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Introduction: Neural circuit alterations lay at the core of brain physiopathology,

and yet are hard to unveil in living subjects. The Virtual Brain (TVB) modeling,

by exploiting structural and functional magnetic resonance imaging (MRI), yields

mesoscopic parameters of connectivity and synaptic transmission.

Methods: We used TVB to simulate brain networks, which are key for human brain

function, in Alzheimer’s disease (AD) and frontotemporal dementia (FTD) patients,

whose connectivity and synaptic parameters remain largely unknown; we then

compared them to healthy controls, to reveal novel in vivo pathological hallmarks.

Results: The pattern of simulated parameter differed between AD and FTD,

shedding light on disease-specific alterations in brain networks. Individual

subjects displayed subtle differences in network parameter patterns that

significantly correlated with their individual neuropsychological, clinical, and

pharmacological profiles.

Discussion: These TVB simulations, by informing about a new personalized set

of networks parameters, open new perspectives for understanding dementias

mechanisms and design personalized therapeutic approaches.

KEYWORDS

virtual brain modeling, brain dynamics, excitatory/inhibitory balance, Alzheimer’s
disease, frontotemporal dementia, resting-state networks

Frontiers in Aging Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2023.1204134
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2023.1204134&domain=pdf&date_stamp=2023-07-28
https://doi.org/10.3389/fnagi.2023.1204134
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1204134/full
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1204134 July 26, 2023 Time: 10:37 # 2

Monteverdi et al. 10.3389/fnagi.2023.1204134

Background

The advent of advanced in human in vivo recordings of
brain signals from, e.g., magnetic resonance imaging (MRI),
has led to the identification of brain networks that subtend
specific functions (Smitha et al., 2017). The structural, metabolic
and/or functional alteration of such networks eventually leads
to the clinical manifestation of neurological diseases. In parallel,
mathematical modeling of cellular and microcircuit functions are
emerging, providing tools to link the micro- to the meso- and the
macro-scale properties of brain signals (D’Angelo and Jirsa, 2022).

Neurodegenerative dementias include several
neuropathological forms, primarily Alzheimer’s disease (AD)
and frontotemporal dementia (FTD). AD is associated with the
accumulation of amyloid-β plaques and neurofibrillary tangles,
which are widely recognized as typical biomarkers confirming the
disease diagnosis. Most AD cases present the typical amnesic form,
which reflects the accumulation of protein aggregates in medial
temporal lobe structures and evolves in multidomain dementia.
Dysfunctions outside the mesial temporal regions characterize
atypical AD variants, which present predominant visual, language,
executive, behavioral, or motor dysfunction (Graff-Radford et al.,
2021). FTD is a heterogeneous neurodegenerative disorder,
clinically characterized by behavioral abnormalities, language
deficit and motor symptoms. Focal frontal and temporal atrophy
are the main macroscopic evidence of FTD pathological changes
and distinct atrophy patterns can be associated with different
variants (Leyton and Hodges, 2010). Post-mortem histology and
in vivo functional MRI (fMRI) studies have suggested a differential
engagement of various brain networks in these diseases. However,
a comprehensive assessment of functional connectivity (FC)
changes in multiple networks in vivo to compare dementias
subtypes has been rarely performed (Castellazzi et al., 2014), in
favor of investigating specific networks, in particular the default
mode network (DMN) specifically in AD (Hohenfeld et al.,
2018). Increasing evidence underlines the need to expand the
investigation beyond the DMN, considering that widespread
increases and decreases in structural, functional and metabolic
connectivity have been observed in different brain areas of AD
patients (Arnemann et al., 2018; Stefanovski et al., 2021). Moreover,
the development of in vivo imaging biomarkers of brain function
becomes necessary to achieve efficient tailored diagnosis and
personalized treatment, especially in less frequent and more
heterogeneous conditions, such as atypical forms of AD or FTD
variants (Graff-Radford et al., 2021).

Advanced recording techniques, such as MRI and/or high-
density electroencephalography (hd-EEG), are mostly used to
study structural and functional brain networks properties and
their changes in pathological conditions, but they provide little
information about cellular properties such as spatio-temporal
dynamics of cellular communication, neuronal firing integrity or
synaptic transmission. Proton magnetic resonance spectroscopy

Abbreviations: expFC, experimental functional connectivity; expFCD,
experimental dynamic functional connectivity; FC, functional connectivity;
PCC, Pearson correlation coefficient; SC, structural connectivity; simFC,
simulated functional connectivity; simFCD, simulated dynamic functional
connectivity; TVB, The Virtual Brain; AD, Alzheimer’s disease; FTD,
frontotemporal dementia.

(MRS) provides a non-invasive technique to investigate the
biochemical properties of the brain and detect metabolic alterations
in dementia; aside the fact that acquiring MRS data would prolong
the scan time for patients, who are already difficult to image,
there is the consideration that most of the studies report extremely
heterogeneous results, making clinical application of MRS in AD
still limited (Maul et al., 2020). On the other hand, recent studies
have addressed FC in FDG-PET data, highlighting the presence of
specific metabolic patterns in neurodegenerative dementias, which
requires individual subjects’ analyses pipelines as appropriate for
clinical settings (Titov et al., 2017).

Therefore, very little is known about the cellular and synaptic
changes typical of different diseases, and even more so about
whether changes that have cascaded from cells to networks are
specific to individual patients.

Recent advances in multiscale brain modeling offer promising
tools to study the whole brain temporal dynamics, integrating
macroscopic information from structural and functional MRI
with mathematical mesoscale representations of the underlying
ensemble properties of cells and microcircuits. In particular, The
Virtual Brain (TVB) modeling workflow allows the non-invasive
investigation of brain features, such as network connectivity
strength and excitatory/inhibitory (E/I) balance (Stefanovski et al.,
2021; D’Angelo and Jirsa, 2022), which are relevant to brain
disease and can be determined for each patient. The E/I balance,
in turn, can be extracted at whole brain level or for specific
brain networks from parameters measuring excitatory coupling,
inhibitory coupling, and recurrent excitation inside network nodes
(Deco et al., 2014). Importantly, all neurological conditions
involve changes at multiple scales and can gain from the use of
TVB for understanding the impact of cellular and microcircuit
properties alterations on brain function. The promise for clinical
use of TVB has been already suggested in epilepsy surgery
(Jirsa et al., 2017), stroke (Falcon et al., 2016), brain tumors
(Aerts et al., 2018), Multiple Sclerosis (Marti-Juan et al., 2022),
and neurodegenerative conditions like dementia (Zimmermann
et al., 2018; Stefanovski et al., 2019; Monteverdi et al., 2022;
Triebkorn et al., 2022). Interestingly, the central position of an E/I
imbalance in the cascade of pathophysiological events in AD is
increasingly recognized (Maestú et al., 2021). However, very little
is known on how such network neurophysiology acts in concert
with structural and FC alterations to determine cognitive decline.
Retrieving E/I information, even if summarized in mesoscale
network parameters, is extremely important, as it will provide
new insights in neurodegenerative mechanisms of disease that will
eventually impact on finding effective treatments.

In this work, we applied TVB to enable the non-invasive
investigation of connectivity strength and E/I balance in a
heterogeneous cohort of dementia patients, including typical and
atypical AD and FTD variants. We explored the relationship
between neurophysiological parameters provided by TVB in
multiple brain networks and neuropsychological scores recorded
during patient examinations. TVB parameters differentiated
AD from FTD and proved to be sensitive to profiles of
cognitive performance and ongoing pharmacological treatment.
In aggregate, this study shows how TVB analysis can be used to
provide personalized fingerprints of dementia patients, opening
new perspectives for differential diagnosis and for tailoring
pharmacological and interventional workflows.
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Materials and methods

Subjects

Twenty-three patients affected by neurodegenerative diseases
were recruited at the IRCCS Mondino Foundation. The study
was approved by the Local Ethical Committee and carried
out in accordance with the Declaration of Helsinki. Written
informed consent was obtained from all subjects. The protocol
was approved by the Local Ethical Committee of the IRCCS
Mondino Foundation. Patients underwent a complete diagnostic
workup including clinical and neuropsychological assessment (see
section below) MRI, and, when available, cerebrospinal fluid (CSF)
biomarkers (amyloid-β and τ protein) assessment following the
harmonized protocol of the RIN network [Italian Network of
the Institutes (IRCCS) of Neuroscience and Neurorehabilitation]
(Nigri et al., 2022). Subjects were classified into two main
groups: 16 AD patients (13 females, 70 ± 8 years) and 7 FTD
patients (1 female, 69 ± 5 years), further classified into distinct
phenotypes. In particular, AD patients were additionally classified
into: typical AD (10 subjects; Dubois et al., 2014); AD logopenic
variant (2 subjects; Dubois et al., 2014); AD frontal variant
(ADfv, 1 subject; Dubois et al., 2014); AD posterior cortical
atrophy (ADpca, 1 subject; Dubois et al., 2014). One patient
was classified as having corticobasal syndrome (CBS, 1 subject;
Hassan et al., 2011), and one with dementia with Lewy bodies
(DLB, 1 subject; McKeith et al., 2017). On the other hand, FTD
patients were classified into: behavioral FTD (FTDbv, 5 subjects;
Rascovsky et al., 2011); Primary Progressive Aphasia non-fluent
variant (PPAnf, 1 subject; Gorno-Tempini et al., 2011), and
Primary Progressive Aphasia semantic variant (PPAsv, 1 subject;
Gorno-Tempini et al., 2011). Pharmacological therapy was also
recorded.

