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Abstract 

Renewable raw materials containing starch and proteins are split into their main com-

ponents using enzymatic hydrolysis processes. However, even small changes in temper-

ature, pH or pressure may strongly affect the enzyme activity and stability. At the same 

time, natural fluctuations may lead to changes in the substrate composition. These mu-

tually influencing factors place enormous demands on the design and control of enzy-

matic hydrolysis processes. 

Individual enzymatic hydrolysis processes have already been modelled, but models for 

the hydrolysis of potato starch by α-amylase and glucoamylase and the proteolysis of 

organic sunflower seed meal by endopeptidase and exopeptidase in a stirred tank reac-

tor, or even digital twins, are unavailable. Therefore, a new mechanistic model for the 

combined starch hydrolysis and proteolysis was developed. 

Sigmoidal and double sigmoidal functions were implemented to map the temperature 

and pH-dependent enzyme activity. The model can simulate the enzymatic hydrolysis 

processes with an agreement of more than 90%. The new model was integrated into an 

existing digital twin of a 20 L stirred tank reactor to create a new stand-alone digital twin 

for enzymatic hydrolysis processes. 

Applying the new digital twin core model, a model-based process design strategy based 

on the open-loop-feedback-optimal and model-based design of experiments strategies 

was established. By applying the new strategy, the amount of α-amylase and glucoam-

ylase required for starch hydrolysis could be reduced by more than 30%. In addition, the 

required amount of endopeptidase and exopeptidase for proteolysis could be reduced 

by more than 50%. Compared to the classic design of experiments approach, the num-

ber of experiments required for process optimisation could be reduced by more than 

50%. 

The strategies resulting from this work can soon be used for the optimisation of the 

industrial organic nutrient media production from regenerative substrates for the culti-

vation of microorganisms such as Saccharomyces cerevisiae.   
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Impact Statement 

This research combined model-based process design and control strategies with a new 

stand-alone digital twin for enzymatic hydrolysis processes in a stirred tank reactor 

(STR). This enabled enzymatic hydrolysis batch processes to be successfully optimised. 

The new strategies for model-based process optimisation can be used beneficially in the 

future both inside and outside academia. 

The new strategies can be used directly in the industrial production of organic yeast 

products, where enzymatic hydrolysis processes are applied to produce nutrient media 

from organic, renewable raw materials. The global organic yeast market size was valued 

at about USD 364 million in 2020 and is expected to reach USD 599 million by 2025 

(MarketsandMarkets, 2020). Factors such as increasing awareness among consumers 

about health and wellness, the growing need to replace monosodium glutamate (MSG) 

as an additive in food products, and increased demand for organic food products across 

the globe are driving the growth of the market (MarketsandMarkets, 2020). A large part 

of the total costs of producing nutrient media by enzymatic hydrolysis is caused by the 

enzymes used in the process. Improvements in enzymatic hydrolysis processes can re-

duce enzyme costs by more than 30%. 

Due to the generic structure of the new stand-alone digital twin for enzymatic hydrolysis 

processes, the new strategies can be easily transferred to different enzymatic processes. 

This can accelerate the transfer from conventional chemical production of, e.g., chemi-

cals, drugs or food to biotechnological organic production. The demand for organic prod-

ucts is becoming increasingly important and should be made even more available by 

reducing costs. Furthermore, the preconditions for transferring the strategies to micro-

bial processes were provided. 

Core findings of this research work have been published in “Springer - Advances in Bio-

chemical Engineering/Biotechnology” (Digital Twins for Bioprocess Control Strategy De-

velopment and Realisation, DOI: 10.1007/10_2020_151; Mechanistic Mathematical 

Models as a Basis for Digital Twins, DOI: 10.1007/10_2020_152) and in “MDPI - Pro-

cesses” (Development of a Digital Twin for Enzymatic Hydrolysis Processes, DOI: 

10.3390/pr9101734). They also led to oral presentations at the 12th European Congress 
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of Chemical Engineering and 5th European of Applied Biotechnology, 2019 (Florence, It-

aly), at CHISA - 25th and 26th International Congress of Chemical and Process Engineering, 

2021/2022 (Prague, Czech Republic) and at ESBES 13th European Symposium on Bio-

chemical Engineering Sciences 2021 (Virtually). 
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Motivation 

Biochemical reactions must be catalysed to run at the pace needed to sustain life (Jaeger 

et al., 2018). These “life catalysts” are the enzymes. For each of the countless biochem-

ical reactions of cell metabolism, a specific enzyme catalyses them (Jaeger et al., 2018). 

Due to the enormous variety of different enzymes, it is not presumptuous to claim that 

enzymes can also catalyse any chemical synthesis described so far (Illanes, 2008). Due 

to its versatility, the application range of enzymes in organic synthesis has expanded to 

an unprecedented level (Polaina and MacCabe, 2007). 

Enzymatic hydrolysis processes, such as starch hydrolysis and proteolysis, play a vital 

role in producing organic nutrient media, as no toxic chemicals or other additives are 

needed (Jaeger et al., 2018; Tavano, 2013). Renewable raw materials (e.g., potato starch 

or sunflower seed meal) containing starch and proteins are split into their main compo-

nents (e.g., glucose, free amino acids) using amylases and peptidases (Jaeger et al., 2018; 

Tavano, 2013). The nutrient media can subsequently be used for the cultivation of mi-

croorganisms. Due to the high costs of enzymes, the enzymatic production of organic 

nutrient media is often not yet competitive with the conventional production of nutrient 

media (Jaeger et al., 2018). Seasonal fluctuations in the quality of renewable raw mate-

rials (substrates) may also make it necessary to regularly adjust the process conditions 

and control strategies to achieve the optimal result. Optimisation of control strategies 

during production runs is usually exceedingly tricky or even impossible (Larroche et al., 

2016; Zacher and Reuter, 2017). Interruptions of a production run and inadequate con-

trol lead to immense financial losses, which must be avoided (Zacher and Reuter, 2017). 

Using mathematical models or digital twins is a promising opportunity to optimise enzy-

matic hydrolysis processes. In combination with model-based control and process de-

sign strategies, it is possible to react to changes in the kinetics of the enzymatic process. 

Furthermore, some enzymes show low activity and stability, which reduces their appli-

cation potential. So far, the focus has been on counteracting the low activity and stability 

by enzyme immobilisation (Guisan, 2006) or working with low-temperature enzymes 

(Jaeger et al., 2018). However, other research has shown that also the use of high pres-

sure could be beneficial. High pressure can significantly increase the activity and stability 

of some enzymes (Eisenmenger and Reyes-De-Corcuera, 2009). 
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1 State of the art and technology 

This section covers the enzymatic hydrolysis processes of starch hydrolysis and proteol-

ysis, the influence of high pressure on hydrolytic enzymes and reactor concepts for en-

zymatic hydrolysis processes. 

In addition, the current state of the art and technology for designing and controlling 

enzymatic processes is examined. In this context, the focus is placed on model predictive 

control (MPC) and nonlinear model predictive control (NMPC), the open-loop-feedback-

optimal (OLFO) strategy and the model-based design of experiments (mDoE). Further-

more, the status of digital twins in biochemical engineering and their use in developing 

process control and design strategies is discussed. 

1.1 Enzymatic hydrolysis processes 

Enzymatic hydrolysis is a process in which enzymes facilitate the cleavage of molecular 

bonds with the addition of the elements of water (Campbell and Reece, 2005). In more 

detail, this research examines the two-stage enzymatic hydrolysis processes of starch 

hydrolysis and proteolysis. These processes were chosen because they have already 

been well studied and are often carried out in STRs.  

One of the focal points of research at Furtwangen University (working group of Prof. Dr. 

Volker C. Hass) is the optimisation of Saccharomyces cerevisiae (S. cerevisiae) cultivation 

processes. This has also resulted in cooperations with yeast manufacturers. During 

starch hydrolysis, starch is converted into glucose. In proteolysis, proteins are split into 

free amino acids. The products of starch hydrolysis and free amino acids can be used as 

the main components of many nutrient media used to cultivate microorganisms (e.g., S. 

cerevisiae). As a result of this work, the production of nutrient media for cultivating S. 

cerevisiae can already be optimised. 

1.1.1 Enzymatic starch hydrolysis 

In starch hydrolysis, starch is converted into glucose molecules using α- and glucoamyl-

ases (Bugg, 2012; Nebesny, 1989; Polaina and MacCabe, 2007). The enzyme α-amylase 

(α-1,4 glucan glucanohydrolase, EC. 3.2.1.1) catalyses the hydrolysis of 1,4-α-D-gluco-

sidic linkages in polysaccharides containing three or more 1,4-α-linked D-glucose units 
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randomly (Buckow et al., 2007; Cordeiro et al., 2002). Starch is degraded to low molec-

ular weight dextrin, limited by α-1,6 bonds in a way that α-amylase cannot hydrolyse 

(Buckow et al., 2007; Cordeiro et al., 2002). Glucoamylase (1,4-α-D-glucan glucohydro-

lase, EC 3.2.1.3) is a multi-domain exo-glycosidase that catalyses the hydrolysis of α-1,4 

and α-1,6 glucosidic linkages of starch and related polysaccharides to release β-D-glu-

cose from the non-reducing ends (Figure 1) (Bugg, 2012; Kumar and Satyanarayana, 

2009). 

 

Figure 1: Simplified structure of two-step enzymatic starch hydrolysis. Green arrows indicate 

points of enzymatic cleavage. 

The α-amylase splits the starch molecules (substrate) into the intermediate product (ol-

igosaccharides). This intermediate product is converted into the desired product (glu-

cose) by glucoamylase. 

1.1.2 Enzymatic proteolysis 

Peptidases catalyse the hydrolysis of peptide bonds. Peptide bond cleavage occurs by 

adding water molecules (Berg et al., 2018; Bugg, 2012). Based on the catalysed reaction, 

they are counted among the third main class of enzymes, the hydrolases (EC 3.4.) (Bugg, 

2012). The catalytic centre of peptidase is structured as a catalytic triad. Depending on 

this triad or the catalytic mechanism, a classification is made into serine-, cysteine-, as-

partate- and metallopeptidases (Berg et al., 2018). In addition, a classification can be 

made based on the position of the peptide bond cleavage into endo- and exopeptidases 

(Jaeger et al., 2018). 

Starch
(Substrate)

α-amylase

Glucose
(Product)

Oligosaccharide
(Intermediate 

product)

Glucoamylase Glucoamylase
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Endopeptidases enzymatically split peptide bonds within the protein. The exopepti-

dases, which can be further subdivided into carboxyl and aminopeptidases, split termi-

nal peptide bonds of the amino acid sequence (Figure 2) (Rao et al., 1998). 

 

Figure 2: Simplified structure of two-step enzymatic proteolysis. Green arrows indicate points of 

enzymatic cleavage. 

During proteolysis, the proteins (substrate) are split into di- and tripeptides (intermedi-

ate products) using endopeptidase. Then, the exopeptidase converts the intermediate 

into free amino acids (product). 

Peptidases have a wide range of applications in industry. They are used, e.g., in deter-

gents, cheese production and the leather industry (Rao et al., 1998). Peptidases are also 

suitable for producing nutrient media (Gupta et al., 2002; Rao et al., 1998). The ad-

vantages over chemical hydrolysis are more moderate conditions, less environmental 

pollution and easier process control (Tavano, 2013). From the point of view of sustaina-

bility, it is exciting to use renewable raw materials, such as potatoes (Kamnerdpetch et 

al., 2007) or soy (Jung et al., 2004), or waste products, such as salmon by-products (Gbo-

gouri et al., 2004), as substrates. 

