are shown
with the transfer function given in Equation (9).

Hact(s) =
1

1/60s + 1
(9)

The active suspension road disturbance is modeled as a 5 cm high road bump using
Equation (10) for the input signal.

r(t) = 0.025 × [1 − cos(8πt)] (10)

Road disturbances with different characteristics, quality of sensing sensors required
for feedback, limitations on available control force, and body acceleration are some factors
that affect passenger comfort, represented by ab, and suspension deflection, represented by
sd. This article presents the control algorithms applied to the quarter-car active suspension
model in a closed-loop system with the measurement of body acceleration

..
xb as feedback.

3. Controller Designs for the Suspension System

These controllers designed for the suspension system aim to increase car handling and
passenger comfort. In addition, it is aimed to reduce the vibrations that occur in passive
suspension systems by using the proposed control methods and designing a robust system.
While the controller was being designed, the equations obtained for the system’s control



Appl. Sci. 2023, 13, 8802 9 of 21

were prepared in the previous section. The system’s control aims to design a controller
that achieves minimum error value by increasing car handling and passenger comfort.
The suspension system is controlled using linear quadratic regulator (LQR), PSO-based
fuzzy logic control (FLC), and PSO-based fuzzy linear quadratic regulator (fuzzy-LQR)
control methods. The most important problem during a system’s control is determining
the optimal control law that minimizes the determined performance index under various
economic and safety constraints. The linear quadratic regulator (LQR) control method,
which is one of the optimal control methods, is a method that uses the state-space model of
the system [42]. It is a type of controller based on the principle of complete state feedback.
The main objective of optimal control is to obtain control signals that result in a system
satisfying certain physical constraints while overfulfilling (maximizing or minimizing) a
selected performance criterion or cost function. The LQR control method is widely used
because it is simple, optimal, and robust [43,44]. The input of the LQR control method is
u = −K × x, where K represents the feedback control input and x represents the states
of the system. Control input is chosen to minimize the following cost function, which is
determined using state space equations.

J =
1
2

∫ t

0

(
xT(t)Qx + uT Ru

)
dt (11)

The purpose of the control here is to minimize the integral of the squared power index.
The matrices Q and R are the weight matrices here. Q is a positive semidefinite symmetric
matrix and R is a positive definite matrix (Q ≥ 0, R > 0). In optimal control, the control
vector u, x, indicates the system states and Equation (11) is quadratic concerning both x(t)
and u(t). The optimal feedback input K is determined using the following equation.

K = R−1BT P (12)

Here, B represents the input matrix of the system. The positive definite matrix p value
is determined using the Riccati equation. Here A stands for the state matrix.

AT P + PA − PBR−1BT P + Q = 0 (13)

Another ASS control method is the fuzzy logic control (FLC) method. The FLC
algorithm is a method invented by Zadeh [45]. An FLC algorithm consists of five stages. In
the first stage, the input variables are converted into a fuzzy set and, in the second stage, rule
tables, membership functions, and a rule base are formed. This rule base consists of a set of
IF-THEN rules derived from the verbal statements of experts with knowledge of the system.
In the third stage, the inference mechanism performs the inference process of these rules
on the system and provides fuzzy outputs. In the fourth stage, the membership functions
and the range of fuzzy sets are defined in the database. In the last stage, defuzzification,
a fuzzy set is converted into a net value for output. In this paper, the boundary values
of the membership functions of the FLC algorithm were obtained using particle swarm
optimization (PSO), one of the swarm-based optimization algorithms [46,47]. The mean
square error (MSE) was chosen as the PSO algorithm’s goal function to reduce system-
related faults. The Mamdani inference approach was applied to the FLC method that was
used for system control. For all input and output values used, triangle-type membership
functions are also preferred. The particle swarm optimization flowchart (PSO-FLC) used to
fit the membership functions of the FLC method proposed for suspension system control is
shown in Figure 2.
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The controller uses the error (e) and the rate of change of the error (
.
e) as input values.

The membership functions and the control table obtained using triangular membership
functions and PSO-FLC are given below. Figures 3 and 4 show the membership functions
defined for the system’s input values e and

.
e. Figure 5 shows the membership functions

defined for the F (force) output value.
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For the PSO algorithm, the number of particles was set to 50 and the number of
iterations to 80. The limits of the membership functions used in the FLC method optimized
with the PSO algorithm are given in Table 2. Table 3 shows the control table created for
the FLC control method. The fuzzy control variables e, e, and F compose the control table
given in Table 3; e,

.
e, F indicate the error, error change, and power, respectively. NB, NM,

Z, PM, and PB stand for negative large, negative medium, zero, positive medium, and
positive large.

Table 2. The limit values of FLC membership functions.

k1 k2 k3 k4 k5 k6

0.92 0.46 0.78 0.36 1.24 0.83

Table 3. The rule table created for FLC.