Ten healthy controls (HC, 6 females, 67 ± 3 years)
were enrolled on a voluntary basis as reference group. All
HC underwent clinical assessment to exclude any cognitive
impairment. For all subjects, exclusion criteria were: age >80 years,
a diagnosis of significant medical, neurological and psychiatric
disorder, pharmacologically treated delirium or hallucinations and
secondary causes of cognitive decline (e.g., vascular metabolic,
endocrine, toxic, and iatrogenic). Supplementary Table 1 shows
demographic, clinical, and neuropsychological data.

Neuropsychological assessment

All subjects underwent a neuropsychological examination
based on a standardized battery of tests to assess their global
cognitive status (Mini-Mental State Examination, MMSE) and
different cognitive domains: memory (verbal: Rey’s Auditory
Verbal Learning Test, RAVLT; visuo-spatial: Rey–Osterrieth
complex figure recall), phonemic and semantic fluency, visuo-
constructional abilities (Rey–Osterrieth complex figure copy),
attention (Trial Making Test part A, TMT-A) and executive
functions (Frontal Assessment Battery, FAB; Trial Making Test part
B and B-A; Stroop color-word test interference, time and errors;
Raven’s Colored Progressive Matrices, CPM47).

Raw scores were corrected for the effect of age, education, and
sex according to the reference norms for the Italian population.

Accordingly, corrected scores were classified into five Equivalent
Scores (ES), from 0 to 4, with an ES of 0 reflecting a pathological
performance, based on percentiles (Capitani and Laiacona, 1997).
Domain scores, calculated by averaging the ES of the single tests,
were obtained for memory, language-fluency, visuo-constructional
abilities, attention, and executive functions, respectively.

MRI acquisitions

All subjects underwent MRI examination using a 3T
Siemens Skyra scanner with a 32-channel head coil. The MRI
protocol was harmonized within the RIN network including
both diffusion weighted imaging (DWI) and resting-state
fMRI (rs-fMRI) (Nigri et al., 2022). For DWI data a two-shell
standard single-shot echo-planar imaging sequence (EPI) [voxel
size = 2.5 mm × 2.5 mm × 2.5 mm, TR/TE = 8,400/93 ms,
two shells with 30 isotropically distributed diffusion-weighted
directions, diffusion weightings of 1,000 and 2,000 s/mm2,
7 non-diffusion weighted b = 0 s/mm2 images (b0 images)
interleaved with diffusion-weighted volumes] was implemented,
and 3 non-diffusion weighted images with the reversed phase-
encoding acquisition were additionally acquired for distortion
correction. For the rs-fMRI data, GE-EPI sequence (voxel
size = 3 mm × 3 mm × 3 mm, TR/TE = 2,400/30 ms, 200
volumes) was set. For anatomical reference, the protocol included
a whole brain high-resolution 3D sagittal T1-weighted (3DT1)
scan (TR/TE = 2,300/2.96 ms, TI = 900 ms, flip angle = 9◦, voxel
size = 1 mm× 1 mm× 1 mm).

Preprocessing of DWI and fMRI data

Preprocessing of diffusion and fMRI data was performed
according to Monteverdi et al. (2022). Briefly, DWI data were
denoised, and corrected for motion and eddy currents distortions
(FMRIB Software Library and FSL)1 (Andersson and Sotiropoulos,
2016), then white matter, gray matter (GM), subcortical GM
and CSF were segmented from the co-registered 3DT1 volume
(MRtrix3)2 (Patenaude et al., 2011). 30 million streamlines
whole-brain anatomically constrained tractography (Smith
et al., 2012) was performed within MRtrix3, estimating fibers
orientation distribution with multi-shell multi-tissue constrained
spherical deconvolution (CSD) and using probabilistic streamline
tractography (Tournier et al., 2012). fMRI preprocessing was
carried out combining SPM123, FSL and MRtrix3 commands in
a custom MATLABR2019b script. Marchenko–Pastur principal
component analysis (MP-PCA) denoising (Ades-Aron et al.,
2020) was firstly performed, followed by slice-timing correction,
realignment, co-registration to the 3DT1 volume, polynomial
detrending, nuisance regression of 24 motion parameters (Friston
et al., 1996) and CSF temporal signal (Muschelli et al., 2014), and
temporal band-pass filtering (0.008–0.09 Hz).

1 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

2 http://www.mrtrix.org

3 https://www.fil.ion.ucl.ac.uk/spm
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Structural and functional connectivity

An ad hoc anatomical atlas in MNI (Montreal Neurological
Institute) space was created combining 93 cerebral (AAL)
(including cortical/subcortical structures) and 33 cerebellar (SUIT)
labels (Diedrichsen et al., 2009). We then performed a mapping
between our ad hoc atlas and the Buckner and Yeo (Buckner
et al., 2011; Thomas Yeo et al., 2011) cerebral and cerebellar
functional atlases to select the gray matter anatomical nodes of
six networks known to support specific functions: (i) integrative
networks: DMN, frontoparietal network (FPN), limbic network
(LN), and attention network (AN); (ii) motor and sensory
networks: visual network (VN) and somatomotor network (SMN)
(Figure 1). For each subject, the gray matter parcellation of
our combined anatomical atlas was applied to the whole-brain
tractography to extract a whole-brain structural connectivity (SC)
matrix, with the normalized number of streamlines as edges and
cortical/subcortical/cerebellar areas as nodes. The subset of nodes
defining each network and their connections were extracted from
whole-brain SC obtaining specific network SC matrices, used as
input to TVB (as detailed below). In addition, both static and
dynamic experimental FC (expFC and expFCD, respectively) were
reconstructed from rs-fMRI data for each of the six brain networks,
to capture not only synchronous fluctuations of BOLD signals but
also their spatiotemporal-dynamics during resting-state (Hansen
et al., 2015). The expFC matrix was created by extracting the
time-course of BOLD signals for each node and computing the
Pearson’s correlation coefficient (PCC) of the time-course of pairs
of atlas-defined brain regions. Matrix elements were converted with
a Fisher’s z transformation and thresholded at 0.1206 (Palesi et al.,
2020). FCD is the dynamic representation of FC over the time
and reflects time-variant changes of resting state recordings. To
obtain expFCD, expFC was computed over a sliding window of
40 s (expFCsw), shifted incrementally by 1 repetition time, which
for our data it means to have 178 expFCsw (Battaglia et al., 2020).
Then, each expFCsw was vectorized by considering the upper
triangular entries and the vectorized expFCsw were correlated with
each other generating the expFCD. Thus, expFCD was calculated
as a time-versus-time matrix, containing the Pearson correlation
between each expFCsw and all expFCsw, centered at all other time
points along the total acquisition window, quantifying, therefore,
time-evolving dynamics.

Virtual brain modeling

The TVB workflow [reported in Monteverdi et al. (2022)
for the whole brain] was applied to each one of the six
selected brain networks (Figure 2). The Wong-Wang neural
mass model (Deco et al., 2014; Supplementary Figure 1),
implemented with an optimized C code (Schirner et al., 2022), was
chosen to simulate local microcircuits activity, resulting from two
populations of interconnected excitatory and inhibitory neurons
coupled through NMDA and GABA receptor types. In our TVB
simulations, this neural mass model was associated to each node
of the network, while the SC matrix was used for the nodes
interconnection. A set of parameters had to be tuned globally
for each network: the global coupling (G), which is a scaling

factor that represents the connections strength, and three synaptic
parameters, i.e., the excitatory (NMDA) synapses (JNMDA), the
inhibitory (GABA) synapses (Ji), and the recurrent excitation
(w+). The neural activity simulated with TVB was fed into the
Balloon-Windkessel hemodynamic model (Stephan et al., 2007)
to reconstruct resting-state BOLD fMRI time-courses over 8 min
length and compute simulated FC (simFC) and FCD (simFCD).
Parameters were adjusted iteratively using expFC and expFCD of
each network as targets to optimize model fitness and the validity
of the result was assessed by iterating the optimization using
different initial conditions (Supplementary Figure 2; Good et al.,
2022). For the simFC vs. expFC comparison, model parameters
were tuned until the PCC between experimental and simulated
data reached the highest value. For the simFCD vs. expFCD
comparison, differences between experimental and simulated FCD
were assessed using the Kolmogorov–Smirnov (KS) distance: lower
KS values corresponded to a lower distance of frame-by-frame FCD
properties, meaning that model and experimental matrices were
closest to each other. Thus, to achieve the optimal TVB simulation
it was necessary to find both the highest PCC and the lowest
KS values. To this aim, an overall cost function was defined as
(1 − PCC) + KS and lowest cost function values implied the best
fit both to static and dynamic functional data (Kong et al., 2021).

Statistical analysis

Statistical tests were performed using SPSS software version
21. Optimal TVB parameters derived for each subject and for
each network were tested for normality (Shapiro–Wilk) and
then two control tests were performed to assess: (i) whether
different networks presented a different E/I balance within the
same clinical group (i.e., evaluation of the inter-network E/I
balance); and (ii) whether inter-networks E/I balance changed in
healthy vs. pathological subjects. Two statistical tests were used:
(i) univariate general linear model followed by bias-corrected
accelerated Bootstrap (Pek et al., 2018) to correct for age and gender
differences in the groups and take into account non-Gaussian data
distributions; and (ii) multivariate general linear model between
the mean difference (i.e., the difference between the mean value) of
TVB parameters in each network compared to the other networks
in different clinical groups. Then, a multiple regression analysis
was performed to investigate the relationship between individual
scores of the 5 cognitive domains (memory, language-fluency,
visuo-constructional abilities, attention, and executive functions)
and the optimal TVB parameters. Neuropsychological scores in
each cognitive domain were considered as dependent variables
while model parameters derived for each network were used as
predictors in a backward approach. The regression algorithm
automatically removed one or more predictors to identify which of
them significantly (p < 0.05) explained neuropsychological scores
variance.