1.2 Influence of high pressure on enzymes 

While most current high-pressure applications are for inactivating deleterious enzymes 

(Figure 3), there is evidence that high pressure can induce stabilization and activation of 

some enzymes (Eisenmenger and Reyes-De-Corcuera, 2009). Various strategies have 

Protein
(Substrate)

Endopeptidase

Free AA
(Product)

Peptide
(Intermediate 

product)

Exopeptidase Exopeptidase
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been employed to enhance enzyme stability, including genetic engineering, immobilisa-

tion (Guisan, 2006) and operating in non-aqueous media. While each strategy has pro-

vided varying degrees of stability or activity enhancement, applying high pressure may 

be a complementary, synergistic, or additive enzyme enhancement technique (Eisen-

menger and Reyes-De-Corcuera, 2009). 

 

Figure 3: Effects of pressure on cells and enzymes (left) and applications where pressure is used 

(right). Based on Follonier et al. (2012). 

According to Eisenmenger and Reyes-De-Corcuera (2009), the effects of high pressure 

are driven by direct changes in the reaction mechanism (reaction rates), changes in the 

structure of the enzyme and changes in the thermostability. 

1.2.1 Changes in the reaction mechanism 

The relation between pressure and volume change can explain the changes in reaction 

rates according to the Le Châtelier principle. The effect can be estimated using the Eyring 

and Magee (1942) equation (Equation 1), where p is the pressure, T is the absolute tem-

perature, R is the ideal gas constant, ∆V≠ is the activation volume that represents the 

dependence of the reaction rate with pressure, and k is the rate constant (Eisenmenger 

and Reyes-De-Corcuera, 2009).  

(
𝛿𝑙𝑛 𝑘

𝛿𝑝
)
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= −
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After integration and rearrangement, Equation 1 can be rewritten as Equation 2, where 

k0 is the rate constant at a reference pressure P0. 

ln 𝑘0 = −
∆𝑉≠

𝑅𝑇
∙ 𝑃 + ln 𝑘𝑃0

 (2) 

Thus, each rate with a negative volume change is moved to a more compact state as the 

pressure rises, resulting in acceleration of the reaction and each reaction with a positive 

activation volume is slowed down (Eisenmenger and Reyes-De-Corcuera, 2009). De-

pending on the reaction or conformational changes of the enzyme, the activation vol-

ume can be positive, negative, or negligible. Typically, activation volumes range from – 

70 cm−3 mol−1 to + 60 cm−3 mol−1, with most having a magnitude of less than 30 cm−3 

mol−1 (Adams and Kelly, 1992). 

1.2.2 Changes in the enzyme configuration 

Significant increases in pressure, temperature, or addition of a denaturing agent cause 

changes to the native enzyme (En) that are reversible (Er), then irreversible (Eir), and fi-

nally lead to the deactivation/denaturation (Ed) of the enzyme (Equation 3) (Eisen-

menger and Reyes-De-Corcuera, 2009).  

𝐸𝑛 ↔ 𝐸𝑟 → 𝐸𝑖𝑟 → 𝐸𝑑 (3) 

Moderately increasing pressure can produce a more active enzyme (Eact), as shown in 

Equation 4, which accounts for pressure-induced activation (Eisenmenger and Reyes-

De-Corcuera, 2009). 

𝐸𝑛 ↔ 𝐸𝑎𝑐𝑡 ↔ 𝐸𝑟 → 𝐸𝑖𝑟 → 𝐸𝑑 (4) 

The rate constant is also affected by temperature and is generally expressed by the Ar-

rhenius equation (Equation 5). 

ln 𝑘 = −
𝐸𝑎

𝑅
∙

1

𝑇
+ ln 𝑘𝑇0

 (5) 
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Ea is the activation energy, and kT0 is the rate constant at a reference temperature (T0). 

Both temperature and pressure can contribute to activation in a particular range, but 

they can also affect the reaction rate by inactivating the enzyme. 

1.2.3 Changes in the thermostability 

Advantages can also be taken from the increased thermostability of some enzymes un-

der high pressure. High temperatures can enhance the reaction rate, while high pressure 

supports maintaining a functional structure (Eisenmenger and Reyes-De-Corcuera, 

2009). However, temperature can also lead to the destabilisation of enzymes. 

The pressure-temperature phase diagram of proteins exhibits an elliptic curve (Hawley, 

1971; Suzuki, 1960), meaning that a pressure increase can stabilise or destabilise protein 

structures depending on the starting value and temperature (Figure 4). 

 

Figure 4: Pressure-temperature diagram representing the elliptical stability domain of proteins. 

The regions inside and outside of the ellipses correspond to native and denatured confor-

mations. Based on Eisenmenger and Reyes-De-Corcuera (2009) and Follonier et al. (2012). 

Pressure affects the activity and stability of enzymes in various ways. The enzymatic pro-

cesses are usually characterised directly by specific experiments under high pressure. 

Table 1 presents a selection of experimental results for the effect of high pressure and 

temperature on enzymes. The investigated enzymes, the examined conditions and the 

effects are shown (Eisenmenger and Reyes-De-Corcuera, 2009). 
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Table 1: Selection of pressure-dependent enzymes. Based on Eisenmenger and Reyes-De-Corcu-

era (2009). 

Enzyme  
(Enzyme class) 

Pressure 
tested (bar) 

Temperature 
tested (°C) 

Effects Reference 

Dehydrogenase 
(EC 1.1.1.1) 

1 - 1500 28-101 
Stabilised at 101 °C by ap-

plication of 1300 bar. 

Morita and 
Haight 
(1962) 

Hydrogenase 
(EC 1.1.1.2) 

6.5 - 8.5, 
250 - 264 

86 

Activity at 86 °C, three 
times higher with increas-

ing pressure up to 
260 bar. 

Miller et al. 
(1989) 

Peroxidase 
(EC 1.11.1.*) 

4000, 6000, 
8000 

18, 22 
Activity increased by 13% 

after exposure to 
4000 bar for 5 min. 

Garcia-Pala-
zon et al. 

(2004) 

Lipoxygenase 
(EC 1.13.11.12) 

1 - 6000 35 - 90 

Activity increased to 120% 
with pressure up to 

2000 bar at 55 °C com-
pared to 1 bar. 

Tedjo et al. 
(2000) 

Polymerase 
(EC 2.7.7.7) 

30, 450, 890 110 - 112.5 
Half-lives increased from 

6.9 min at 30 bar to 
39 min at 890 bar. 

Summit et 
al. (1998) 

Lipase 
(EC 3.1.1.3) 

1 - 500 50 
Catalytic efficiency im-

proved up to 100 bar and 
decreased above 100 bar. 

Knez et al. 
(2007) 

α-Amylase 
(EC 3.2.1.1) 

1 - 8000 30 - 75 

Activity increased by 25% 
at 1520 bar and 64 °C, 
compared to ambient 

pressure and 59 °C. 

Buckow et 
al. (2007) 

β-Amylase 
(EC 3.2.1.2) 

1 - 7000 20 - 70 

Activity increased by 15% 
at 1000 bar and 62 °C 
compared to optimum 
conditions at ambient 

pressure. 

Heinz et al. 
(2005) 

Glucoamylase 
(EC 3.2.1.3) 

1 - 14000 40 - 90 
The stable isoform was 
slow to inactivate up to 

14000 bar at 50 °C. 

(Buckow et 
al., 2005) 

Invertase 
(EC 3.2.1.26) 

1 - 3500 60 
Half-life increased until 
the pressure reached 

2000 bar. 

Noel M.-O. 
et al. (2000) 

Protease 
(EC 3.4.21-22) 

1 - 2000 20 - 70 

Increase of approx. 30% in 
the 20 °C-activity was 

reached after 2000 bar 
processing. 

Tribst et al. 
(2012) 

Aspartase 
(EC 4.3.1.1) 

1 - 1000 45 - 56 
Stabilised and activated at 

45-56 °C by pressure up 
to 1000 bar. 

Haight and 
Morita 
(1962) 
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The properties of the enzymes were studied directly under high-pressure conditions, or 

the enzymes were previously treated with high pressure. Then their altered character-

istics were investigated under ambient pressure conditions. The changes in the enzyme 

configuration after high-pressure treatment can be permanent, depending on pressure, 

inlet temperature and enzyme storage conditions (Tribst et al., 2012). 

Among the pressure-dependent enzymes are α-amylase, and glucoamylase, used in the 

starch hydrolysis process, for α-amylase from barley malt investigations have been car-

ried out under combined pressure-temperature treatments in the range of 1 to 8000 bar 

and 30 to 75 °C. The activity increased by 25% after treatment at 1520 bar and 64 °C, 

compared to the native form of the enzyme (Buckow et al., 2007). For the stable isoform 

of a glucoamylase, pressure up to 14000 bar in a temperature range from 40-95 °C has 

been investigated. The stable isoform of a glucoamylase was inactivated more slowly at 

process conditions of 50 °C and 14000 bar compared to 50 °C and ambient pressure con-

ditions. The stable isoform of a glucoamylase was slow to inactivate up to 14000 bar at 

50 °C (Buckow et al., 2005). For the conversion of maltose to glucose at pH 4.5, the op-

timum was determined at 3180 bar and 84 °C for a 30-minute process. Compared to the 

maximum observed at ambient pressure (approx. 62 °C), glucose production was dou-

bled (Buckow et al., 2005). 

Furthermore, an increased activity of a commercial neutral protease from Bacillus sub-

tilis after high-pressure treatment was observed by Tribst et al. (2012). No improvement 

in the activities at 55-70 °C was observed after high-pressure treatment, while an in-

crease of approximately 30% in the activity at 20 °C was reached after 2000 bar pro-

cessing. It suggests that high-pressure treatment modifies the protease configuration, 

changing enzyme performance (maximum activity condition), as the efficacy of the lock-

and-key mechanism is strictly dependent on enzyme spatial structure (Tribst et al., 

2012). 

Treating enzymes with high pressure can lead to an improvement in enzyme activity and 

stability. However, these improvements vary from each enzyme to the other. In addi-

tion, improvements are only apparent at some temperatures, and no linear relationship 

can be observed. Therefore, it is difficult to accurately predict the specific activity and 

stability of the enzymes after high-pressure treatment. 
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1.3 Reactors for enzymatic processes 

Several reactor concepts are available for enzymatic processes (Illanes, 2008) (Figure 5). 

 

Figure 5: Reactor configurations for enzymatic processes: a: stirred tank batch reactor; b: recir-

culation batch reactor; c: stirred tank ultrafiltration reactor; d: continuous stirred tank reactor; 

e: continuous packed bed flow tube reactor; f: continuous fluidized bed reactor. Based on Il-

lanes (2008). 

One of the most straightforward reactor concepts is the stirred tank batch reactor (a), 

provided with mixing elements and systems for temperature control and pH control, 

where the substrate and soluble enzymes or immobilised enzymes are added directly to 

the reactor (Illanes, 2008; Krause and Merz, 2017; Nienow, 2014). Neither further sub-

strate nor other enzymes are added (Illanes, 2008; Nienow, 2014). If there is an inflow 

to the reactor, it is called a stirred tank fed-batch reactor (Alford, 2006; Illanes, 2008; 

Nienow, 2014). If there is also an outflow, the system is called a continuous STR (d) (Il-

lanes, 2008; Nienow, 2014). Further development of this reactor concept is the recircu-

lation batch reactor (b). Recirculation batch reactors (b) provide the enzymes immobi-

lised in a narrow bed through which the reaction medium is circulated (Illanes, 2008; 

Sudhakaran et al., 1992). This reactor configuration is appropriate when working with 

pH-sensitive enzymes because the enzymes only briefly contact the reaction medium 

and have no direct contact with the acid or base used for pH control in the main reactor 

(Illanes, 2008; Sudhakaran et al., 1992). The STR ultrafiltration (c) offers the advantage 

that a large throughput is possible even with small reactors (Illanes, 2008). A filter holds 
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the enzymes in the reactor system, and the broth is continuously drawn off (Illanes, 

2008). The duration of the catalysis depends strongly on the enzyme stability since usu-

ally no enzymes are added afterwards (Illanes, 2008). Packed bed flow tube reactors 

(PBR) (e) are pretty simple to design and consist of solid catalyst particles being loaded 

and packed into a bed (Illanes, 2008). The medium flows through the bed and encoun-

ters the catalysts. In a fluidised bed reactor (f), a fluid (gas or liquid) is passed through a 

solid granular material (with immobilized catalysts) at high enough velocities to suspend 

the solid and cause it to behave as though it were a fluid (Allen et al., 1979; Illanes, 

2008). Both fixed-bed and fluidized-bed reactors offer the advantage that high through-

put is possible even with small reactor volumes (Illanes, 2008). The disadvantage of 

these reactor types is that the subsequent addition of enzymes is complex (Verhoff and 

Schlager, 1981).  It is, therefore, necessary to maintain high stability of the enzymes. 