F NB NM Z PM PB

NB NB NB NB NM Z

NM NB NB NM Z PM

Z NB NS Z PM PB

PM NM Z PM PB PB

PB Z PM PB PB PB
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The fuzzy linear quadratic regulator (fuzzy-LQR) control method, which is another
recommended method for active control of the suspension system, is a control method that
shares the advantageous aspects of the linear quadratic controller (LQR) and the fuzzy
control method. Here, an attempt is made to utilize the advantages of the LQR and FLC
methods by combining them. Obtaining the Q and R matrices that affect the performance
of the LQR control method with fuzzy logic causes the proposed method (fuzzy-LQR) to
become a dynamic structure that depends on variable road conditions, thus increasing
passenger comfort and achieving a realistic performance of the method. The fuzzy-LQR
controller, which takes the error and its derivative as input to the controller, uses the fuzzy
controller rules to change the K = [k1, k2, k3] expressions of the state feedback gain. The
boundary values of the membership functions of the fuzzy-LQR control algorithm were
obtained using particle swarm optimization (PSO), one of the swarm-based optimization
algorithms. For the PSO algorithm, the mean square error (MSE) was set as the objective
function to minimize the errors resulting from the system’s operation. The controller uses
the error (e) and the rate of change of the error (

.
e) as input values. The fuzzy-LQR control

method uses the Mamdani method and triangular membership functions. The membership
functions and the rule table created for fuzzy-LQR are given below. For the PSO algorithm,
the number of particles is 75 and the number of iterations is 130. Figures 6 and 7 shows the
membership functions and limits for the system’s input values e and

.
e. The membership

functions and bounds for the F (force) output value is shown in Figure 8.
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Table 4 shows the boundary values of the membership functions used in the fuzzy-
LQR control method and optimized with the PSO algorithm. Table 5 shows the rule table
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created for the fuzzy-LQR control method. In the table, the fuzzy control variables e,
.
e, F,

and F indicate the error, error variation, and power, respectively. The values given in the
table, NB, NS, Z, PS, and PB, represent negative large, negative small, zero, positive small,
and positive large, respectively.

Table 4. The limit values of fuzzy-LQR membership functions.

p1 p2 p3 p4 p5 p6 p7 p8

1.8 1.4 0.83 0.42 0.23 1.63 1.34 0.92

p9 p10 p11 p12 p13 p14 p15

0.64 0.36 1.42 1.1 0.74 0.33 0.18

Table 5. The rule table created for fuzzy-LQR.

F NB NS Z PS PB

NB NB NS PB NB PS

NS NS NB NS PS Z

Z Z NB NB PB PB

PS NB NS PS PB PS

PB Z Z PB PS PB

4. Numerical Simulation Results

In this section, controllers for the suspension of a quarter car are designed, and
the results of the simulations that have been tried on the system are given. The control
algorithms developed and applied for the system are LQR, PSO-based FLC, and PSO-based
fuzzy-LQR methods. Active control of the system was performed using these methods,
and the obtained results were presented with graphs and tables. The main objective
in controlling the car suspension system is to minimize the impact of the disturbance
caused by the road entrance on passenger comfort. The initial parameters of the system
are determined as follows: Matlab/Simulink package program was used in this study.
The physical parameters of the car suspension system are mb = 300 kg, mw = 60 kg,
ks = 16,000 N/m, bs = 1000 Ns/m, kt = 190,000 N/m, and bt = 100 Ns/m. The initial value
of the position of the car suspension system is assumed to be x = 0 m. The simulation time
of the system is assumed to be 2.5 s. The road entrance is shown in Figure 9. This driveway
is a 5 cm high mound of earth.
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This study presents the graphs resulting from the passive state of the suspension
system and the active control of the LQR, PSO-based FLC, and PSO-based fuzzy-LQR
methods. Figures 10 and 11 show the graphs obtained as a result of the motion of the car
body and the acceleration of the car body, which are the parameters affecting passenger
comfort, and the passive state and active control with the LQR, PSO-based fuzzy, and
PSO-based fuzzy-LQR control methods.
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By looking at Figure 10, the plot of the vertical deflection of the car body as a function
of time, it is clear that all the methods used significantly reduce the vibration amplitude
and the seat time compared to the passive suspension system. It can be seen that the
smallest change in vibration amplitude is in the PSO-based fuzzy-LQR control (0.018~0 m
range) and the highest amplitude is in the LQR control (0.038~0.005 m). The acceleration
acting on the car due to the poor road entrances can reach dimensions that disturb the
passengers. Therefore, reducing car acceleration amplitudes is important for car ride
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comfort. By examining the acceleration curve of the car body, it can be seen that the
PSO-based fuzzy-LQR control type (in the range of 1~1 m/s2) attenuates the acceleration
amplitudes much more successfully. Similarly, the highest amplitude is observed for the
LQR control type (about 2.1~2.4 m). It is also observed that the LQR control type causes
undesirable amplitude increases. The suspension deflection and tire deflection resulting
from the methods used are shown in Figures 12 and 13.
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Another criterion for the success of the methods is whether the methods used in
car suspension systems cause the problem of suspension constriction. The suspension
deflection curve in Figure 12 shows that the suspension range has reached zero, i.e., the
initial position, for all three controller types and thus does not narrow. It can be seen that the
PSO-based fuzzy-LQR (in the range of about 0.018~0 m) occurs at a much lower amplitude
in the control mode. Similarly, the highest amplitude is observed in LQR control (about
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0.033~0.005 m). The graph of the tire deflection in Figure 13 shows that the tire deflection
occurs in all three types of controllers. It can be seen that the PSO-based fuzzy-LQR (about
−0.0012~0.0018 m) occurs at a much lower amplitude in the control type. Similarly, it can be
seen that the highest tire deviation occurs in the LQR control type (about 0.0018~0.003 m).
Figure 14 shows the control forces that result from active control.
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In car vibration reduction studies, the fact that the control force required by a controller
is low is accepted as an indicator of the successful operation of that controller. The fuzzy-
LQR controller requires less power, as seen in Figure 13 when looking at the change in the
controller forces required by the motor over time. It can be seen that it ranges from about
−520 to 250 N for the PSO-based fuzzy-LQR controller. Similarly, it can be seen that the
highest force requirement is for LQR control (about −1000~1000 N). The previous graphs
show that the fuzzy-LQR controller provides better control with less force requirement.
Table 6 provides a comparison table for the body motion, car acceleration, suspension
deflection, tire deflection, and required force parameters of the methods used in the study
according to the performance index of the integral time-weighted absolute error (ITAE).