Meaningful TVB parameters were given as an input to
clustering analysis. To avoid overfitting in the study design, the
clustering algorithm first performed a feature selection reducing
the number of TVB parameters (i) through a semi-supervised
approach using LASSO regression model with TVB parameters
as independent variables and the diagnostic class as dependent
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FIGURE 1

Brain networks. The six networks considered for modeling brain dynamics with The Virtual Brain (TVB): default-mode (DMN), frontoparietal (FPN),
limbic (LN), attention (AN), visual (VN), and somatomotor (SMN) network. These networks were defined according to Buckner and Yeo atlases and
extracted from whole-brain structural connectivity matrices of each subject, choosing a subset of nodes and connections from the whole brain
parcellation. Nodes and edges considered for each network are differently colored.

variable; (ii) via PCC between the survived TVB parameters and the
diagnostic class; (iii) through Variant Inflation Factors to find out
just three meaningful but not correlated features. Then the number
of clusters was derived using Gap statistics and the K-means
algorithm was applied to label each subject into one cluster defining
a personalized fingerprint (Redolfi et al., 2020).

Code and data accessibility
All codes used for this study are open source. The optimized

TVB C code can be found at https://github.com/BrainModes/fast_
tvb. The dataset will be made available at 10.5281/zenodo.811392.

Results

E/I balance in brain networks

Model optimization was performed in each of the six
brain networks considered in this work. Global coupling (G)
and mesoscopic network parameters (Ji, JNMDA, and w+) were
adjusted iteratively to fit the experimental data. The reliability
of the procedure was assessed by an extensive exploration of
the parameter space and by iterating the optimization using
different initial conditions (Supplementary Figure 2; Good et al.,
2022). Model optimization yielded subject-specific sets of model
parameters describing connectivity and E/I balance in each

network. TVB parameters revealed differences between networks
of healthy and pathological subjects (Supplementary Figure 3 and
Supplementary Table 2) that will be further analyzed and explained
below.

Differences of E/I balance between
pathological groups

The mean difference of each network compared to the others
was computed in different clinical groups for all the TVB
parameters (i.e., G, Ji, JNMDA, and w+). Significant mean difference
changes were found both for the TVB parameters in several
networks (Figure 3) with network changes summarized in Figure 4.
In particular, both in AD and FTD, the connectivity strength (G)
decreased in LN and increased in DMN compared to HC; in FTD,
G of FPN was lower with respect to other networks. Considering
mesoscale synaptic parameters, both FTD and AD showed lower
excitatory coupling (JNMDA) in SMN compared to HC; in FTD,
JNMDA was lower in VN and higher in FPN; in AD, JNMDA in DMN
was higher with respect to other networks. Both in AD and FTD,
recurrent excitation (w+) increased in SMN compared to HC; in
FTD, w+ was lower in FPN; in AD w+ was lower in DMN with
respect to other networks. In FTD, inhibitory coupling (Ji) was
lower in FPN and higher in DMN; in AD, AN showed higher Ji
and LN lower Ji with respect to other networks.
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FIGURE 2

Analysis and modeling workflow. Schematic representation of MRI processing steps integrated in the modeling workflow. From top left, clockwise:
diffusion-weighted images after preprocessing and tractography, extraction of a network, structural connectivity (SC) matrix reconstruction for the
selected network, TVB simulation performed for the network, reconstruction of simulated static and dynamic (simFC and simFCD) functional
connectivity matrices of the same network, optimization of the simulation using model inversion with the experimental FC and FCD (expFC and
expFCD), derived from BOLD signals of nodes belonging to the network, as target. Optimal TVB simulation implies both the highest Pearson
correlation coefficient (PCC) for static functional data and the lowest Kolmogorov–Smirnov (KS) distance for dynamic functional data.

Clinical relevance of TVB parameters

To assess the significance of the observed mean difference
changes in TVB parameters, these were used in backward
regression to explain the variation of scores associated to different
neuropsychological domains assessed in patients. Network-specific
levels of global coupling, excitatory coupling, inhibitory coupling,
and recurrent excitation (predictors) significantly (p < 0.05)
explained a percentage of variance in the cognitive domains, in
which the network is involved (Table 1). The explained variance
ranged from∼20 to∼45%. Therefore, the mean difference changes
in TVB parameters were relevant to explain the neuropsychological
performance of patients.

Patients’ labeling according to network
properties

The TVB parameters that significantly explained the
neuropsychological performance were considered for patients’

labeling using machine learning strategies. From the nineteen
parameters identified with backward regression (Table 1) the
LASSO algorithm allowed to reduce them to six. Then, G of FPN
was excluded, presenting PCC <0.1, and after Variant Inflation
Factors three independent and not correlated variables were
considered as the most informative features to perform patient’s
labeling: Ji of AN, G of the LN and G of the DMN. Gap statistics
identified that seven homogeneous classes would be appropriate
and the K-means assigned each subject to one of the seven
clusters. Each of the identified clusters was characterized by a
specific composition of TVB network features (Figure 5A and
Supplementary Figure 4). Considering the biophysical meaning
of each parameter, they could be described as follows:

1. Cluster 0 and cluster 3 were mainly characterized by low
connectivity strength of LN, high connectivity strength of
DMN and hyperinhibition in AN;

2. Cluster 1 and cluster 4 were mainly characterized by high
connectivity strength of LN, low connectivity strength of
DMN and low inhibition in AN;
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FIGURE 3

Changes of inter-network relationship. Mean difference of TVB parameters in each given network (DMN, FPN, LN, AN, VN, and SMN) against the
others. Positive/negative values indicate a higher/lower TVB parameter mean in a network (on the x-axis) with respect to the TVB parameter mean in
the others (line at mean difference 0). Asterisks indicate significant differences (p < 0.05) between clinical groups (HC, FTD, and AD).

3. Cluster 5 and cluster 6 were mainly characterized by high
connectivity strength of LN, high connectivity strength of
DMN and low inhibition in AN;

4. Cluster 2 was mainly characterized by low connectivity of LN,
low connectivity strength of DMN and hyperinhibition in AN.

Clusters 0 and 3 were associated with the lowest mean
MMSE values (20.39 ± 5.21 and 18.57 ± 8.28, respectively)
while clusters 1 and 4 were associated with the highest mean
values (29.08 ± 1.14 and 29.33 ± 1.16, respectively) (Figure 5B
and Table 2). No HC was classified into clusters 0 or 3.
Moreover, different disease phenotypes were distributed amongst
the clusters (Figure 5B): typical AD subjects spread through
clusters supporting a heterogeneous distribution of connectivity
values in the LN and DMN networks and inhibition of the AN,
but no AD patient was found in cluster 1 and the single AD
patient belonging to cluster 4 presented a high MMSE score; on
the other hand, cluster 0 contained the DLB phenotype, cluster
1 both the non-amnesic variants of AD (ADlv and ADpca),
cluster 3 the logopenic variant and the CBS characterized by
low MMSE values and cluster 5 contained the frontal variant.
Considering the FTD group, FTDbv were heterogeneous and

distributed amongst different clusters, but no FTDbv were found
in cluster 3. On the other hand, cluster 0 contained PPAsv and
cluster 5 PPAnf. Finally, pharmacological assessment of subjects
belonging to different groups indicated that the majority of subjects
following an antidepressant or anxiolytic treatment belonged to
cluster 0 or 1 (Table 2). In particular, subjects belonging to cluster
0 were following an antidepressant therapy mainly with selective
serotonin reuptake inhibitors (SSRIs), with the exception of one
patient, treated with vortioxetine. Patients belonging to cluster 1,
instead, were taking antidepressant drugs different from SSRIs,
such as tricyclic antidepressants (e.g., amitriptyline) and serotonin-
norepinephrine reuptake inhibitors (e.g., duloxetine), apart from
one HC belonging to this group who was found to be on a SSRIs
treatment.

Discussion

In this work we have generated virtual brain models of
dementia patients and simulated neural dynamics of brain
networks. The main result is the emergence of specific patterns
of alteration in DMN, FPN, and LN, which allow to differentiate
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FIGURE 4

Pathological impact on inter-network relationships. Inter-network (DMN, FPN, LN, AN, VN, and SMN) relationship patterns related to
neurodegeneration are summarized in the tables. The increase (yellow) or decrease (blue) of network TVB parameters (G, global coupling; J_NMDA,
excitatory coupling; w+, recurrent synaptic excitation; Ji, inhibitory coupling) is indicated with colored arrows.

TABLE 1 Backward regressions results.

Networks Variable
(neuropsychology)

Predictors
(TVB-parameters)

Explained variance
(%)

Significance

Visual Memory J_NMDA 21.3 0.027

Language-fluency w+, Ji 30.1 0.028

Somatomotor Visuo-constructional Ji 21.3 0.030

Attention Memory w+, J_NMDA, Ji 33.4 0.047

Limbic Memory Ji 21.5 0.026

Attention w+, G, J_NMDA 42.0 0.030

Frontoparietal Visuo-constructional w+, G, J_NMDA, Ji 45.7 0.027

Executive function J_NMDA 21.3 0.027

DMN Language-fluency G, J_NMDA, Ji 39.1 0.022

The variance explained by the parameters used in backward regressions is calculated with theR2 index. Significant threshold is set at p< 0.05. For each cognitive domain a different combination
of features significantly explains a percentage of the variance (ANOVA).