1.4 Control and design of enzymatic processes 

Depending on the enzymatic process and the selected type of reactor, particular control 

strategies are required. In general, controllers are divided according to continuous and 

discontinuous behaviour. Among the best-known continuous controllers are feedback 

controllers with proportional (P), proportional-integral (PI) and proportional-integral-

derivative (PID) behaviour. Table 2 shows some control variables of enzymatic processes 

with their most used control strategies. 

Table 2: Control strategies for control values occurring in enzymatic and biocatalytic processes. 

Control variable Control strategy References 

Temperature PI, MPC, NMPC 

Alford (2006), Fenila and Shastri 

(2016), Moradi et al. (2011), Bück et 

al. (2015) 

Moisture NMPC Bück et al. (2015) 

pH PI Alford (2006) 

DO 
On-Off-Feedback control, PI, 

PID, Cascade Control, MPC 

Larroche et al. (2016), Alford (2006), 

Galvanauskas et al. (2013) 

Concentration PI, Fuzzy control, MPC, NMPC  

Morales-Rodríguez et al. (2010), Al-

ford (2006), Álvarez et al. (2006), 

Chang et al. (2016), Craven et al. 

(2014) 
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Simple control tasks can be solved using “standard control strategies”. For more de-

manding control tasks (such as concentration control), the use of model-based control 

strategies such as MPC or NMPC has been suggested (Larroche et al., 2016; Zacher and 

Reuter, 2017). 

1.4.1 Model predictive control and nonlinear model predictive control 

MPC does not operate based on the current state of the system. The control action is 

based on the calculated evolution of the system. For each sampling period, a mathemat-

ical optimisation system determines the controller actuation to be applied in the next 

time interval to minimise a cost function calculated with the predicted system error, 

stability, and other control criteria. The cost function requires a mathematical process 

model to predict its future behaviour (Larroche et al., 2016). 

Figure 6 shows a block diagram which describes the working principle of MPC (Larroche 

et al., 2016). MPC strategies include a model update procedure that based on data from 

the controlled variable and the controller output, calculates updated parameters of a 

model describing the process. Then, the automated tuning procedure uses this updated 

model to calculate new parameters for the controller, which will be more adapted to 

the current process dynamics. 

 

Figure 6: Working principle of MPC. Based on Larroche et al. (2016). 
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NMPC is a variant of MPC characterised using nonlinear system models. As with linear 

MPC, NMPC requires the iterative solution of optimal control problems on a finite pre-

diction horizon (Allgöwer and Zheng, 2000; Biegler, 2021). 

NMPC strategies have already been used to optimise enzymatic and biocatalytic pro-

cesses. 

Hodge et al. (2009) used NMPC for high-solids enzymatic cellulose hydrolysis in an STR. 

NMPC feeding profiles for experiments in STRs were calculated to maintain the insoluble 

solids concentration at a manageable level throughout the process. The STR experi-

ments resulted in similar cellulose conversion rates as in batch shake flask reactors, 

where the temperature control problems are mitigated. 

Fenila and Shastri (2016) used NMPC for temperature control in enzymatic hydrolysis of 

cellulose in an STR. Using NMPC resulted in an enzyme saving of 77.8% and a reduction 

in the processing time of 22.2%.  

Bück et al. (2015) used NMPC to control temperature and moisture gradients along re-

actor length (solid-state fermentation). Using NMPC prevented locally critical process 

conditions requiring the bioreactor to be shut down. 

1.4.2 Open-loop-feedback-optimal strategy 

One special form of NMPC is the OLFO strategy (Luttmann et al., 1985; Witte et al., 

1996). The OLFO controller consists of a mathematical process model, a model parame-

ter identification part, and an optimisation part (Figure 7).  
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Figure 7: Structure of the open-loop-feedback-optimal strategy. Based on Luttmann et al. 

(1985) and Witte et al. (1996). 

Model parameters are estimated frequently based on available online and offline data. 

The updated model parameters are passed on to the optimisation part, where process 

trajectories like substrate feeding profiles are calculated. Several optimisation criteria, 

such as maximised product concentrations, may be implemented in the controller. The 

OLFO strategy is superior to other process control strategies if the processes have not 

yet been optimised or if sophisticated process control formulas are not available. This is 

often the case at the beginning of a process development when relatively large quanti-

ties of a product must be made available for initial tests in a relatively short time. How-

ever, the industrial process has not been designed yet.   

The OLFO control strategy has been investigated in a receding horizon (Appl et al., 2019; 

Li, 2015; Witte et al., 1996) and a moving horizon version (Frahm et al., 2002; Frahm et 

al., 2003a; Frahm et al., 2003b) for microbial bioprocesses.  

1.4.3 Model-based design of experiments 

Design-of-experiments (DoE) methods, which require many resource-consuming exper-

iments, are often used to develop and optimise biotechnological processes (Glauche et 

al., 2017; Mandenius and Brundin, 2008). The design, especially narrowing the parame-

ter boundaries, is complicated (Brunner et al., 2017; Manzon et al., 2020; Stosch and 
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Willis, 2017). Thus, there is a high risk that the experiments were selected falsely and 

delivered only inconclusive information, leading to higher costs and time delays (Möller 

et al., 2019; Moser et al., 2021; Stosch et al., 2016). 

The mDoE concept (Kuchemüller et al., 2020; Möller et al., 2019) linked DoE strategies 

with mathematical process models. To make this concept usable for biotechnological 

processes, the “mDoE-toolbox” was developed (Moser et al., 2021). The mDoE concept 

allows for narrowing down the DoE design space and can thus reduce the number of 

necessary experiments (Gassenmeier et al., 2022; Kuchemüller et al., 2020; Möller et al., 

2019; Möller and Pörtner, 2017; Moser et al., 2021). 

1.5 Modelling of enzymatic processes 

Enzymes play a central role in life, catalysing many chemical and biological processes 

occurring in nature (Illanes, 2008; Jaeger et al., 2018). Therefore, understanding how 

enzymes catalyse their reactions is essential, both from fundamental and practical per-

spectives, with application in a variety of areas, from more basic research that aims to 

understand how different events occur in the cell to the development of new treatments 

for diseases, and even in industrial biocatalytic applications (Illanes, 2008; Jaeger et al., 

2018; Polaina and MacCabe, 2007). 

Computational methods can be used to simulate various enzymatic reactions, bypassing 

some of the limitations of the experimental methods commonly used and providing an 

alternative strategy to complete the information obtained by the experimental methods 

(Narayanan et al., 2020; Polaina and MacCabe, 2007). 

From a mathematical point of view, the art of modelling is based on a solid understand-

ing of the biological process, a realistic mathematical representation of the relevant bi-

ological phenomena, the finding of solutions, preferably quantitative, and a biological 

interpretation of the mathematical results in the form of insights and predictions (Mur-

ray, 2004). 

1.5.1 Modelling of enzymatic hydrolysis processes 

The modelling of enzymatic hydrolysis processes has frequently been the subject of sci-

entific investigations. 



 

30 
 

Beschkov et al. (1984) described a kinetic model for the hydrolysis and synthesis of malt-

ose, isomaltose and maltotriose by glucoamylase. Simple first and second-order kinetics 

were implanted to map the kinetics of the glucoamylase. Beschkov et al. (1984) men-

tioned that the model adequately described the experimental results. 

Lee et al. (1992) describe a mathematical model for the simultaneous saccharification 

and ethanol fermentation of sago starch using amyloglucosidase and Zymomonas mobi-

lis. A series of Michaelis-Menten equations was used to realise the model. The model 

was parameterised using the results of simple experiments carried out at various sub-

strate and enzyme concentrations. The authors mentioned that the simulated experi-

mental results were in good agreement. 

Beaubier et al. (2021) described an approach for modelling and optimising enzymatic 

proteolysis batch processes. In this research work, DoE methods were combined with 

second-order kinetic models. As a result, the model could reproduce the proteolysis pro-

cess with over 80% agreement. 

Models for combined starch hydrolysis and proteolysis in an STR are currently unknown. 

1.6 Digital twin technology in biochemical engineering 

In the early 2000s, the digital twin concept was first applied in mechanical engineering 

(El Saddik, 2018; Glaessgen and Stargel, 2012; Grieves, 2016). Various authors have al-

ready published definitions for “Digital Twin” (El Saddik, 2018; Glaessgen and Stargel, 

2012; Grieves, 2016; He et al., 2019; Zobel-Roos et al., 2019). This research work is 

mainly based on the definition given by El Saddik (2018): 

“Digital twins are (…) digital replications of living as well as non-living entities that enable 

data to be seamlessly transmitted between the physical and virtual worlds.” 

 (El Saddik, 2018) 

Digital twins are digital representatives of material or immaterial objects or processes. 

Whether the counterpart already exists in the real world or will exist in the future is 

irrelevant. They consist of models of the represented object or process. They can also 

contain algorithms and services that describe or influence the properties or behaviour 

of the represented object or process. The coupling between the actual process and the 
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associated digital twin can take place directly during the running process (process ac-

companying) or cyclically after the execution of the actual process (El Saddik, 2018; 

Glaessgen and Stargel, 2012; Grieves, 2016; He et al., 2019; Zobel-Roos et al., 2019). 

In many application areas, digital twins or “early stage” digital twins are becoming more 

important. Especially in “Industry 4.0”, digital twins are becoming increasingly valuable, 

and their application is being studied frequently (Liu et al., 2021; Tao et al., 2019; Vaccari 

et al., 2021). Digital twins also may represent the reactor macro-kinetics and the sys-

tem's dynamics. They are thus ideally suited for systematically optimising dynamic pro-

cesses (Appl et al., 2020; Narayanan et al., 2020). 

In the early to mid-1980s, the first operator training simulators representing “early-

stage” digital twins were used for operator training in the chemical, nuclear and energy 

industries. In the late 1980s and early 1990s, the implementation of operator training 

simulators in the chemical industry evolved from pioneering work to standardised prac-

tice (Patle et al., 2014). Today, digital twins are widely used in industries with high capital 

investment, complex processes and severe plant or operator failure consequences, such 

as the offshore oil and gas industry (Cameron et al., 2002; Dudley et al., 2008; Patle et 

al., 2014). Older educational facilities for training in the oil and gas industry were based 

on physical copies of the control room, which are expensive and no longer needed (Patle 

et al., 2014). Almost simultaneously with the first appearance of digital twins in the 

chemical industry, they were used as a tool for control strategy development (Patle et 

al., 2014). Initially, these were relatively simple control engineering tasks, but they be-

came more complex with the advancing development of digital twins (Cameron et al., 

2002; Patle et al., 2014). 

Dudley et al. (2008) described a digital twin of a pebble bed modular reactor plant to 

design and test control strategies before using them on the actual plant. He et al. (2019) 

described using a digital twin for the Tennessee Eastman benchmark process. The effec-

tiveness and performance of the digital twin in the design of control strategies were 

demonstrated in the presence of realistic fault scenarios. Three types of process faults, 

i.e., sensor faults, actuator faults and process disturbances, were investigated, and the 

corresponding fault size and temporal behaviour were discussed. All simulation studies 
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and numerical results indicated that the proposed configurations are valid for safe op-

erations in case of a process fault. Zhang and Ji (2019) described using a digital twin for 

carbon emission reduction in intelligent manufacturing. Here, the digital twin predicts 

the carbon emissions of the plant. 