ITAE =
∫

tedt (14)

Table 6. Comparisons of applied control methods using performance criteria.

Performance Criteria (ITAE) Passive LQR PSO-Based FLC PSO-Based Fuzzy-LQR

Body travel (Xbody)(m) 0.01914 0.00450 0.00380 0.00302

Body acceleration (
..
Xbody)

(
m/s2) 0.75410 0.14680 0.15020 0.07545

Suspension deflection (Xbody − Xwheel)(m) 0.01801 0.00430 0.00363 0.00280

Tire deflection (Xwheel − Xroad)(m) 0.00113 0.00046 0.00024 0.00015

Actuator (F)(N) - 67.16 68.46 59.29

In Table 6, the values that have the best error performance are shown in bold. Accord-
ing to the car body motion results obtained using the performance criteria in Table 4, the
fuzzy-LQR control method has the lowest error performance with a value of 0.00302 m.



Appl. Sci. 2023, 13, 8802 17 of 21

The LQR control approach (0.00450 m) showed the worst error performance. According to
the ITAE criteria, the error performance of the PSO-based FLC control method (0.00380 m)
was relatively better than that of the LQR control method. For the results of the acceleration
error of the car body, another parameter listed in the table, the PSO-based fuzzy-LQR
control method, showed the lowest error performance with a value of 0.007545 m/s2. The
LQR control approach (0.14680 m/s2) showed the worst error performance. According to
the ITAE criteria, the PSO-based FLC method performed relatively better than the LQR
control method in the acceleration error of the car body (0.15020 m/s2). According to
the results of suspension span error, another parameter listed in the table, the PSO-based
fuzzy-LQR control method, showed the lowest error performance and was 0.00280 m. The
LQR control approach (0.00430 m) showed the worst error performance.

According to the ITAE criteria, the error performance of the PSO-based FLC method
(0.00363 m) was relatively better than that of the LQR control method. According to the
tire deflection error results, another parameter in the table, the PSO-based fuzzy-LQR
control method, showed the lowest error performance and its value was 0.00015 m. The
LQR control approach (0.00046 m) showed the worst error performance. According to the
ITAE criteria, the error performance of the PSO-based FLC method in tire deformation
(0.00024 m) was relatively better than that of the LQR control method. According to the
error results of another given parameter, the force to be applied, the PSO-based fuzzy-LQR
control method showed the lowest error performance, and its value was 59.29 N. The LQR
control approach (67.16 N) showed the worst error performance. According to the ITAE
criteria, the error performance of the PSO-based FLC method in tire deformation (68.46 N)
was relatively better than that of the LQR control method. The percentage improvement
performance of the applied methods compared to the passive system was determined
using Equation (15). Figure 15 shows the percentage improvement graphs of the methods
compared to the passive system.