AD from FTD. Inter-subject differences, matching the individual
neuropsychological profiles and pharmacological treatment,
suggest that this approach can generate personalized fingerprints
of the disease that could be used to set up future stratification and
interventional strategies.

Average model parameters in brain
networks of AD and FTD

In a first analysis, we compared AD and FTD for their
average network model parameters. Model parameters markedly
differentiated the mechanisms underlying brain networks

dynamics in AD and FTD, with the most typical changes being
concentrated in the DMN and LN of AD and in the FPN of FTD.

Integrative networks
Global coupling

In both pathologies, G increased in DMN and decreased in LN,
while it decreased in FPN in FTD only. It is worth noting that, in
these simulations, G represents the overall strength of connections
between nodes inside a specific brain network. Moreover, G derives
from dynamic TVB analysis and not from functional analysis on
fMRI data (Deco et al., 2012), providing new insights into brain
connectivity that do not necessarily compare to previously reported
connectivity alterations.
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FIGURE 5

Clustering analysis. (A) Visual representation of the seven clusters (in different colors) identified with K-means analysis using the most meaningful
TVB biophysical parameters as input variables. Cognitive network properties (Ji in AN, G in LN, and G in DMN) were considered as the most
informative features to perform patient labeling and each of the identified clusters was characterized by a combination of low and high TVB-derived
optimal parameters. Each dot represents a subject and lines connect subjects to their own cluster centroid. (B) Each subject was assigned to one of
the seven clusters (HC, healthy control; AD, typical Alzheimer’s disease; ADlv, AD logopenic variant; ADfv, AD frontal variant; ADpca, AD posterior
cortical atrophy; CBS, corticobasal syndrome; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; FTDbv, FTD behavioral; PPAnf,
primary progressive aphasia non-fluent variant; PPAsv, primary progressive aphasia semantic variant) identifying a personalized fingerprint based on
cognitive network properties. Each dot represents a subject and lines connect subjects to their own cluster centroid. The dot dimension
corresponds to the MMSE value.
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TABLE 2 Mini-mental state examination (mean, SDs) and ongoing pharmacological treatment.

Group Cluster MMSE Antidepressants Anxiolytics

PPA sv 0 20.35 (5.21) Vortioxetine + mirtazapine

FTD bv Fluoxetine

AD

DLB Citalopram + quetiapine Clonazepam

AD lv 1 29.08 (1.14) Duloxetine

FTD bv Vortioxetine

HC

HC

HC Fluvoxamine Lorazepam + lormetazepam + amisulpride

HC

ADpca Amitriptyline

AD 2 25.04 (2.84)

FTD bv

AD Venlafaxine

AD

AD lv 3 18.57 (8.28)

AD

AD cbs Alprazolam

AD 4 29.33 (1.16)

HC

HC

PPA nf 5 27.50 (3.43)

HC

HC

AD Bupropion + paroxetine

AD fv

FTD bv 6 24.40 (5.60)

AD

FTD bv

HC

HC

AD

AD

In late onset AD there is meta-analytic evidence for a
progressive decline of DMN FC, in particular in the posterior
component (precuneus, posterior cingulate cortex) (Jones et al.,
2016). Increased FC between the posterior DMN and high
connectivity hubs, mainly located in the frontal lobes, has been
reported in the prodromal stages (Jones et al., 2016). The present
observation of increased G in DMN reflects hyper synchronicity, a
state in which complexity is reduced along with mutual information
transfer among the nodes (Borst and Theunissen, 1999). This
concept, deriving from dynamic system theory, is clearly at odd
with the common belief that stronger connectivity might represent
compensation, leading to the conclusion that a phase-locked
hypersynchronous network can perform very limited computations

(Deco et al., 2012; Castellazzi et al., 2014). Consistent with
this hypothesis is the finding of diffused increase of spectral
power in the EEG delta band of AD patients (Babiloni et al.,
2015).

Decreased FC inside LN and from LN nodes to neighboring
regions has been associated with deterioration of memory and
emotional functions (Cai et al., 2017). In FTDbv, a functional
disconnection between frontal and limbic areas and an increased
FC between DMN regions have been proposed as the probable
correlates of apathy and stereotypic behavior (Zhou et al., 2010;
Reyes et al., 2018). The decreased G within LN and FPN may be
also very detrimental, leading to a reduction of computational states
(Deco et al., 2012; Zimmermann et al., 2018).
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Synaptic parameters

Another typical pattern differentiating AD from FTD emerged
from synaptic parameters. Akin with neuropathology, the major
AD changes were detected in DMN, while FTD changes mainly
occurred in FPN. DMN showed increased excitatory coupling
(JNMDA) and reduced recurrent excitation (w+) in AD, while it
showed increased inhibitory coupling (Ji) in FTD. FPN showed
no changes at all in AD but it showed a complex set of changes
in FTD, including increased JNMDA, reduced w+ and reduced Ji.
LN showed reduced Ji in AD. Therefore, the E/I balance, which
remarkably impacts on brain dynamics (Deco et al., 2014), was
altered in different brain networks, further differentiating AD and
FTD.

We can just speculate about the meaning of these changes
since information on synaptic parameters in AD and FTD
pathologies is sparse. The increased JNMDA in DMN may support
the hyperexcitability supposed to explain cognitive impairment
in AD (Palop and Mucke, 2016). Local hyperexcitability in the
DMN was observed in previous studies, despite a net decrease
in inhibitory and excitatory synaptic proteins (Lauterborn et al.,
2021; Tok et al., 2021). The reduced Ji of the LN may support the
limbic disinhibition reported in AD, which has been associated with
a loss of GABAergic receptors (Jiménez-Balado and Eich, 2021).
The reduced Ji of the FPN is consistent with the reduction of
GABA concentration reported in FTD, which has been associated
with behavioral disinhibition (Murley et al., 2021). Our simulations
also predict overinhibition in the DMN of FTD, which provides a
further differentiation with AD, where inhibition is not changed
while excitation is enhanced. DMN has recently been suggested to
take part in FTD pathophysiology (Pini et al., 2022). Therefore, the
patterns of synaptic changes captured by our study prompts for
further experimental and model analysis of synaptic alterations in
microcircuits of the AD and FTD brain.

Motor and sensory networks
Both in AD and FTD, the SMN showed reduced JNMDA

and increased w+. Although the impairment of GABAergic and
glutamatergic systems in the motor and sensory networks still
needs to be clarified, it should be noted that motor dysfunctions
are known to occur in both AD and FTD (Burrell et al., 2011;
Lorenzi et al., 2020). In AD, a reduced motor cortex excitability
has been reported in mild cognitive impairment (Ferreri et al.,
2021), suggesting that these parameters may change along the
evolution of the disease. In FTD, motor circuit abnormalities have
been suggested to depend on altered glutamatergic transmission
(Benussi et al., 2020). Interestingly, in FTD abnormalities of
oculomotor functions have been reported (Russell et al., 2021),
which might be linked not only to SMN impairment, but also to
a more extended involvement of VN, as supported by our results.

The relationship between network
neurophysiology and neuropsychology

Model parameters for individual subjects were correlated
with behavioral observations. Global coupling and synaptic
parameters of each network significantly contributed to explain
neuropsychological scores in specific cognitive domains: LN, AN,

and VN with memory; DMN and VN with language-fluency;
LN with attention; SMN and FPN with visuo-constructional
performance; FPN with executive functions. This evidence is in line
with several reports on the importance of motor regions in visuo-
constructional performance (Chen et al., 2016), the contribution
of AN and limbic areas in memory (Epelbaum et al., 2018),
the relevance of frontoparietal areas for executive and visuo-
constructional control (Melrose et al., 2013; Dixon et al., 2018),
the role of DMN integration for semantic fluency (Jockwitz et al.,
2017), and the involvement of visual structures in memory and
language-fluency (Kucewicz et al., 2019; Vonk et al., 2019).

Thus, the relationship between neurophysiological parameters
in brain networks and neuropsychological scores, which has not
been investigated before, provides new cues for understanding the
physiopathology of AD and FTD.

Toward personalized fingerprints of AD
and FTD patients

The most meaningful model biomarkers for patient’s labeling
were G in DMN, G in LN, Ji in AN, consistent with known
salient aspects of dementia affecting the ability of daydreaming
(DMN), emotional control (LN) and attention (AN). Subjects were
found to be distributed between seven different clusters revealing
correspondence with their cognitive status (assessed with MMSE)
and pharmacological treatment.

Patients with different MMSE scores tended to populate
different clusters (see Figure 5), broadly separating patients from
HC (MMSE >30), highlighting the importance of DMN, LN,
and AN connectivity strength and E/I balance to ensure healthy
cognitive function. Interestingly, high G between DMN nodes is
associated with a worse performance, being hence disruptive and
not compensatory. This analysis suggests that the heterogeneity of
subject-specific TVB parameters is able to identify AD “subtypes”
(Pini et al., 2021; Rauchmann et al., 2021) and FTD variants.
Indeed, subjects belonging to atypical forms of AD and FTD
variants were assigned to different clusters, capturing specific
aspects of these pathologies and mostly mapping clinical severity
assessed with MMSE. A finer grained analysis based on clinical
phenotypes is not currently possible, given the limited sample size.