One approach for the development of digital twins in biochemical engineering is the use 

of a shell structure (Blesgen and Hass, 2010; Hass et al., 2014; Kuntzsch, 2014; Moser et 

al., 2020), including a biokinetic, a physico-chemical, a reactor, a plant and periphery as 

well as a control and automation submodel (Figure 8). 

 

Figure 8: Shell structure of digital twins in biochemical engineering, with biokinetic, physico-

chemical, reactor, plant and periphery and control and automation submodel. Based on 

Blesgen et al. (2010), Hass et al. (2014), Kuntzsch (2014) and Moser et al. (2020).  

The core of a digital twin consists of a biokinetic submodel. The biokinetic submodel 

calculates all rates concerning the growth and product formation of microorganisms and 

mammalian cells, as well as enzymatic and biocatalytic reactions. The biokinetic sub-

model corresponds to the basic process model. 

The second shell of the digital twin contains the physico-chemical submodel, which in-

cludes models for calculating broth temperature, pH, foam level and gas-phase concen-

trations. To further increase the flexibility of the digital twin, these physico-chemical 

models are independent of the biokinetic submodel. Only calculated values of rates and 

state variables are transferred between the submodels. 
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The biokinetic and physico-chemical submodels are embedded in the reactor submodel 

(e.g., STR model), resulting in the digital twin core model. 

A digital control test simulator also features a plant and periphery submodel. This sub-

model describes the behaviour of the periphery connected to the reactor, e.g., pumps 

and pipes. 

A stand-alone digital twin or operator training simulator also features a control and au-

tomation submodel. Control and automation strategies, e.g., temperature, pH or pres-

sure, can be realised in this submodel. A stand-alone digital twin is adapted to the exist-

ing system as soon as deviations occur between the simulated and the actual behaviour 

of the existing system. 

A complete digital twin is obtained if the stand-alone digital twin has an online connec-

tion to the existing system, which is constantly adapted to the actual process. 

Compared to chemical processes, the application of digital twins or “early stage” digital 

twins, in biochemical engineering is still in its infancy. Thoroughness is required for mod-

elling bioprocesses since a wide variety of parallel reactions occur simultaneously. Even 

small changes in critical process variables, such as pH or temperature, may immensely 

influence kinetics (Hass and Pörtner, 2011). 

Pörtner et al. (2011) used a stand-alone digital twin to optimise process control strate-

gies for mammalian cell cultivations. The developed stand-alone digital twin is a digital 

replica of the cultivation of mammalian cell lines in a small-scale STR. The stand-alone 

digital twin was used to simulate the impact of different glucose and glutamine feed 

rates on cell density and antibody concentration during the fed-batch cultivation of a 

mammalian cell line. Using the stand-alone digital twin, the cultivation process could be 

optimised in a considerably shorter time and with fewer experiments than process con-

trol optimisation on the actual process. 

A contribution by Hass et al. (2014) presented the utilisation of an industrial biotechnol-

ogy stand-alone digital twin. Control strategies developed using a new stand-alone dig-

ital twin of a bioethanol plant illustrated the potential for enhanced resource efficiency 

and reduced energy consumption. According to the authors, the potential savings in raw 

materials have a direct impact on the long-term profitability of the bioethanol plant and 
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enables a reduction of operating costs. Furthermore, using the stand-alone digital twin, 

the time course and dynamics of the entire plant could be analysed and subsequently 

optimised using new process control strategies. Performing such a study on an actual 

plant would have been overly complex and expensive, if not impossible. 

1.6.1 Digital twin supported development of process control strategies  

Digital twins can be used to design, test and optimise bioprocess design and control 

strategies. During process development or optimisation, digital twins can be used to de-

termine suitable controller types and improve the overall process performance through 

appropriate process design. 

If, for example, suitable controllers (e.g., for temperature, dissolved oxygen or product 

concentration) should be designed, the controller type can be selected based on simu-

lations on the digital twin. An early step in controller selection should be defining appro-

priate control targets (Appl et al., 2020). When controlling the temperature of a biore-

actor, such control targets are, e.g., a short rise time, a high control accuracy (essential 

for temperature- or pH-sensitive organisms or enzymes) or a low overshoot. For exam-

ple, the conventional PID control can be compared to a more complex NMPC by applying 

them to a digital twin. If both control strategies yield equally good control results, PID 

control would be preferred because it is cheaper and easier to handle. 

Once a control strategy can control the virtual process satisfactorily, the results are 

transferred to the actual process. The transfer of the developed control strategy from 

the digital twin to the actual process may be further simplified if the digital twin and the 

actual process are linked to the identical process control system (Appl et al., 2020). 

To utilise a digital twin to develop both conventional (e.g., single loop PID control) and 

advanced control (e.g., multivariable controllers, MPC, NMPC), it must fulfil specific re-

quirements that must be considered during the design process of the digital twin. Desir-

able characteristics of a functional digital twin include realistic simulation of the biolog-

ical and physico-chemical processes, accurate representation of automation and control 

actions, as well as a GUI with a similar ‘look and feel’ to that of the actual plant (Hass, 

2016).  
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2 Research aims and objectives 

2.1 Research hypothesis 

Mathematical process models and digital twins, in combination with model-based pro-

cess design and control strategies according to the mDoE and OLFO principles, can im-

prove and stabilise enzymatic hydrolysis processes like starch hydrolysis and proteolysis. 

2.2 Aims and objectives 

(1) Development of a new mathematical model for enzymatic hydrolysis processes 

(combined enzymatic starch hydrolysis and proteolysis). 

(2) Development of a new stand-alone digital twin for enzymatic hydrolysis pro-

cesses in an STR and application to model-based process design. 

(3) Development and experimental validation of model-based process design strat-

egies according to the mDoE and OLFO principles for enzymatic hydrolysis 

batch processes in an STR. 

The structure of the PhD thesis is shown in Figure 9. 

 

Figure 9: Structure of the PhD thesis. 
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3 Materials and methods 

This section covers how the enzymatic hydrolysis processes were performed and de-

scribes the analytical methods used to evaluate the processes. Furthermore, the soft-

ware and methods used for modelling, digital twin development and development of 

the process control and design strategies are covered. Table 3 summarises the materials 

and equipment used to conduct the enzymatic hydrolysis processes and analyse the 

samples. 

Table 3: Materials used for the enzymatic hydrolysis experiments and analysis. 

Description Specification Producer 

Materials 

Casein CAS No.: 9000-71-9 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Citric acid monohydrate 
(≥ 99%) 

CAS No.: 7558-79-4 
Merck KGaA, Darmstadt, 
Germany 

D(+)-Glucose monohy-
drate 

CAS No.: 77938-63-7 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

EnerZyme® P7 
Metalloendopeptidase 
(EC 3.4.24.4) 

Erbslöh Geisenheim 
GmbH, Geisenheim, Ger-
many 

EnzytecTM Liquid D-Glu-
cose 

Enzymatic assay for D-Glucose in 
foodstuff and other sample materi-
als. Art. No. E8140 

R-Biopharm AG, 
Pfungstadt, Germany 

Ethylene glycol (≥ 98%) CAS No.: 107-21-1 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Flavourzyme® Blend of endo- and exopeptidases 
Novozymes A/S, 
Bagsværd, Denmark 

Heliaflor® 45 Sunflower seed meal 
All Organic Treasures 
GmbH, Wiggensbach, 
Germany 

Hydrochloric acid fum-
ing (37 %) 

CAS No.: 7647-01-0 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Iodine (≥ 99.8%) CAS No.: 7553-56-2 
Honeywell Fluka, Morris-
town, New Jersey, USA 

L-glutamic acid (≥ 98%) CAS No.: 56-86-0 
Honeywell Fluka, Morris-
town, New Jersey, USA 

Ninhydrin (≥ 99%) CAS No.: 485-47-2 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Potassium dihydrogen 
phosphate (≥ 99.5%) 

CAS No.: 7778-77-0 
Merck KGaA, Darmstadt, 
Germany 

Potassium iodide 
(≥99,5%) 

CAS No.: 7681-11-0 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Potassium hydroxide 
(≥85%) 

CAS No. 1310-58-3 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 



 

37 
 

di-Sodium hydrogen 
phosphate dihydrate 
(≥ 98%) 

CAS No.: 10028-24-7 
Merck KGaA, Darmstadt, 
Germany 

Spirizyme® Ultra 
Blend of α-amylases and glucoamyl-
ases 

Novozymes A/S, 
Bagsværd, Denmark 

Starch from potatoes CAS No.: 9005-25-8 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Termamyl® SC 
1,4-alpha-D-glucan glucano- 
hydrolase (EC 3.2.1.1) 

Novozymes A/S, 
Bagsværd, Denmark 

Tin(II) chloride dihydrate 
(≥ 98%) 

CAS No.: 10025-69-1 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

TRIS PUFFERAN® 
(≥ 99.9%) 

CAS No.: 77-86-1 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

Equipment 

Bioreactor, STR BioFlo 3000, Vmax = 6 L 
New Brunswick Scientific, 
Edison, New Jersey, USA 

External pH/mV meter FiveEasy 
Mettler-Toledo, Colum-
bus, Ohio, USA 

External thermometer testo® 110 
Testo SE & Co. KGaA, Ti-
tisee-Neustadt, Germany 

High-pressure homoge-
niser 

HPH 2000/4-SH5 
IKA®-Werke GmbH & CO. 
KG, Staufen, Germany 

Magnetic stirrer IKA® RH basic 2 
IKA®-Werke GmbH & CO. 
KG, Staufen, Germany 

UV-VIS Spectrophotome-
ter 

UVmini-1240 
Shimadzu Europa GmbH, 
Duisburg, Germany 

Water bath WBT 12 
Carl Roth GmbH + Co. KG, 
Karlsruhe, Germany 

3.1 Enzymatic starch hydrolysis using amylases 

Small-scale experiments were carried out in 15 mL test tubes to characterise the en-

zymes used in the starch hydrolysis process. The influence of temperature, pH and pres-

sure on the activity of the enzymes was investigated. In addition, starch hydrolysis batch 

experiments were performed in an STR for model parameterisation and validation of the 

optimised process design. 

The enzyme preparations Termamyl SC (Novozymes, Bagsværd, Denmark) and 

Spirizyme Ultra (Novozymes, Bagsværd, Denmark) were used for starch hydrolysis.  

Termamyl SC is a liquid enzyme preparation containing an heat-stable α-amylase ex-

pressed in and produced by a genetically modified strain of Bacillus (Novozymes A/S, 

2004). The systematic name for the enzyme is 1,4-alpha-D-glucan glucano-hydrolase (EC 

3.2.1.1).  Termamyl SC is an endo-amylase that hydrolyses 1,4-alpha-glucosidic linkages 
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in amylose and amylopectin (Novozymes A/S, 2004). The breakdown products are oligo-

saccharides of different chain lengths (Novozymes A/S, 2004). 

Spirizyme Ultra is liquid enzyme preparation containing highly efficient, heat-stable and 

robust glucoamylase and an exceptional heat-stable α-amylase (Novozymes A/S, 2010). 

The glucoamylases hydrolyse both 1,4- and 1,6-alpha linkages to liberate glucose (No-

vozymes A/S, 2010). 

3.1.1 Investigation of the temperature and pH-dependent activity of amylases 

For the determination of the influence of temperature (0-99 °C) and pH (2.0-10.0) on 

the enzyme activity, 5 mL buffer (pH 2.0, 3.0 and 4.0 using phosphate citrate buffer, pH 

5.0, 6.0, 7.0 and 8.0 using phosphate buffer, pH 9.0 and 10.0 using Tris-HCl buffer), con-

taining 20 g L−1 potato starch (Carl Roth, Karlsruhe, Germany), 0.05 mg L−1 Termamyl SC 

(Novozymes, Bagsværd, Denmark) or 0.001 mg L−1 Spirizyme Ultra (Novozymes, 

Bagsværd, Denmark) was added to a 15 mL test tube (VWR, Darmstadt, Germany), 

mixed and placed in a water bath (T = 0, 21, 40, 50, 60, 70, 80, 99 °C). After 10 min, 90 µL 

of the sample was drawn, and the reaction was stopped by adding 600 µL of 5 M HCl 

and heating the sample for 5 min at 80 °C in a heating block (VWR).  