Improvement(%) =

∣∣∣∣ passive − active
passive

∣∣∣∣× 100 (15)
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According to the graphs in Figure 15, the body performance increased by 84.2%,
car acceleration increased by 90%, suspension deflection increased by 84.5%, and tire
deflection increased by 86.7% compared to the passive system by using the PSO-based
fuzzy-LQR control method. As shown in Figure 15, maximum performance improvements
were obtained for all parameters using the PSO-based fuzzy-LQR method, one of the three
control methods we used. Additionally, and perhaps most significantly, Table 7 contrasts the
performance standards of the fuzzy-LQR control method, one of our suggested approaches,
with those of the research in the literature. This table demonstrates how effective our
method is in comparison to other methods.

Table 7. The performance comparison of the proposed control method with the literature methods.

Performance Criteria (ITAE) PSO-Based Fuzzy-LQR Harmonic [36] H-Infinity [36] MPC [36]

Body travel (Xbody)(m) 0.00302 0.0039 0.0071 0.0041

Body acceleration (Xbody)
(
m/s2) 0.07545 0.1683 0.1588 0.1252

Suspension deflection (Xbody − Xwheel)(m) 0.00280 0.0044 0.0072 0.0046

Tire deflection (Xwheel − Xroad)(m) 0.00015 - - -

Actuator (F)(N) 59.29 64 95.5 80.7

The best values for error performance are highlighted in bold in Table 7. According to
the results of car body motion obtained utilizing the ITAE performance criteria in Table 7,
the PSO-based fuzzy-LQR control method showed the lowest error performance, and its
value was 0.00302 m. According to the performance criteria in the studies reported in the
literature, the car body motion performance is determined by the harmonic, MPC, and
H-infinity control methods, respectively, and their values are 0.0039, 0.0041, and 0.0071 m,
respectively. According to the results of car acceleration in the table, the minimum error
value is determined by the fuzzy-LQR control method, MPC control method, H-infinity
control method, and harmonic control method, respectively, and their values are 0.07545,
0.1252, 0.1588, and 0.1683 m/s2, respectively. According to the suspension deflection results
of another parameter given in the table, the minimum error value is determined by the
PSO-based fuzzy-LQR control method, the harmonic control method, the MPC control
method, and the H-infinity control method, and their values are 0.00280, 0.0044, 0.0072,
and 0.0046 m, respectively. Finally, according to the actuator force results shown in the
table, the minimum error values were determined by the PSO-based fuzzy-LQR control
method, the harmonic control method, the MPC control method, and the H-infinity control
method, and their values are 59.29, 80.7, and 95.5 N, respectively. Considering the above
results, the proposed PSO-based fuzzy-LQR control method showed superior performance
in terms of all parameters compared with the studies in the literature when compared with
the ITAE criteria.

5. Conclusions

In this paper, the model of the suspension system of a quarter-car is established, and an
active control system is implemented with three different control methods. In developing
the controller, the goal of improving the car handling performance and passenger comfort
was achieved, as shown in the graphs. Active control was performed using the ASS, LQR,
fuzzy logic control (FLC), and fuzzy-LQR control algorithms. To enhance the performance
of the FLC and fuzzy-LQR control methods, the optimal values of the coefficients of the
points where the feet of the membership functions touch were calculated using the particle
swarm optimization (PSO) algorithm. Then, the designed controllers were simulated in the
computer environment. The success of the control performance of the applied methods
concerning the passive suspension system was compared in percentages. The methods
were compared against one another and the research in the literature using the integral
time-weighted absolute error (ITAE) criterion. As a result, it was found that the proposed
control method (fuzzy-LQR) is about 84.2% more successful in body motion, 90% in car
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acceleration, 84.5% in suspension deflection, and 86.7% in tire deflection compared to the
studies in the literature. All these results show that car ride comfort can be improved
significantly. The proposed controller’s (fuzzy-LQR) successful results have demonstrated
that this sort of control may be expanded upon and applied to both linear and nonlinear
systems. Future studies can aim to investigate the method’s behavior with a real-time
experimental application of the proposed method. Furthermore, the method can be applied
to half- and full-car models in simulation and experimental environments.
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Nomenclature

mb Mass of a quarter-car body
mw Mass of the wheel assembly
ks Spring coefficient of the suspension system
bs Damper coefficient of the suspension system
kt Spring coefficient of the tire
bt Damper coefficient of the tire
xb Body travel
..
xb Body acceleration
xw Displacement of the wheel assembly
xr The road roughness (distortion)
xb − xw Suspension deflection
xw − xr Tire deflection
F Actuator control force
ASS Active suspension system
LQR Linear quadratic regulator
PSO Particle swarm optimization algorithm
FLC Fuzzy logic control
Fuzzy − LQR Fuzzy linear quadratic regulator
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