Patients’ labeling based on TVB parameters correlated with
pharmacological treatment. Most subjects belonging to clusters
0 and 1 were on antidepressant or anxiolytic treatment (cf.
Table 2), which may influence the connectivity strength and the
E/I balance of cognitive networks. The effect of SSRIs on LN
and DMN FC is increasingly recognized (Van Wingen et al.,
2014; Li et al., 2021), while the effect of antidepressant treatment
with molecules different from SSRIs, such as vortioxetine, tricyclic
molecules or SNRIs (Pérez et al., 2018), as well as the influence
of antidepressants on GABA and glutamate levels needs further
assessment (Spurny et al., 2021). Considering that patients treated
with SSRIs belong to cluster 0 while patients treated with
other antidepressant classes belong to cluster 1, our results
pose a very intriguing question: is there an opposite impact
on cognitive networks exerted by antidepressants with different
mechanisms of action or does the cognitive networks profile
determine pharmacological treatment response? Future work
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should study TVB parameters longitudinally pre-post treatment
to answer this important question with major potential clinical
impact.

It should be noted that, in our cohort, patients were not treated
with NMDA receptor antagonists (like memantine) (Robinson and
Keating, 2006) or acetylcholinesterase inhibitors (like galantamine,
rivastigmine, and donepezil) (Marucci et al., 2021), which are also
known to act on AD pathophysiology. NMDA receptors are main
triggers of synaptic plasticity, also affected by excitotoxicity and
cholinergic receptors that, in turns, act on learning (Waxman
and Lynch, 2005; Hasselmo, 2006). Since in the Wong–Wang
neural mass model JNMDA is mostly related to slow synaptic
mechanisms driven by NMDA receptors (Deco et al., 2014)
and receptor density can be remapped onto TVB through
parameterization (Deco et al., 2021), an assessment of these
receptor-dependent properties could be an important development
in future studies.

Study considerations

The small sample size can be seen as a potential limitation in
the present study. However, the main aim of this investigation was
to assess the ability of TVB to provide a personalized fingerprint
of patients, potentially beyond known diagnosis. TVB modeling
provides a set of physiological features at single subject level,
otherwise not available from standard signal/image acquisition
and analysis. Thus, the small sample size does not impact on
the TVB ability of uncovering subject-specific features of FC,
and E/I profile. The high correlation of TVB parameters with
both cognitive performance and pharmacological treatment reveals
indeed its exquisite sensitivity to single-subject profiles and opens
a broad range of prospective for clinical applications. On the
other hand, the application of TVB to a larger cohort of patients
bears the potential of improving disease classification of disease
subtypes, critical for treatment stratification and for establishing
intervention workflows.

Conclusion

The present study demonstrates that brain networks can be
characterized in terms of a meaningful set of mesoscale parameters
at the single-subject level in humans in vivo. The identification
of network abnormalities in patients may be used to design
neuromodulation, neuropharmacological, and neuropsychological
paradigms capable of regulating circuit function and plasticity (Lin
and Wang, 2018), while the high correlation of TVB parameters
with both cognitive performance and pharmacological treatment
reveals an exquisite sensitivity to single-subject features. As a
corollary, it should be remembered that the small sample size
does not impact significantly on the TVB capacity of uncovering
subject-specific connectivity strength, and E/I profile. At present, it
is unclear whether network properties in this study are influenced
by therapy suggesting that future studies should systematically
address this issue. In aggregate, TVB parameters are shedding light
on the changes occurring inside the brain networks of AD and
FTD patients opening new perspectives for understanding disease

mechanisms and for designing personalized neuromodulation,
neuropharmacological and neuropsychological paradigms.

Data availability statement

All codes used for this study are open source. The optimized
TVB C code can be found at https://github.com/BrainModes/fast_
tvb. The dataset is available at https://zenodo.org/record/8113922.

Ethics statement

The studies involving human participants were reviewed
and approved by the Local Ethical Committee of the IRCCS
Mondino Foundation. The patients/participants provided their
written informed consent to participate in this study.

Author contributions

MC and AC: patients’ recruitment and clinical assessment.
LF, AP, and LM: MRI recordings. FC: neuropsychological testing.
AR, AM, FP, and MS: data analysis. AM, FP, MM, FA, ED’A,
and CG: TVB modeling and simulation. CG and FP: MRI theory
and protocol design. MS, VJ, and PR: TVB support. SC, AC, and
MC: neurological support. AM, ED’A, and FP: manuscript writing.
ED’A, CG, and FP: work coordination and manuscript finalization.
All authors had contributed to manuscript discussion and approved
the final version of the manuscript.

Funding

The work performed at the IRCCS Mondino Foundation
was supported by the Italian Ministry of Health (RC2022-
RC2024). The work performed at the University of Pavia was
supported by H2020 Research and Innovation Action Grants
Human Brain Project 785907 and 945539 (SGA2 and SGA3)
to ED’A, FP, and PR. Moreover, the project was supported
by the MNL Project “Local Neuronal Microcircuits” of the
Centro Fermi (Rome, Italy), #NEXTGENERATIONEU (NGEU)
and funded by the Ministry of University and Research (MUR),
the National Recovery and Resilience Plan (NRRP), project
IR00011-EBRAINS-Italy to ED’A; Horizon2020 [Research and
Innovation Action Grants Human Brain Project 945539 (SGA3)],
BRC (#BRC704/CAP/CGW), MRC (#MR/S026088/1), Ataxia UK
to CW-K; PR acknowledges Digital Europe Grant TEF-Health
#101100700; H2020 Research and Innovation Action Grant Human
Brain Project (ICEI 800858, EOSC VirtualBrainCloud 82642, AISN
101057655); H2020 Research Infrastructures Grant (EBRAINS-
PREP 101079717, EBRAIN-Health 101058516); H2020 European
Innovation Council (PHRASE 101058240); H2020 European
Research Council Grant (ERC BrainModes 683049); JPND ERA
PerMed PatternCog 2522FSB904; Berlin Institute of Health and
Foundation Charité; Johanna Quandt Excellence Initiative; and
German Research Foundation (SFB 1436, project ID 425899996;

Frontiers in Aging Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1204134
https://github.com/BrainModes/fast_tvb
https://github.com/BrainModes/fast_tvb
https://zenodo.org/record/8113922
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1204134 July 26, 2023 Time: 10:37 # 13

Monteverdi et al. 10.3389/fnagi.2023.1204134

SFB 1315, project ID 327654276; SFB 936, project ID 178316478;
and SFB-TRR 295, project ID 424778381).

Acknowledgments

This manuscript has been released as a Pre-Print at BioRxiv
(Monteverdi et al., 2023).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnagi.2023.
1204134/full#supplementary-material

References

Ades-Aron, B., Lemberskiy, G., Veraart, J., Golfinos, J., Fieremans, E., Novikov, D. S.,
et al. (2020). Improved task-based functional MRI language mapping in patients with
brain tumors through marchenko-pastur principal component analysis denoising.
Radiology 298, 365–373. doi: 10.1148/RADIOL.2020200822

Aerts, H., Schirner, M., Jeurissen, B., Van Roost, D., Achten, E., Ritter, P., et al.
(2018). Modeling brain dynamics in brain tumor patients using the virtual brain.
eNeuro 5:ENEURO.0083-18.2018. doi: 10.1523/ENEURO.0083-18.2018

Andersson, J. L. R., and Sotiropoulos, S. N. (2016). An integrated approach to
correction for off-resonance effects and subject movement in diffusion MR imaging.
Neuroimage 125, 1063–1078. doi: 10.1016/j.neuroimage.2015.10.019

Arnemann, K. L., Stöber, F., Narayan, S., Rabinovici, G. D., and Jagust, W. J. (2018).
Metabolic brain networks in aging and preclinical Alzheimer’s disease. NeuroImage
Clin. 17, 987–999. doi: 10.1016/j.nicl.2017.12.037

Babiloni, C., Del Percio, C., Boccardi, M., Lizio, R., Lopez, S., Filippo, C., et al.
(2015). Occipital sources of resting state alpha rhythms subjects with amnesic mild
cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 36, 556–570. doi:
10.1016/j.neurobiolaging.2014.09.011

Battaglia, D., Boudou, T., Hansen, E. C. A., Lombardo, D., Chettouf, S.,
Daffertshofer, A., et al. (2020). Dynamic functional connectivity between order
and randomness and its evolution across the human adult lifespan. Neuroimage
222:117156. doi: 10.1016/j.neuroimage.2020.117156

Benussi, A., Dell’Era, V., Cantoni, V., Cotelli, M. S., Cosseddu, M., Spallazzi, M.,
et al. (2020). TMS for staging and predicting functional decline in frontotemporal
dementia. Brain Stimul. 13, 386–392. doi: 10.1016/j.brs.2019.11.009

Borst, A., and Theunissen, F. (1999). Information theory and neural networks.North
Holl. Math. Libr. 51, 307–340. doi: 10.1016/S0924-6509(08)70042-4

Buckner, R. L., Krienen, F. M., Castellanos, A., Diaz, J. C., and Thomas Yeo, B. T.
(2011). The organization of the human cerebellum estimated by intrinsic functional
connectivity. J. Neurophysiol. 106, 2322–2345. doi: 10.1152/jn.00339.2011