To investigate the pH dependency, the temperature was set to 60 °C, and the pH value 

was varied from 2.0 to 10.0. To investigate the temperature dependency, the pH was 

set to 5.0, and the temperature was varied from 0-100 °C. 

The samples were analysed for their starch concentration (Section 3.1.3). The concen-

tration of converted starch was then calculated based on the initial starch concentration 

(20 g L-1). The determined converted starch concentrations were finally standardised. A 

value of 1 was set for the highest converted starch concentration. The other results were 

scaled to the maximum result. 

3.1.2 Starch hydrolysis batch experiments in a stirred tank reactor 

Starch hydrolysis experiments were performed in a 6 L STR (BioFlo 3000, New Brunswick 

Scientific, Eppendorf, Hamburg, Germany) (Figure 10).  
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Figure 10: Batch enzymatic starch hydrolysis in a 6 L STR (BioFlo 3000, New Brunswick Scien-

tific, Eppendorf, Hamburg, Germany). 

3.0 L phosphate citrate buffer (pH = 4.15), with approx. 45 g L−1 potato starch (Carl Roth, 

Karlsruhe, Germany) was added to the reactor. The temperature was set to 60 °C, the 

stirrer speed (NStirr) to 300 rpm, and the pH was controlled at 4.15 using 20% w/v HCl 

and 20% w/v KOH. After the temperature in the reactor was achieved, the enzymes Ter-

mamyl SC (Novozymes, Bagsværd, Denmark) and Spirizyme Ultra (Novozymes, 

Bagsværd, Denmark) were added to the reactor. Every 5-15 min, 15 mL of sample was 

drawn from the reactor. Before the sample could be taken, 15 mL of dead sample vol-

ume was discarded. To analyse the starch concentration (Section 3.1.3), 360 µL of each 

sample was mixed with 2.4 mL 5 M HCl and heated for 5 min at 80 °C in a heating block 

(VWR, Darmstadt, Germany) to stop the reaction in the sample. The remaining samples 

were put on ice until they were used to determine the glucose concentration (Section 

3.1.4). 

3.1.3 Determination of starch concentration 

The starch concentration of the samples was determined using the potassium iodide 

method (Illanes, 2008). In the first step, a potassium iodide solution was prepared, con-

taining 20 g L−1 potassium iodide (Carl Roth, Karlsruhe, Germany) and 2 g L-1 iodine 

(Riedel-de Haën, Honeywell, Seelze, Germany), dissolved in H2O. 50 µL of the potassium 

iodide solution was added to each mixture of sample and HCl (690 µL). After that, the 

DescriptionLabel

E1 (Termamyl SC)B 001

E2 (Spirizyme Ultra)B 002

Acid – 20% w/v HClB 003

Base – 20% w/v KOHB 004

Temperature controlTIC 001

pH controlXIC 002
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absorbance of each sample was measured in a UV-visible spectrophotometer (UVmini-

1240, Shimadzu Europa GmbH, Duisburg, Germany) at a wavelength of 623 nm. 

A calibration curve (Figure 11) was generated to calculate the starch concentration in 

the samples, using standards with a defined amount of potato starch (Carl Roth, Karls-

ruhe, Germany). 

 

Figure 11: Calibration curve for determining the starch concentration using potato starch 

standards, with R2 = 0.997. Error bars represent the mean value ± of one standard deviation re-

sulting from a triple determination. 

The starch concentration was calculated using the equation resulting from the calibra-

tion curve and the dilution factor (Equation 6). 

𝑐𝑆𝑡𝑎𝑟𝑐ℎ 𝑖𝑛 𝑔 𝐿−1 = (
𝐴623𝑛𝑚

0.225
− 0.0032) ∙ 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 (6) 

A sample containing 0.5 g L-1 potato starch (Carl Roth, Karlsruhe, Germany) was pre-

pared and determined in triplicate for method validation. The method determined a 

starch concentration of 0.494 ± 0.033 g L-1. 

3.1.4 Determination of glucose concentration 

The glucose concentration was determined using an enzymatic assay for D-glucose in 

foodstuff and other sample materials (EnzytecTM Liquid D-Glucose, R-Biopharm AG, 

Darmstadt, Germany) (R-Biopharm AG, 2022). 
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A sample containing 0.5 g L-1 glucose (Carl Roth, Karlsruhe, Germany) was prepared and 

determined in triplicate for method validation. The method determined a glucose con-

centration of 0.503 ± 0.004 g L-1. 

3.1.5 Determination of intermediate product concentration 

The concentration of the intermediate products (IP) was calculated based on the meas-

ured starch (substrate, S) and glucose (product, P) concentrations (Equation 7 ).  

𝐼𝑃𝑆𝑎𝑚𝑝𝑙𝑒 = 𝑆𝑡=0 𝑚𝑖𝑛 − 𝑆𝑆𝑎𝑚𝑝𝑙𝑒 − 𝑃𝑆𝑎𝑚𝑝𝑙𝑒 (7) 

The remaining starch concentration in the sample (SSample)  and the glucose concentra-

tion (PSample) formed were subtracted from the starch concentration at the beginning of 

the experiment (St = 0 min). 

3.2 Enzymatic proteolysis using peptidases 

Small-scale experiments were carried out in 2 mL test tubes to characterise the enzymes 

used in the proteolysis process. The influence of temperature, pH and pressure on the 

activity of the enzymes was investigated. In addition, proteolysis batch experiments 

were performed in a 6 L STR for model parameterisation and validation of the optimised 

process design.  

The enzyme preparations EnerZyme P7 (Erbslöh, Geisenheim, Germany) and Fla-

vourzyme (Novozymes, Bagsværd, Denmark) were used for proteolysis.  

EnerZyme P7 is a concentrated liquid enzyme preparation containing a metalloendopep-

tidase (EC 3.4.24.4) from Bacillus subtilis for protein degradation in vegetable raw ma-

terials (ERBSLÖH Geisenheim GmbH). The activity range of the enzyme is between pH 

5.0 and 10.0, with the optimum at pH 7.0 (ERBSLÖH Geisenheim GmbH). The tempera-

ture range is between 25-70 °C, with the optimum at 55 °C (ERBSLÖH Geisenheim 

GmbH). 

Flavourzyme is a fungal peptidase complex produced by submerged fermentation of a 

selected strain of Aspergillus oryzae, which has not been genetically modified. It con-

tains endopeptidase and exopeptidase activities (Merz et al., 2015; Novozymes, 2002). 
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The optimal pH for the enzyme complex ranges from 5.0 to 7.0. The optimal tempera-

ture for the enzyme complex is around 50 °C (Novozymes, 2002). 

3.2.1 Investigation of the temperature and pH-dependent activity of peptidases 

1 mL buffer (pH 4 using phosphate citrate buffer, pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5 and 8.0 

using phosphate buffer, pH 9.0 and 9.5 using Tris-HCl buffer) with 2 g L−1 casein powder 

(Carl Roth, Karlsruhe, Germany), 0.2 mg L−1 EnerZyme P7 (Erbslöh, Geisenheim, Ger-

many) or 0.2 mg L−1 Flavourzyme (Novozymes, Bagsværd, Denmark) was added to a 

2 mL test tube (VWR, Darmstadt, Germany), mixed and placed in a water bath (T = 25, 

30, 35, 40, 45, 50, 55, 60, 65 ad 70 °C). After a reaction time of 30 min, 0.1 mL of sample 

was drawn, and the reaction was stopped by heating the sample for 5 min at 95 °C in a 

heating block (VWR, Darmstadt, Germany). The samples were then analysed for the con-

centration of free amino acids (Section 3.2.3). 

To investigate the pH dependency, the temperature was set to 50 °C, and the pH value 

was varied from 4.0 to 9.5. To investigate the temperature dependency, the pH was set 

to 7.0, and the temperature was varied from 25-70 °C. 

The samples were analysed for their concentration of free amino acids (Section 3.2.3). 

The measured free amino acid concentrations were finally standardised. A value of 1.0 

was set for the highest measured concentration of free amino acids. The other results 

were scaled to the maximum result. 

3.2.2 Proteolysis batch experiments in a stirred tank reactor 

The batch proteolysis experiments were performed in a 6 L STR (BioFlo 3000, New 

Brunswick Scientific, Eppendorf, Hamburg, Germany) (Figure 12).  
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Figure 12: Batch enzymatic proteolysis in a 6 L STR (BioFlo 3000, New Brunswick Scientific, Ep-

pendorf, Hamburg, Germany). 

3 L phosphate buffer (pH = 7.5), with 30-50 g L−1 organic sunflower seed meal (All Or-

ganic Treasures, Wiggensbach, Germany), was added to the STR. The temperature was 

set to 50 °C, NStirr to 300 rpm, and the pH was controlled at 7.5 using 20% w/v HCl and 

20% w/v KOH. Flavourzyme (Novozymes, Bagsværd, Denmark) was added to the reactor 

at a defined processing time. Every 5-15 min, 15 mL of sample was drawn from the re-

actor. Before the sample could be taken, 15 mL of dead sample volume was discarded. 

The reaction in the sample was stopped by heating 1 mL of the sample for 5 min at 95 °C 

in a heating block (VWR, Darmstadt, Germany). The samples were then analysed for the 

concentration of free amino acids (Section 3.2.3). 

3.2.3 Determination of the free amino acid concentration 

The free amino acid concentration was determined using the ninhydrin method (Anan-

tharaman et al., 2017; Chutipongtanate et al., 2012; Kaspar et al., 2009).  

For the preparation of the ninhydrin solution, two solutions were prepared and mixed 

in a ratio of 1:1. For the preparation of the first solution, 1.6 g L−1 tin chloride dihydrate 

(Carl Roth, Karlsruhe, Germany) was dissolved in citrate-phosphate buffer (pH = 5.2). To 

prepare the second solution, 40 g L−1 ninhydrin (Carl Roth, Karlsruhe, Germany) was dis-

solved in ethylene glycol (Carl Roth, Karlsruhe, Germany).  

DescriptionLabel

E2 (Flavourzyme)B 001

Acid – 20% w/v HClB 002

Base – 20% w/v KOHB 003

Temperature controlTIC 001

pH controlXIC 002
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Then, 1 mL of the ninhydrin solution was added to 100 µL of the sample and incubated 

at 80 °C for 20 min in a water bath (WBT 12, Carl Roth, Karlsruhe, Germany). After that, 

5 mL of isopropyl alcohol (Carl Roth, Karlsruhe, Germany) was added, and the absorb-

ance of the mixture was measured in a UV-visible spectrophotometer (UVmini-1240, 

Shimadzu Europa GmbH, Duisburg, Germany) at a wavelength of 570 nm.  

A calibration curve was determined (Figure 13) to calculate the concentration of free 

amino acids in the samples, using standards with a defined amount of L-glutamic acid 

(Honeywell Fluka, Morristown, New Jersey, USA). 

 

Figure 13: Calibration curve for determining the free amino acid concentration using L-glutamic 

acid standards, with R2 = 0.9972. Error bars represent the mean value ± of one standard devia-

tion resulting from a triple determination. 

To calculate the total free amino acid concentration from the concentration of L-glu-

tamic acid, the composition of amino acids in sunflower seed meal with 33.53% crude 

protein (Villamide and San Juan, 1998) was considered (Table 4). 
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Table 4: Amino acid composition of sunflower seed meal with 33.53% crude protein (Villamide 

and San Juan, 1998). 

Amino acid 
Amount in 33.53% 

crude protein [%] 

Molar mass 

[g mol-1] 

Share of molar mass in 

33.53% crude protein 

[g mol-1] 

Lysine 1.21 146.19 5.28 

Methionine 0.76 149.21 3.38 

Cystine 0.56 240.30 4.01 

Methionine + cys-

tine 
1.32 194.76 7.67 

Threonine 1.43 119.12 5.08 

Isoleucine 1.36 131.17 5.32 

Leucine 2.36 131.17 9.23 

Valine 1.71 117.15 5.97 

Histidine 0.85 155.15 3.93 

Arginine 2.92 174.20 15.17 

Glycine 2.11 75.07 4.72 

Serine 1.57 105.09 4.92 

Phenylalanine 1.65 165.19 8.13 

Alanine 1.53 89.09 4.07 

Tyrosine 0.86 181.19 4.65 

Aspartic acid 3.29 133.10 13.06 

Glutamic acid 6.60 147.13 28.96 

Proline 1.44 115.13 4.94 

Total 33.53 2569.41 138.40 

The amino acids in sunflower seed meal with 33.53% crude protein have a combined 

molar mass of 138.40 g L-1. Divided by the molar mass of L-glutamic acid 

(M = 147,13 g mol-1), a value of 0.94 is obtained. The values resulting from the calibra-

tion curve are multiplied by 0.94 and the dilution factor to calculate the concentration 

of free amino acids (Equation 8). 

𝑐𝑓𝑟𝑒𝑒 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 𝑖𝑛 𝑔 𝐿−1 = (
𝐴570𝑛𝑚

1.5083
− 0.0155) ∙ 𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛 ∙ 0.94 (8) 

For method validation, a sample containing 0.300 g L-1 L-glutamic acid (Honeywell Fluka, 

Morristown, New Jersey, USA) was prepared and determined in triplicate. The method 

determined an L-glutamic acid concentration of 0.310 ± 0.015 g L-1. 
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3.3 High-pressure treatment of hydrolytic enzymes 

In the first step, the enzyme solutions were diluted with buffer and cooled to a temper-

ature of approx. 10 °C. Then, the enzyme solutions were added to the reservoir of the 

high-pressure homogeniser (HPH 2000/4-SH5, IKA®-Werke GmbH & CO. KG, Staufen, 

Germany) (Figure 14). 

 

Figure 14: Treatment of enzyme solutions in a high-pressure homogeniser. 

The flow rate of the high-pressure homogeniser was set to 3 L h-1. The desired pressure 

(500, 1000, 1500 and 2000 bar) was set via a hand valve. Once the desired pressure was 

reached, 30 mL of the sample was drawn and put on ice. 

Subsequently, the enzyme activity was determined and compared with the activity of 

the native untreated (native) enzyme solution. 

3.3.1 High-pressure treatment of amylases 

The influence of high pressure on the activity of the enzyme preparations Termamyl SC 

(Novozymes, Bagsværd, Denmark) and Spirizyme Ultra (Novozymes, Bagsværd, Den-

mark) was investigated. The enzyme preparations were diluted 1:1000 using phosphate-

citrate buffer (pH = 5.0) and were then treated in a high-pressure homogeniser at 500, 

1000, 1500 and 2000 bar. 

To determine the enzyme activity after high-pressure treatment, 40 mL phosphate cit-

rate buffer (pH = 5.0) containing 20 g L−1 potato starch (Carl Roth, Karlsruhe, Germany) 
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was added to a 50 mL test tube. Then 0.25 mL of 1:1000 diluted Termamyl SC (native or 

pressure treated at 500, 1000, 1500 and 2000 bar) or 1.0 mL of 1:1000 diluted Spirizyme 

Ultra (native or pressure treated at 500, 1000, 1500 and 2000 bar) was added. After 

adding the enzymes, the test tubes were placed in a water bath (T = 40, 60, 80 °C). 

After 20 min, 0.36 mL of the sample was drawn from the test tubes with Termamyl SC, 

and the reaction in the sample was stopped by adding 2.40 mL of 5 M HCl and heating 

the sample for 5 min at 80 °C in a heating block (VWR). The samples were analysed for 

their starch concentration (Section 3.1.3). The concentration of converted starch was 

then determined based on the initial starch concentration (20 g L-1). The converted 

starch concentration corresponds to the intermediate product's concentration (oligo-

saccharides). 

From the test tubes where Spirizyme Ultra was used, 2 ml of sample were drawn after a 

processing time of 20 min and placed on ice. The samples were analysed for their glu-

cose concentration (Section 3.1.4). 

3.3.2 High-pressure treatment of peptidases 

The influence of high-pressure treatment on the activity of the enzyme preparations 

EnerZyme P7 (Erbslöh, Geisenheim, Germany) and Flavourzyme (Novozymes, Bagsværd, 

Denmark) was investigated. The enzyme preparations were diluted 1:1000 using phos-

phate buffer (pH = 7.5) and were then treated in a high-pressure homogeniser at 500, 

1000, 1500 and 2000 bar. 

To determine the enzyme activity after high-pressure treatment, 0.8 mL phosphate 

buffer (pH = 7.5) containing 2.5 g L−1 casein (Carl Roth, Karlsruhe, Germany) was added 

to a 2 mL test tube. Then 0.2 mL of 1:1000 diluted EnerZyme P7 (native or pressure 

treated at 500, 1000, 1500 and 2000 bar) or 0.2 mL of 1:1000 diluted Flavourzyme (na-

tive or pressure treated at 500, 1000, 1500 and 2000 bar) was added. After adding the 

enzymes, the test tubes were placed in a water bath (T = 25, 50, 70 °C). 

After a reaction time of 30 min, 0.1 mL of sample was drawn, and the reaction was 

stopped by heating the sample for 5 min at 95 °C in a heating block (VWR, Darmstadt, 

Germany). The samples were then analysed for the concentration of free amino acids 

(Section 3.2.3). 
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3.4 Modelling and simulation of enzymatic hydrolysis processes 

The model for enzymatic hydrolysis processes was written using the software C-eStIM-

2015 (Hass et al., 2005a; Kuhnen, 2008). The software includes different algorithms for 

solving ODE systems and identifying parameters (Witte et al., 1996). Parameters, initial 

values and time-dependently changing state variables (profiles) are provided in text files 

(control- and profile data file: *.xct, *.cfg). The calculation results are also provided in 

text files (simulation value: *.sim). The readily programmed submodel of a process 

(*.cpp) is then translated with a suitable compiler into an executable file (*.exe). At the 

call of the executable file, all initial values, parameters, profiles and the set-up of the 

solver are read from the parameter file. The calculation occurs with a static or dynamic 

step size depending on the solving algorithm. The executable program can be used to 

test and validate the described model. From the executable file, also so-called Dynamic 

Link Libraries (DLLs) can be created. These DLLs can be implemented into process control 

and simulation software like WinErs (Ingenieurbüro Dr.-Ing. Schoop GmbH, 2018). 

The software R (R Core Team, 2014) was used to parameterise the developed model. R 

is a programming language for statistical computing and graphics supported by the R 

Core Team and the R Foundation for Statistical Computing (Giorgi et al., 2022). Users 

have created packages to augment the functions of the R language. In addition, R offers 

special Nelder-Mead packages. 

Apart from C-eStIM and R, the software summarised in Table 5 was used. 
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Table 5: Software tools used for the development of control strategies and the process design 

of enzymatic hydrolysis processes. 

Software Version Developer 

C-eStIM-2015 2015 
Florian Kuhnen, City University of Ap-

plied Sciences, Bremen, Germany 

Gnuplot 5.2.6 Thomas Williams, Colin Kelley 

Notepad++ 8.5 Notepad++ Team 

R 4.2.2 
R Core Team and the R Foundation for 

Statistical Computing 

RStudio 2022.07.1 RStudio 

Visual Studio 2017 Community Microsoft 

Windows 10 Microsoft 

WinErs Professional 7.4.C 
Ingenieurbüro Dr.-Ing. Schoop GmbH, 

Hamburg, Germany 

WinErs Simulation 7.6.D 
Ingenieurbüro Dr.-Ing. Schoop GmbH, 

Hamburg, Germany 

3.4.1 General modelling approach 

The dynamic mechanistic mathematical model for the enzymatic hydrolysis processes 

was developed, applying the modelling cycle (Moser et al., 2020) shown in Figure 15. 

 

Figure 15: Structure of the modelling cycle. 

Process description / Characterisation 
experiments

Mechanistic model

Model parametrisation

Design of experiments

Model for enzymatic hydrolysis processes

Comparison 
of experimental 

and simulated data



 

50 
 

In the first step, a dynamic mechanistic mathematical model representing the kinetics 

of the enzymatic hydrolysis processes (combined starch hydrolysis and proteolysis) de-

rived from appropriate process descriptions and the knowledge gained from the small-

scale characterisation experiments was developed. 

In the next step, the model parameterisation was carried out based on the results from 

the characterisation experiments. 

Then, experiments in an STR were planned with the first model version. After the exper-

iments were carried out, the data simulated by the model and the experimental data 

were compared, and, if necessary, the model parameterisation was adjusted again. 

3.4.2 Model parameterisation 

The parameterisation of the C-eStIM model for enzymatic hydrolysis processes was re-

alised using parts of the R (V4.2.2) version of the “mDoE-toolbox” (Moser et al., 2021). 

Therefore, the R packages “lme4”, “ggplot2”, “ggthemes”, “nloptr”, “RColorBrewer”, 

“reshape2”, “pracma”, “truncnorm”, ”zoo”, and “R.matlab” were needed. 

The first step defines the number of experiments with associated experimental results. 

Then the C-eStIM model, with associated configuration files, is specified. Subsequently, 

the parameters to be adjusted are defined with lower and upper bounds. Afterwards, 

the simulated variables (e.g., substrate or product concentration) are specified, whose 

curves will be fitted to the experimental data. Finally, the maximum steps of the Nelder-

Mead algorithm and the stop tolerance are set. 

For parameterisation, the model parameters were adapted by minimizing the weighted 

root-mean-square deviation (wRMSD) between the simulated and the experimental val-

ues (Equation 9) using the Nelder-Mead algorithm (Brüning et al., 2017; Möller et al., 

2020; Moser et al., 2021; Nelder and Mead, 1965). 

𝑤𝑅𝑀𝑆𝐷 = √∑
(𝑦𝑠,𝑖 − 𝑦𝑚,𝑖)

2

𝑛

𝑛

𝑖=1

∙ 𝑘𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔  (9) 

The wRMSD was calculated from the squared difference between the measured value 

ym and the simulated value ys, divided by the number of data points n in the data set and 

multiplied by a factor for weighting individual data points kweighting. 
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To determine the accuracy of the fit after parameterisation, the coefficient of determi-

nation (R2) was calculated by dividing the difference between experimental yi and simu-

lated data ys,i with the difference between the experimental data and their mean value 

ӯ (Möller et al., 2019; Möller et al., 2020; Moser et al., 2021). 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑠,𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 (10) 

In this research, an R2 greater than 0.9 was considered a sufficiently accurate fit.  

3.5 Development of the digital twin for enzymatic hydrolysis processes 

For the development of a digital twin for enzymatic hydrolysis processes in an STR, the 

new mechanistic mathematical model of the enzymatic hydrolysis processes was imple-

mented into an existing stand-alone digital twin of a 20 L STR developed by the working 

group of Prof. Dr. Volker C. Hass at Furtwangen University (Appl et al., 2021; Gerlach et 

al., 2013; Gerlach et al., 2015; Hass et al., 2005a, 2005b; Hass, 2005; Hass et al., 2012; 

Hass, 2016; Hirschmann et al., 2018; Hirschmann, 2021; Isimite et al., 2018). This stand-

alone digital twin has been shown to simulate the cultivation of S. cerevisiae, the pro-

duction of ethanol by S. cerevisiae and the whole-cell biocatalysis of ethyl-3-hydroxy-

butyrate (E3HB) from the substrate ethyl acetoacetate in a 20 L STR under aerobic and 

anaerobic conditions. The stand-alone digital twin consists of four submodels represent-

ing the biological and physical-chemical processes in the reactor and the interactions 

with associated equipment (plant and periphery). The submodels were written in the 

C++-based modelling and simulation environment C-eStIM (Hass et al., 2005a; Kuhnen, 

2008). The C++ models were implemented in the modular process control, simulation 

and automation system WinErs (Ingenieurbüro Dr.-Ing. Schoop GmbH, 2018) using C-

eStIM-DLL interfaces. In addition, the stand-alone digital twin is equipped with a control 

and automation submodel and a GUI, which were created directly in WinErs (Inge-

nieurbüro Dr.-Ing. Schoop GmbH, 2018). 