Burrell, J. R., Kiernan, M. C., Vucic, S., and Hodges, J. R. (2011). Motor neuron
dysfunction in frontotemporal dementia. Brain 134, 2582–2594. doi: 10.1093/brain/
awr195

Cai, S., Chong, T., Peng, Y., Shen, W., Li, J., von Deneen, K. M., et al. (2017). Altered
functional brain networks in amnestic mild cognitive impairment: A resting-state
fMRI study. Brain Imaging Behav. 11, 619–631. doi: 10.1007/s11682-016-9539-0

Capitani, E., and Laiacona, M. (1997). Composite neuropsychological batteries
and demographic correction: Standardization based on equivalent scores, with a
review of published data. J. Clin. Exp. Neuropsychol. 19, 795–809. doi: 10.1080/
01688639708403761

Castellazzi, G., Palesi, F., Casali, S., Vitali, P., Wheeler-Kingshott, C. A. M.,
Sinforiani, E., et al. (2014). A comprehensive assessment of resting state networks:
Bidirectional modification of functional integrity in cerebro-cerebellar networks in
dementia. Front. Neurosci. 8:223. doi: 10.3389/fnins.2014.00223

Chen, H., Pan, X., Lau, J. K. L., Bickerton, W. L., Pradeep, B., Taheri, M., et al. (2016).
Lesion-symptom mapping of a complex figure copy task: A large-scale PCA study of
the BCoS trial. NeuroImage Clin. 11, 622–634. doi: 10.1016/j.nicl.2016.04.007

D’Angelo, E. D., and Jirsa, V. (2022). The quest for multiscale brain modeling.
Trends Neurosci. 45, 777–790. doi: 10.1016/j.tins.2022.06.007

Deco, G., Jirsa, V., and Friston, K. J. (2012). “The dynamical and structural basis
of brain activity,” in Principles of brain dynamics: Global state interactions, eds M. I.
Rabinovich, K. J. Friston, and P. Varona (Cambridge, MA: MIT Press), doi: 10.7551/
mitpress/9108.003.0003

Deco, G., Kringelbach, M. L., Arnatkeviciute, A., Oldham, S., Sabaroedin, K.,
Rogasch, N. C., et al. (2021). Dynamical consequences of regional heterogeneity in
the brain’s transcriptional landscape. Sci. Adv. 7:eabf4752. doi: 10.1126/sciadv.abf4752

Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. L., Mantini, D., and
Corbetta, M. (2014). How local excitation-inhibition ratio impacts the whole brain
dynamics. J. Neurosci. 34, 7886–7898. doi: 10.1523/JNEUROSCI.5068-13.2014

Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., and Ramnani, N. (2009).
A probabilistic MR atlas of the human cerebellum. Neuroimage 46, 39–46. doi:
10.1016/j.neuroimage.2009.01.045

Dixon, M. L., De La Vega, A., Mills, C., Andrews-Hanna, J., Spreng, R. N., Cole,
M. W., et al. (2018). Heterogeneity within the frontoparietal control network and its
relationship to the default and dorsal attention networks. Proc. Natl. Acad. Sci. U.S.A.
115, E1598–E1607. doi: 10.1073/pnas.1715766115

Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow,
K., et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: The
IWG-2 criteria. Lancet Neurol. 13, 614–629. doi: 10.1016/S1474-4422(14)70090-0

Epelbaum, S., Bouteloup, V., Mangin, J. F., La Corte, V., Migliaccio, R., Bertin, H.,
et al. (2018). Neural correlates of episodic memory in the Memento cohort. Alzheimers
Dement. 4, 224–233. doi: 10.1016/j.trci.2018.03.010

Falcon, M. I., Riley, J. D., Jirsa, V., McIntosh, A. R., Chen, E. E., and Solodkin,
A. (2016). Functional mechanisms of recovery after chronic stroke: Modeling with
the virtual brain. eNeuro 3:ENEURO.0158-15.2016. doi: 10.1523/ENEURO.0158-15.
2016

Ferreri, F., Guerra, A., Vollero, L., Ponzo, D., Määtta, S., Könönen, M., et al. (2021).
TMS-EEG biomarkers of amnestic mild cognitive impairment due to Alzheimer’s
disease: A proof-of-concept six years prospective study. Front. Aging Neurosci.
13:737281. doi: 10.3389/fnagi.2021.737281

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., and Turner, R. (1996).
Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355. doi:
10.1002/mrm.1910350312

Good, T., Schirner, M., Shen, K., Ritter, P., Mukherjee, P., Levine, B., et al. (2022).
Personalized connectome-based modeling in patients with semi-acute phase TBI:
Relationship to acute neuroimaging and 6 month follow-up. eNeuro 9:ENEURO.0075-
21.2022. doi: 10.1523/ENEURO.0075-21.2022

Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa,
S. F., et al. (2011). Classification of primary progressive aphasia and its variants.
Neurology 76, 1006–1014. doi: 10.1212/WNL.0b013e31821103e6

Graff-Radford, J., Yong, K. X. X., Apostolova, L. G., Bouwman, F. H., Carrillo,
M., Dickerson, B. C., et al. (2021). New insights into atypical Alzheimer’s disease
in the era of biomarkers. Lancet Neurol. 20, 222–234. doi: 10.1016/S1474-4422(20)
30440-3

Hansen, E. C. A., Battaglia, D., Spiegler, A., Deco, G., and Jirsa, V. K.
(2015). Functional connectivity dynamics: Modeling the switching behavior of
the resting state. Neuroimage 105, 525–535. doi: 10.1016/j.neuroimage.2014.
11.001

Frontiers in Aging Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1204134
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1204134/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1204134/full#supplementary-material
https://doi.org/10.1148/RADIOL.2020200822
https://doi.org/10.1523/ENEURO.0083-18.2018
https://doi.org/10.1016/j.neuroimage.2015.10.019
https://doi.org/10.1016/j.nicl.2017.12.037
https://doi.org/10.1016/j.neurobiolaging.2014.09.011
https://doi.org/10.1016/j.neurobiolaging.2014.09.011
https://doi.org/10.1016/j.neuroimage.2020.117156
https://doi.org/10.1016/j.brs.2019.11.009
https://doi.org/10.1016/S0924-6509(08)70042-4
https://doi.org/10.1152/jn.00339.2011
https://doi.org/10.1093/brain/awr195
https://doi.org/10.1093/brain/awr195
https://doi.org/10.1007/s11682-016-9539-0
https://doi.org/10.1080/01688639708403761
https://doi.org/10.1080/01688639708403761
https://doi.org/10.3389/fnins.2014.00223
https://doi.org/10.1016/j.nicl.2016.04.007
https://doi.org/10.1016/j.tins.2022.06.007
https://doi.org/10.7551/mitpress/9108.003.0003
https://doi.org/10.7551/mitpress/9108.003.0003
https://doi.org/10.1126/sciadv.abf4752
https://doi.org/10.1523/JNEUROSCI.5068-13.2014
https://doi.org/10.1016/j.neuroimage.2009.01.045
https://doi.org/10.1016/j.neuroimage.2009.01.045
https://doi.org/10.1073/pnas.1715766115
https://doi.org/10.1016/S1474-4422(14)70090-0
https://doi.org/10.1016/j.trci.2018.03.010
https://doi.org/10.1523/ENEURO.0158-15.2016
https://doi.org/10.1523/ENEURO.0158-15.2016
https://doi.org/10.3389/fnagi.2021.737281
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1523/ENEURO.0075-21.2022
https://doi.org/10.1212/WNL.0b013e31821103e6
https://doi.org/10.1016/S1474-4422(20)30440-3
https://doi.org/10.1016/S1474-4422(20)30440-3
https://doi.org/10.1016/j.neuroimage.2014.11.001
https://doi.org/10.1016/j.neuroimage.2014.11.001
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1204134 July 26, 2023 Time: 10:37 # 14

Monteverdi et al. 10.3389/fnagi.2023.1204134

Hassan, A., Whitwell, J. L., and Josephs, K. A. (2011). The corticobasal syndrome-
Alzheimer’s disease conundrum. Expert. Rev. Neurother. 11, 1569–1578. doi: 10.1586/
ern.11.153

Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Curr.
Opin. Neurobiol. 16, 710–715. doi: 10.1016/j.conb.2006.09.002.The

Hohenfeld, C., Werner, C. J., and Reetz, K. (2018). Resting-state connectivity in
neurodegenerative disorders: Is there potential for an imaging biomarker?NeuroImage
Clin. 18, 849–870. doi: 10.1016/j.nicl.2018.03.013

Jiménez-Balado, J., and Eich, T. S. (2021). GABAergic dysfunction, neural network
hyperactivity and memory impairments in human aging and Alzheimer’s disease.
Semin. Cell Dev. Biol. 116, 146–159. doi: 10.1016/j.semcdb.2021.01.005

Jirsa, V. K., Proix, T., Perdikis, D., Woodman, M. M., Wang, H., Bernard, C., et al.
(2017). The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy
spread. Neuroimage 145, 377–388. doi: 10.1016/j.neuroimage.2016.04.049

Jockwitz, C., Caspers, S., Lux, S., Jütten, K., Schleicher, A., Eickhoff, S. B., et al.
(2017). Age- and function-related regional changes in cortical folding of the default
mode network in older adults. Brain Struct. Funct. 222, 83–99. doi: 10.1007/s00429-
016-1202-4

Jones, D. T., Knopman, D. S., Gunter, J. L., Graff-Radford, J., Vemuri, P., Boeve,
B. F., et al. (2016). Cascading network failure across the Alzheimer’s disease spectrum.
Brain 139, 547–562. doi: 10.1093/brain/awv338

Kong, X., Kong, R., Orban, C., Wang, P., Zhang, S., Anderson, K., et al. (2021).
Sensory-motor cortices shape functional connectivity dynamics in the human brain.
Nat. Commun. 12:6373. doi: 10.1038/s41467-021-26704-y

Kucewicz, M. T., Saboo, K., Berry, B. M., Kremen, V., Miller, L. R., Khadjevand,
F., et al. (2019). Human verbal memory encoding is hierarchically distributed in
a continuous processing stream. eNeuro 6:ENEURO.0214-18.2018. doi: 10.1523/
ENEURO.0214-18.2018

Lauterborn, J. C., Scaduto, P., Cox, C. D., Schulmann, A., Lynch, G., Gall, C. M., et al.
(2021). Increased excitatory to inhibitory synaptic ratio in parietal cortex samples from
individuals with Alzheimer’s disease. Nat. Commun. 12:2603. doi: 10.1038/s41467-
021-22742-8

Leyton, C. E., and Hodges, J. R. (2010). Frontotemporal dementias: Recent advances
and current controversies. Ann. Indian Acad. Neurol. 13, S74–S80. doi: 10.4103/0972-
2327.74249

Li, L., Su, Y. A., Wu, Y. K., Castellanos, F. X., Li, K., Li, J. T., et al. (2021).
Eight-week antidepressant treatment reduces functional connectivity in first-episode
drug-naïve patients with major depressive disorder. Hum. Brain Mapp. 42, 2593–2605.
doi: 10.1002/hbm.25391

Lin, Y. C., and Wang, Y. P. (2018). Status of noninvasive brain stimulation in the
therapy of Alzheimer’s disease. Chin. Med. J. 131, 2899–2903. doi: 10.4103/0366-6999.
247217

Lorenzi, R. M., Palesi, F., Castellazzi, G., Vitali, P., Anzalone, N., Bernini, S., et al.
(2020). Unsuspected involvement of spinal cord in Alzheimer disease. Front. Cell.
Neurosci. 14:6. doi: 10.3389/fncel.2020.00006

Maestú, F., de Haan, W., Busche, M. A., and DeFelipe, J. (2021). Neuronal
excitation/inhibition imbalance: Core element of a translational perspective on
Alzheimer pathophysiology. Ageing Res. Rev. 69:101372. doi: 10.1016/j.arr.2021.
101372

Marti-Juan, G., Sastre-Garriga, J., Vidal-Jordana, A., Llufriu, S., Martinez-Heras, E.,
Groppa, S., et al. (2022). Using the virtual brain to study the relationship between
structural and functional connectivity in people with multiple sclerosis: A multicentre
study. Mult. Scler. J. 28, 262–264.

Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., and
Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease.
Neuropharmacology 190:108352. doi: 10.1016/j.neuropharm.2020.108352

Maul, S., Giegling, I., and Rujescu, D. (2020). Proton magnetic resonance
spectroscopy in common dementias–current status and perspectives. Front. Psychiatry
11:769. doi: 10.3389/fpsyt.2020.00769

McKeith, I. G., Boeve, B. F., Dickson, D. W., Halliday, G., Aarsland, D., Attems,
J., et al. (2017). Diagnosis and management of dementia with Lewy bodies: Fourth
consensus report of the DLB Consortium. Neurology 89, 88–100.

Melrose, R. J., Harwood, D., Khoo, T., Mandelkern, M., and Sultzer, D. (2013).
Association between cerebral metabolism and Rey-Osterrieth Complex Figure Test
performance in ALzheimer’s disease. J. Clin. Exp. Neuropsychol. 35, 246–258. doi:
10.1080/13803395.2012.763113.Association

Monteverdi, A., Palesi, F., Costa, A., Vitali, P., Pichiecchio, A., Cotta Ramusino,
M., et al. (2022). Subject-specific features of excitation/inhibition profiles in
neurodegenerative diseases. Front. Aging Neurosci. 14:868342. doi: 10.3389/fnagi.2022.
868342

Monteverdi, A., Palesi, F., Schirner, M., Argentino, F., Merante, M., Redolfi,
A., et al. (2023). Virtual brain simulations reveal network-specific parameters in
neurodegenerative dementias. bioRxiv [Preprint]. doi: 10.1101/2023.03.10.532087

Murley, A. G., Rouse, M. A., Simon Jones, P., Ye, R., Hezemans, F. H., O’Callaghan,
C., et al. (2021). GABA and glutamate deficits from frontotemporal lobar degeneration

are associated with disinhibition. Brain 143, 3449–3462. doi: 10.1093/BRAIN/
AWAA305

Muschelli, J., Beth Nebel, M., Caffo, B. S., Barber, A. D., Pekar, J. J., and Mostofsky,
S. H. (2014). Reduction of motion-related artifacts in resting state fMRI using
aCompCor. Neuroimage 96, 22–35. doi: 10.1016/j.neuroimage.2014.03.028

Nigri, A., Ferraro, S., Gandini Wheeler-Kingshott, C. A. M., Tosetti, M., Redolfi, A.,
Forloni, G., et al. (2022). Quantitative MRI harmonization to maximize clinical impact:
The RIN–neuroimaging network. Front. Neurol. 13:855125. doi: 10.3389/fneur.2022.
855125

Palesi, F., Lorenzi, R. M., Casellato, C., Ritter, P., Jirsa, V., Gandini Wheeler-
Kingshott, C. A. M., et al. (2020). The importance of cerebellar connectivity on
simulated brain dynamics. Front. Cell. Neurosci. 14:240. doi: 10.3389/fncel.2020.00240

Palop, J. J., and Mucke, L. (2016). Network abnormalities and interneuron
dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 17, 777–792. doi: 10.1038/nrn.
2016.141

Patenaude, B., Smith, S. M., Kennedy, D. N., and Jenkinson, M. (2011). A Bayesian
model of shape and appearance for subcortical brain segmentation. Neuroimage 56,
907–922. doi: 10.1016/j.neuroimage.2011.02.046

Pek, J., Wong, O., and Wong, A. C. M. (2018). How to address non-normality:
A taxonomy of approaches, reviewed, and illustrated. Front. Psychol. 9:2104. doi:
10.3389/fpsyg.2018.02104

Pérez, P. D., Ma, Z., Hamilton, C., Sánchez, C., Mørk, A., Pehrson, A. L., et al. (2018).
Acute effects of vortioxetine and duloxetine on resting-state functional connectivity in
the awake rat. Neuropharmacology 128, 379–387. doi: 10.1016/j.neuropharm.2017.10.
038

Pini, L., Pizzini, F. B., Boscolo-Galazzo, I., Ferrari, C., Galluzzi, S., Cotelli, M.,
et al. (2022). Brain network modulation in Alzheimer’s and frontotemporal dementia
with transcranial electrical stimulation. Neurobiol. Aging 111, 24–34. doi: 10.1016/j.
neurobiolaging.2021.11.005

Pini, L., Wennberg, A. M., Salvalaggio, A., Vallesi, A., Pievani, M., and Corbetta,
M. (2021). Breakdown of specific functional brain networks in clinical variants of
Alzheimer’s disease. Ageing Res. Rev. 72:101482. doi: 10.1016/j.arr.2021.101482

Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus,
J., et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of
frontotemporal dementia. Brain 134, 2456–2477. doi: 10.1093/brain/awr179

Rauchmann, B. S., Ersoezlue, E., Stoecklein, S., Keeser, D., Brosseron, F., Buerger,
K., et al. (2021). Resting-state network alterations differ between Alzheimer’s disease
atrophy subtypes. Cereb. Cortex 31, 4901–4915. doi: 10.1093/cercor/bhab130

Redolfi, A., De Francesco, S., Palesi, F., Galluzzi, S., Muscio, C., Castellazzi, G.,
et al. (2020). Medical informatics platform (MIP): A pilot study across clinical Italian
cohorts. Front. Neurol. 11:1021. doi: 10.3389/fneur.2020.01021

Reyes, P., Ortega-Merchan, M. P., Rueda, A., Uriza, F., Santamaria-García, H.,
Rojas-Serrano, N., et al. (2018). Functional connectivity changes in behavioral,
semantic, and nonfluent variants of frontotemporal dementia. Behav. Neurol.
2018:9684129. doi: 10.1155/2018/9684129

Robinson, D. M., and Keating, G. M. (2006). Memantine: a review of its use in
Alzheimer’s disease. Drugs 66, 1515–1534. doi: 10.2165/00003495-200666110-00015

Russell, L. L., Greaves, C. V., Convery, R. S., Bocchetta, M., Warren, J. D., Kaski, D.,
et al. (2021). Eye movements in frontotemporal dementia: Abnormalities of fixation,
saccades and anti-saccades. Alzheimers Dement. 7:e12218. doi: 10.1002/trc2.12218

Schirner, M., Domide, L., Perdikis, D., Triebkorn, P., Stefanovski, L., Pai, R., et
al. (2022). Brain simulation as a cloud service: The Virtual Brain on EBRAINS.
Neuroimage 251:118973. doi: 10.1016/j.neuroimage.2022.118973

Smith, R. E., Tournier, J. D., Calamante, F., and Connelly, A. (2012). Anatomically-
constrained tractography: Improved diffusion MRI streamlines tractography through
effective use of anatomical information. Neuroimage 62, 1924–1938. doi: 10.1016/j.
neuroimage.2012.06.005