 

52 
 

3.6 Development of control and process design strategies  

Using WinErs (Ingenieurbüro Dr.-Ing. Schoop GmbH, 2018), standard and multivariable 

controllers were implemented to the stand-alone digital twin for enzymatic hydrolysis 

processes in an STR. 

Using R and the C-eStIM model for the enzymatic hydrolysis processes, a process design 

strategy according to the OLFO principle, as well as a script for the execution of a mDoE, 

was realised. 

3.6.1 Standard and multivariable control 

In the modular process control, simulation and automation system WinErs (Inge-

nieurbüro Dr.-Ing. Schoop GmbH, 2018), the realisation of control strategies is carried 

out using graphical block structures and functional plans. WinErs contains an extensive 

library with analogue and binary blocks (e.g., P, PI, PID, switches, relays). These blocks 

can be combined arbitrarily with each other or with other control algorithms. 

Further automation functions are sequence control with functional plans (grafcet, 

batch-recipes), fuzzy-controllers with a graphical development environment, interface 

for own programmed algorithms (DLL-block) and user-defined blocks for differential 

equations, a function generator and a program generator. 

The simulation modus in WinErs allows testing and optimising the implemented control 

strategies. 

3.6.2 Open-loop-feedback-optimal strategy 

The OLFO strategy was realised in R (V4.2.2), using parts of the “mDoE-toolbox” (Moser 

et al., 2021). The R-packages “lme4”, “ggplot2”, “ggthemes”, “nloptr”, “RColorBrewer”, 

“reshape2”, “truncnorm”, and “zoo” were needed. 

Parameterisation part: 

The parameterisation part corresponds to the R script described in Section 3.4.2. 

Optimisation part: 

The first step selects the C-eStIM model with corresponding configuration files (list of 

parameters, control files) used for optimisation. Then, the starting and end time of the 
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experiments is set. In addition, the optimisation variables (e.g., feed rates, temperature) 

with their lower and upper bound are chosen. Different profiles, such as constant or 

linear increasing, can be selected for the feed rates. Furthermore, it is determined at 

which time of the experiment the variables should take effect. After that, the Nelder-

Mead algorithm used for the optimisation is configured. Therefore, the maximum steps 

and the stop tolerance are defined. Finally, the optimisation criterion (e.g., product con-

centration or cost function) is determined. The optimisation criterion can be minimised 

or maximised. 

3.6.3 Model-based design of experiments 

In this work, parts of the software tool “mDoE-toolbox” implemented in R (V4.2.2) were 

used, which makes the mDoE concept applicable to bioprocesses (Moser et al., 2021). 

Therefore, the R packages “lme4”, “ggplot2”, “ggthemes”, “nloptr”, “RColorBrewer”, 

“readxl”, “lhs”, “reshape2”, “pracma”, “plotly”, “truncnorm”, “zoo”, “rsm”, “R.matlab”, 

“matrixStats”, “openxlsx” and “corrplot” were needed. 

The first step selects the C-eStIM model with corresponding configuration files (list of 

parameters, control files). Then, the DoE design space is set up with the number of dif-

ferent factors (e.g., feed rates) and the number of points in the experimental design. 

After that, the lower and upper bound of the DoE factors is defined. Different profiles, 

such as constant or linear increasing, can be selected for the feed rates. Furthermore, 

it is determined at which time of the experiment the variables should take effect. Fi-

nally, the DoE response (e.g., product concentration or cost function) is specified.  
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4 Model for enzymatic hydrolysis processes 

In this section, a brief process description for enzymatic starch hydrolysis and proteolysis 

is given, and it is shown how the model equations were derived from this. In addition, 

data from experimental studies concerning the reaction rate dependency on tempera-

ture and pH values are shown. Furthermore, it is shown how treatment in a high-pres-

sure homogenisation influences the activity of the enzymes used for the enzymatic hy-

drolysis processes. Finally, the results of experiments on enzymatic hydrolysis in an STR 

are presented, which were used for the parameterisation of the model. 

4.1 Process description and model equations 

The equations implemented in the model for the combined enzymatic starch hydrolysis 

and proteolysis have a similar structure and are indicated by suffixes P1 (starch hydrol-

ysis) and P2 (proteolysis). For simplicity, the general equations are presented below 

without the suffixes. All model variables with their lower and upper bounds and param-

eters with their values can be found in Appendix B. 

The structure of the model for enzymatic hydrolysis processes can be seen in Figure 16. 

 

Figure 16: Structure of the model for enzymatic hydrolysis processes. 

It is assumed that the substrates (S) for starch hydrolysis and proteolysis are composed 

of hydrolysable (SH) and non-hydrolysable components (SN). Therefore, the ratio must 
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be set via parameterisation before the simulation experiment depending on the type of 

substrate used.  

During starch hydrolysis, 99% of the hydrolysable components of the starch (SH) are 

converted by α-amylase (E1) into oligosaccharides (IP) and 1% directly into glucose (P) 

(Buckow et al., 2005; Buckow et al., 2007; Nebesny, 1989). The oligosaccharides formed 

are then converted by glucoamylase (E2) to 100% glucose (P).  

During proteolysis, 95% of the hydrolysable components of the protein (SH) are con-

verted by endopeptidase (E1) into peptides (IP) and 5% directly into free amino acids (P) 

(Rao et al., 1998). The peptides (IP) formed are then converted by exopeptidase (E2) to 

100% into free amino acids (P). 

The reaction rates (r) can be calculated using Michaelis-Menten kinetics, with maximal 

reaction rates (rmax), Michaelis-Menten constants (KM) and the concentration of the hy-

drolysable components of the starch (SH1) (Equation 11). 

𝑟 =
𝑟𝑚𝑎𝑥 ∙ 𝑆𝐻1

𝐾𝑀 +  𝑆𝐻1
 (11) 

Michaelis-Menten kinetics were chosen because they have already been successfully 

applied by other research groups to model the enzymatic hydrolysis processes (Beaubier 

et al., 2021; Beschkov et al., 1984; Kusunoki et al., 1982; Lee et al., 1992). In addition, 

the relatively simple structure of the kinetics offers rapid adaptability, which supports 

the generic approach of the model. 

For the degradation of the substrate through enzyme 1 (E1) and the degradation of the 

intermediate product through enzyme 2 (E2), Michaelis-Menten kinetics were imple-

mented in the model (Equations 12 and 13).  

𝑟𝑆𝐼𝑃,𝐸1 =
𝑟𝑚𝑎𝑥,𝑆𝐼𝑃,𝐸1 ∙ (𝑓𝑇,𝑎𝑐𝑡,𝐸1 ∙ 𝑓𝑝𝐻,𝑎𝑐𝑡,𝐸1 ) ∙  𝑆𝐻1

𝐾𝑀,𝑆𝐼𝑃,𝐸1 + 𝑆𝐻1
 (12) 

𝑟𝐼𝑃𝑃,𝐸2 =
𝑟𝑚𝑎𝑥,𝐼𝑃𝑃,𝐸2 ∙ (𝑓𝑇,𝑎𝑐𝑡,𝐸2 ∙ 𝑓𝑝𝐻,𝑎𝑐𝑡,𝐸2 ) ∙  𝐼𝑃1

𝐾𝑀,𝐼𝑃𝑃,𝐸2 + 𝐼𝑃1
 (13) 
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The substrate to intermediate product degradation rate (rSIP,E1) is the quotient of the 

maximum degradation rate (rmax,SIP,E1) multiplied by factors for the dependence on tem-

perature (fT,act,E1) and pH value (fpH,act,E1)  and the concentration of hydrolysable compo-

nents of the substrate (SH1) divided by the sum of the half-saturation constant (KM,SIP,E1) 

and the concentration of hydrolysable components of the substrate (SH1).  

The reaction rate for intermediate product to product degradation (rIPP,E2) is the quotient 

of the maximum degradation rate (rmax,IPP,E2) multiplied by factors for the dependence 

on temperature (fT,act,E2) and pH value (fpH,act,E2)  and the concentration of intermediate 

product (IP1) divided by the sum of the half-saturation constant (KM,IPP,E2) and the con-

centration of the intermediate product (IP1). 

The rates for the build-up of intermediate product (rIPS,E1) and product(rPS,E1) from sub-

strate, as well as for the build-up of product from intermediate product (rPIP,E2), are ob-

tained by multiplying the degradation rates (Equations 12 and 13) by yield coefficients 

(YIPS,E1, YPIP,E2) (Equations 14-16). 

𝑟𝐼𝑃𝑆,𝐸1 = 𝑌𝐼𝑃𝑆,𝐸1 ∙ 𝑟𝑆𝐼𝑃,𝐸1 (14) 

𝑟𝑃𝑆,𝐸1 = (1 − 𝑌𝐼𝑃𝑆,𝐸1) ∙ 𝑟𝑆𝐼𝑃,𝐸1 (15) 

𝑟𝑃𝐼𝑃,𝐸2 = 𝑌𝑃𝐼𝑃,𝐸2 ∙ 𝑟𝐼𝑃𝑃,𝐸2 (16) 

The yield coefficients (YIPS,E1, YPIP,E2) used in the model were based on assumptions de-

rived from literature data (Buckow et al., 2005; Buckow et al., 2007; Nebesny, 1989; Rao 

et al., 1998). 

The denaturation rates of the enzymes are calculated using Equations 17 and 18. 

𝑟𝑑𝑒𝑛,𝐸1 = 𝑟𝑚𝑎𝑥,𝑑𝑒𝑛,𝐸1 ∙ 𝑓𝑇,𝑠𝑡𝑎,𝐸1 ∙ 𝑓𝑝𝐻,𝑠𝑡𝑎,𝐸1 (17) 

𝑟𝑑𝑒𝑛,𝐸2 = 𝑟𝑚𝑎𝑥,𝑑𝑒𝑛,𝐸2 ∙ 𝑓𝑇,𝑠𝑡𝑎,𝐸2 ∙ 𝑓𝑝𝐻,𝑠𝑡𝑎,𝐸2 (18) 

Therefore, the maximal denaturation rates rmax,den,E1 and rmax,den,E2 are multiplied by fac-

tors for the temperature (fT,sta,E1, fT,sta,E2) and pH (fT,sta,E1, fT,sta,E2) dependency on the sta-

bility of the enzymes. 
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Furthermore, a simplified model of an ideal STR was implemented into the model (Figure 

17). 

 

Figure 17: Simplified STR model of the model for enzymatic hydrolysis processes, with inflows, 

concentrations in the inflows, concentrations in the reactor and outflow of broth from the reac-

tor (FB,1). 

Balance equations were introduced to map the concentration changes in the STR. The 

inflows to the reactor were summed up to Fin (Equation 19). 

𝐹𝑖𝑛 = 𝐹𝑆,0,𝑃1 + 𝐹𝐸1,0,𝑃1 + 𝐹𝐸2,0,𝑃1 + 𝐹𝑆,0,𝑃2 + 𝐹𝐸1,0,𝑃2 + 𝐹𝐸2,0,𝑃2 (19) 

The differential equations in the model were created using the general dynamic mass 

balance (Equation 20). 

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑛𝑝𝑢𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡 + 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 – 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (20) 

The reactor model of the ideal STR consists of seven differential equations (Equations 

21-27). The volume change (Equation 21) results from the difference between the inflow 

(Fin) and the outflow of broth (FB,1). 