Smitha, K. A., Akhil Raja, K., Arun, K. M., Rajesh, P. G., Thomas, B., Kapilamoorthy,
T. R., et al. (2017). Resting state fMRI: A review on methods in resting state
connectivity analysis and resting state networks. Neuroradiol. J. 30, 305–317. doi:
10.1177/1971400917697342

Spurny, B., Vanicek, T., Seiger, R., Reed, M. B., Klöbl, M., Ritter, V., et al. (2021).
Effects of SSRI treatment on GABA and glutamate levels in an associative relearning
paradigm. Neuroimage 232:117913. doi: 10.1016/j.neuroimage.2021.117913

Stefanovski, L., Meier, J. M., Pai, R. K., Triebkorn, P., Lett, T., Martin, L., et al. (2021).
Bridging scales in Alzheimer’s disease: Biological framework for brain simulation
with the virtual brain. Front. Neuroinform. 15:630172. doi: 10.3389/fninf.2021.
630172

Stefanovski, L., Triebkorn, P., Spiegler, A., Diaz-Cortes, M. A., Solodkin, A., Jirsa, V.,
et al. (2019). Linking molecular pathways and large-scale computational modeling to
assess candidate disease mechanisms and pharmacodynamics in Alzheimer’s disease.
Front. Comput. Neurosci. 13:54. doi: 10.3389/fncom.2019.00054

Stephan, K. E., Weiskopf, N., Drysdale, P. M., Robinson, P. A., and Friston, K. J.
(2007). Comparing hemodynamic models with DCM. Neuroimage 38, 387–401. doi:
10.1016/j.neuroimage.2007.07.040

Frontiers in Aging Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1204134
https://doi.org/10.1586/ern.11.153
https://doi.org/10.1586/ern.11.153
https://doi.org/10.1016/j.conb.2006.09.002.The
https://doi.org/10.1016/j.nicl.2018.03.013
https://doi.org/10.1016/j.semcdb.2021.01.005
https://doi.org/10.1016/j.neuroimage.2016.04.049
https://doi.org/10.1007/s00429-016-1202-4
https://doi.org/10.1007/s00429-016-1202-4
https://doi.org/10.1093/brain/awv338
https://doi.org/10.1038/s41467-021-26704-y
https://doi.org/10.1523/ENEURO.0214-18.2018
https://doi.org/10.1523/ENEURO.0214-18.2018
https://doi.org/10.1038/s41467-021-22742-8
https://doi.org/10.1038/s41467-021-22742-8
https://doi.org/10.4103/0972-2327.74249
https://doi.org/10.4103/0972-2327.74249
https://doi.org/10.1002/hbm.25391
https://doi.org/10.4103/0366-6999.247217
https://doi.org/10.4103/0366-6999.247217
https://doi.org/10.3389/fncel.2020.00006
https://doi.org/10.1016/j.arr.2021.101372
https://doi.org/10.1016/j.arr.2021.101372
https://doi.org/10.1016/j.neuropharm.2020.108352
https://doi.org/10.3389/fpsyt.2020.00769
https://doi.org/10.1080/13803395.2012.763113.Association
https://doi.org/10.1080/13803395.2012.763113.Association
https://doi.org/10.3389/fnagi.2022.868342
https://doi.org/10.3389/fnagi.2022.868342
https://doi.org/10.1101/2023.03.10.532087
https://doi.org/10.1093/BRAIN/AWAA305
https://doi.org/10.1093/BRAIN/AWAA305
https://doi.org/10.1016/j.neuroimage.2014.03.028
https://doi.org/10.3389/fneur.2022.855125
https://doi.org/10.3389/fneur.2022.855125
https://doi.org/10.3389/fncel.2020.00240
https://doi.org/10.1038/nrn.2016.141
https://doi.org/10.1038/nrn.2016.141
https://doi.org/10.1016/j.neuroimage.2011.02.046
https://doi.org/10.3389/fpsyg.2018.02104
https://doi.org/10.3389/fpsyg.2018.02104
https://doi.org/10.1016/j.neuropharm.2017.10.038
https://doi.org/10.1016/j.neuropharm.2017.10.038
https://doi.org/10.1016/j.neurobiolaging.2021.11.005
https://doi.org/10.1016/j.neurobiolaging.2021.11.005
https://doi.org/10.1016/j.arr.2021.101482
https://doi.org/10.1093/brain/awr179
https://doi.org/10.1093/cercor/bhab130
https://doi.org/10.3389/fneur.2020.01021
https://doi.org/10.1155/2018/9684129
https://doi.org/10.2165/00003495-200666110-00015
https://doi.org/10.1002/trc2.12218
https://doi.org/10.1016/j.neuroimage.2022.118973
https://doi.org/10.1016/j.neuroimage.2012.06.005
https://doi.org/10.1016/j.neuroimage.2012.06.005
https://doi.org/10.1177/1971400917697342
https://doi.org/10.1177/1971400917697342
https://doi.org/10.1016/j.neuroimage.2021.117913
https://doi.org/10.3389/fninf.2021.630172
https://doi.org/10.3389/fninf.2021.630172
https://doi.org/10.3389/fncom.2019.00054
https://doi.org/10.1016/j.neuroimage.2007.07.040
https://doi.org/10.1016/j.neuroimage.2007.07.040
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-15-1204134 July 26, 2023 Time: 10:37 # 15

Monteverdi et al. 10.3389/fnagi.2023.1204134

Thomas Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,
Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated
by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165. doi: 10.1152/jn.
00338.2011

Titov, D., Diehl-Schmid, J., Shi, K., Perneczky, R., Zou, N., Grimmer, T.,
et al. (2017). Metabolic connectivity for differential diagnosis of dementing
disorders. J. Cereb. Blood Flow Metab. 37, 252–262. doi: 10.1177/0271678X1562
2465

Tok, S., Ahnaou, A., and Drinkenburg, W. (2021). Functional neurophysiological
biomarkers of early-stage Alzheimer’s disease: A perspective of network
hyperexcitability in disease progression. J. Alzheimer’s Dis. 88, 809–836.
doi: 10.3233/jad-210397

Tournier, J. D., Calamante, F., and Connelly, A. (2012). MRtrix: Diffusion
tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66. doi:
10.1002/ima.22005

Triebkorn, P., Stefanovski, L., Dhindsa, K., Diaz-Cortes, M., Bey, P., Bülau, K.,
et al. (2022). Brain simulation augments machine-learning–based classification of
dementia. Alzheimers Dement. 8:e12303. doi: 10.1002/trc2.12303

Van Wingen, G. A., Tendolkar, I., Urner, M., van Marle, H. J., Denys, D., Verkes,
R. J., et al. (2014). Short-term antidepressant administration reduces default mode and
task-positive network connectivity in healthy individuals during rest. Neuroimage 88,
47–53. doi: 10.1016/j.neuroimage.2013.11.022

Vonk, J. M. J., Rizvi, B., Lao, P. J., Budge, M., Manly, J. J., Mayeux, R., et al. (2019).
Letter and category fluency performance correlates with distinct patterns of cortical
thickness in older adults. Cereb. Cortex 29, 2694–2700. doi: 10.1093/cercor/bhy138

Waxman, E. A., and Lynch, D. R. (2005). N-methyl-D-aspartate receptor subtypes:
Multiple roles in excitotoxicity and neurological disease. Neuroscientist 11, 37–49.
doi: 10.1177/1073858404269012

Zhou, J., Greicius, M. D., Gennatas, E. D., Growdon, M. E., Jang, J. Y., Rabinovici,
G. D., et al. (2010). Divergent network connectivity changes in behavioural variant
frontotemporal dementia and Alzheimer’s disease. Brain 133, 1352–1367. doi: 10.1093/
brain/awq075

Zimmermann, J., Perry, A., Breakspear, M., Schirner, M., Sachdev, P., Wen, W., et al.
(2018). Differentiation of Alzheimer’s disease based on local and global parameters in
personalized Virtual Brain models. NeuroImage Clin. 19, 240–251. doi: 10.1016/j.nicl.
2018.04.017

Frontiers in Aging Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fnagi.2023.1204134
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1177/0271678X15622465
https://doi.org/10.1177/0271678X15622465
https://doi.org/10.3233/jad-210397
https://doi.org/10.1002/ima.22005
https://doi.org/10.1002/ima.22005
https://doi.org/10.1002/trc2.12303
https://doi.org/10.1016/j.neuroimage.2013.11.022
https://doi.org/10.1093/cercor/bhy138
https://doi.org/10.1177/1073858404269012
https://doi.org/10.1093/brain/awq075
https://doi.org/10.1093/brain/awq075
https://doi.org/10.1016/j.nicl.2018.04.017
https://doi.org/10.1016/j.nicl.2018.04.017
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/

	Virtual brain simulations reveal network-specific parameters in neurodegenerative dementias
	Background
	Materials and methods
	Subjects
	Neuropsychological assessment
	MRI acquisitions
	Preprocessing of DWI and fMRI data
	Structural and functional connectivity
	Virtual brain modeling
	Statistical analysis
	Code and data accessibility


	Results
	E/I balance in brain networks
	Differences of E/I balance between pathological groups
	Clinical relevance of TVB parameters
	Patients' labeling according to network properties

	Discussion
	Average model parameters in brain networks of AD and FTD
	Integrative networks
	Global coupling
	Synaptic parameters

	Motor and sensory networks

	The relationship between network neurophysiology and neuropsychology
	Toward personalized fingerprints of AD and FTD patients
	Study considerations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