𝑑𝑉𝐵

𝑑𝑡
= 𝐹𝑖𝑛 − 𝐹𝐵,1 (21) 

The change in the concentration of hydrolysable components of the substrate results 

from the concentration of hydrolysable components (SH0) in the inflow of substrate so-

lution (FS,0) minus a dilution term and the degradation by  E1 (Equation 22). 
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𝑑𝑆𝐻1 

𝑑𝑡
=

𝐹𝑆,0 ∙ 𝑆𝐻0

𝑉𝐵
−

𝑆𝐻1 ∙ 𝐹𝑖𝑛

𝑉𝐵
− 𝑟𝑆𝐼𝑃,𝐸1 ∙ 𝐸11 (22) 

The change in the concentration of the enzymes results from the concentration of the 

enzymes (E10, E20) in the inflows of enzyme solutions (FE1, FE2) minus a dilution term and 

the denaturation rates (Equations 23 and 24). 

𝑑𝐸11

𝑑𝑡
= (1 − 𝑓𝐸2,𝐹𝐸1

) ∙ (
𝐹𝐸1,0 ∙ 𝐸10

𝑉𝐵
) + 𝑓𝐸1,𝐹𝐸2

∙ (
𝐹𝐸2,0 ∙ 𝐸20

𝑉𝐵
) −

𝐸11 ∙ 𝐹𝑖𝑛

𝑉𝐵

− 𝑟𝑑𝑒𝑛,𝐸1 ∙ 𝐸11 
(23) 

𝑑𝐸21

𝑑𝑡
= (1 − 𝑓𝐸1,𝐹𝐸2

) ∙ (
𝐹𝐸2,0 ∙ 𝐸20

𝑉𝐵
) + 𝑓𝐸2,𝐹𝐸1

∙ (
𝐹𝐸1,0 ∙ 𝐸10

𝑉𝐵
) −

𝐸21 ∙ 𝐹𝑖𝑛

𝑉𝐵

− 𝑟𝑑𝑒𝑛,𝐸2 ∙ 𝐸21 
(24) 

Since many enzyme preparations on the market contain both α- and glucoamylase as 

well as endo- and exopeptidases, factors (fE2,FE1, fE1,FE2) were introduced to determine 

the composition of E1 and E2 in the feeds. 

The change in the concentration of the intermediate product results from the concen-

tration of intermediate product (IP0) in the inflow of substrate solution(FS,0) minus a di-

lution term and the degradation by E2, plus the formation through E1 (Equation 25). 

𝑑𝐼𝑃1 

𝑑𝑡
=

𝐹𝑆,0 ∙ 𝐼𝑃0

𝑉𝐵
−

𝐼𝑃1 ∙ 𝐹𝑖𝑛

𝑉𝐵
+ 𝑃𝐼𝑃 ∙ 𝑟𝐼𝑃𝑆,𝐸1 ∙ 𝐸11 − 𝑟𝐼𝑃𝑃,𝐸2 ∙ 𝐸21 (25) 

The build-up rate of the intermediate product from substrate (rIPS,E1) is multiplied by a 

proportionality factor (PIP) which can represent the integration of water during hydroly-

sis. 

The change in the concentration of the product results from the concentration of prod-

uct (P0) in the inflow of substrate solution (FS,0) minus a dilution term, plus the formation 

by E1 and E2 (Equation 26). 

𝑑𝑃1 

𝑑𝑡
=

𝐹𝑆,0 ∙ 𝑃0

𝑉𝐵
−

𝑃1 ∙ 𝐹𝑖𝑛

𝑉𝐵
+ 𝑃𝑃 ∙ 𝑟𝑃𝐼𝑃,𝐸2 ∙ 𝐸21 + 𝑟𝑃𝑆,𝐸1 ∙ 𝐸11 (26) 
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The build-up rate of the intermediate product from substrate (rPIP,E2) is multiplied by a 

proportionality factor (PP), representing water integration during hydrolysis. 

The change in the concentration of non-hydrolysable components of the substrate re-

sults from the concentration of non-hydrolysable components of substrate (SN0) in the 

inflow of substrate solution (FS,0) minus a dilution term (Equation 27). 

𝑑𝑆𝑁1 

𝑑𝑡
=

𝐹𝑆,0 ∙ 𝑆𝑁0

𝑉𝐵
−

𝑆𝑁1 ∙ 𝐹𝑖𝑛

𝑉𝐵
 (27) 

In addition, the overall substrate concentration is given by Equation 28. 

𝑆1 = 𝑆𝐻1 + 𝑆𝑁1 (28) 

The total substrate concentration (S1) is the sum of the hydrolysable (SH1) and non-hy-

drolysable components (SN1) of the substrate. 

4.2 Characterisation of the enzymes used for starch hydrolysis and proteolysis 

The activity of the enzymes used for starch hydrolysis (Termamyl SC and Spirizyme Ultra) 

and proteolysis (EnerZyme P7 and Flavourzyme) was examined for its dependence on 

temperature, pH and high-pressure treatment up to 2000 bar. 

All results of the experiments investigating the dependence of the enzyme activity on 

temperature and pH were normalised to values between 0 and 1 (Sections 3.1.1 and 

3.2.1). A value of 1 corresponds to the temperature or pH value at which the highest 

product concentration was formed.  

Furthermore, sigmoidal and double sigmoidal functions (Equation 29) (Brüning, 2016; 

Kuntzsch, 2014) were fitted manually to the experimental data. With an R2 greater than 

0.9, the fit was considered sufficiently good. 

𝑓𝑆𝑖𝑔,𝐷𝑆𝑖𝑔(𝑥) = (𝑌𝐿𝑆 +
𝑌𝑚𝑖𝑑 − 𝑌𝐿𝑆

1 + 𝑒−𝐾𝐿𝑆∙(𝑥−𝑟𝑚𝑎𝑥,𝑙𝑜𝑤)
) ∙ (1 +

(
𝑌𝑅𝑆

𝑌𝑚𝑖𝑑
− 1)

1 + 𝑒−𝐾𝑅𝑆∙(𝑥−𝑟𝑚𝑎𝑥,ℎ𝑖𝑔ℎ)
) (29) 

The value of a state variable is described by x. YLS is the value at low x, YRS is the value at 

high x, Ymid is the value between rmax,low and rmax,high, which are location parameters of 
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the low/high side of the function, KLS determines the slope on the low side, and KRS de-

termines the slope on the high side of the function. By adjusting the parameters YLS and 

YRS, it is also possible to generate sigmoidal functions. 

In the model, the factors (fT,act,E1, fT,act,E2, fpH,act,E1, fpH,act,E2) resulting from the sigmoidal 

and double sigmoidal functions for the temperature and pH-dependent enzyme activity 

are multiplied by the maximum reaction rates (rmax,SIP,E1, rmax,IPP,E2). 

In addition, sigmoidal and double sigmoidal functions were implemented to describe the 

dependence of the enzyme stability on temperature and pH. In the model, the factors 

(fT,sta,E1, fT,sta,E2, fpH,sta,E1, fpH,sta,E2) resulting from the sigmoidal and double sigmoidal func-

tions for the enzyme stability are multiplied by the maximum denaturation rates 

(rmax,den,E1, rmax,den,E2). The parameterisation of the sigmoidal and double sigmoidal func-

tions for enzyme stability is based on assumptions derived from literature data 

(Beaubier et al., 2021; Buckow et al., 2005; Buckow et al., 2007; ERBSLÖH Geisenheim 

GmbH; Nebesny, 1989; Novozymes, 2002; Novozymes A/S, 2004, 2010). The tempera-

ture and pH-dependent enzyme stability was implemented as preparation for develop-

ing a stand-alone digital twin of enzymatic hydrolysis processes in a PBR. The processing 

time of enzymatic hydrolysis in a PBR is usually very long, and it is impossible to exchange 

the enzymes, which is why stability plays a significant role. 

The complete set of parameters used to implement the sigmoidal and double sigmoidal 

functions in the model for enzymatic hydrolysis processes can be found in Appendix B. 

4.2.1 Temperature and pH dependence of the starch hydrolysis enzymes 

Figure 18 shows how temperature affects the activity of Termamyl SC (E1, P1) used in 

the starch hydrolysis process (P1). In addition, the sigmoidal functions representing the 

temperature-dependent activity and stability of the enzyme in the model are presented. 
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Figure 18: Experimentally (Activity E1 (exp)) determined temperature-dependent enzyme activ-

ity of Termamyl SC (E1), pH = 5.0, with fitted sigmoidal function for temperature-dependent en-

zyme activity (Activity E1 (Sig)), R2 = 0.993 and assumed sigmoidal function for temperature-

dependent enzyme stability (Stability E1 (Sig)). Error bars represent the mean value ± of one 

standard deviation resulting from a triple determination. 

For Termamyl SC, almost no activity could be determined at temperatures below 20 °C. 

The activity of Termamyl SC increased at the highest rate between 40 and 70 °C. The 

maximal activity was reached at 100 °C. A temperature change from 100 to 50 °C leads 

to an approximate decrease in enzyme activity of 70% for Termamyl SC. 

For Termamyl SC, the sigmoidal function for the temperature-dependent enzyme activ-

ity (fT,act,E1,P1) could be fitted to the experimentally determined data with R2 = 0.993.  

From 0-90 °C, the sigmoidal function for the temperature-dependent enzyme stability 

of Termamyl SC (fT,sta,E1,P1) remains at the minimum value of 0.1. Between 90-100 °C, a 

slight increase to a value of approx. 0.12 is indicated. 

Figure 19 shows how temperature affects the activity of Spirizyme Ultra (E2, P1) used in 

the starch hydrolysis process (P1). Furthermore, the sigmoidal functions representing 

the temperature-dependent activity and stability of the enzyme in the model are pre-

sented. 
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Figure 19: Experimentally (Activity E2 (exp)) determined temperature-dependent enzyme activ-

ity of Spirizyme Ultra (E2), pH = 5.0, with fitted sigmoidal function for temperature-dependent 

enzyme activity (Activity E2 (Sig)), R2 = 0.990 and assumed sigmoidal function for temperature-

dependent enzyme stability (Stability E2 (Sig). Error bars represent the mean value ± of one 

standard deviation resulting from a triple determination. 

For Spirizyme Ultra, almost no activity could be determined at temperatures below 

20 °C. The highest increase in activity for Spirizyme Ultra was found between 40 and 

60 °C. The maximum activity was reached at 70 °C and above. A temperature change 

from 100 to 50 °C leads to an approximate decrease in enzyme activity of 35% for 

Spirizyme Ultra. 

For Spirizyme Ultra, the sigmoidal function for the temperature-dependent enzyme ac-

tivity (fT,act,E2,P1) could be fitted to the experimentally determined data with R2 = 0.990.  

From 0-90 °C, the sigmoidal function for the temperature-dependent enzyme stability 

of Spirizyme Ultra (fT,act,E2,P1) remains at the minimum value of 0.1. Between 90-100 °C, 

a slight increase to a value of approx. 0.12 is indicated. 

Figure 20 shows how pH affects the Termamyl SC (E1) activity used in the starch hydrol-

ysis process. Furthermore, double sigmoidal functions representing the pH-dependent 

activity and stability of the enzyme in the model are presented. 
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Figure 20: Experimentally (Activity E1 (exp)) determined pH-dependent enzyme activity of Ter-

mamyl SC (E1), T = 60°C, with fitted double sigmoidal function for pH-dependent enzyme activ-

ity (Activity E1 (DSig)), R2 = 0.985 and assumed double sigmoidal function for pH-dependent en-

zyme stability (Stability E1 (DSig)). Error bars represent the mean value ± of one standard devi-

ation resulting from a triple determination. 

Termamyl SC shows almost no activity at pH values below 3 and above 8. The maximum 

activity was reached at a pH value of approx. 5. 

The double sigmoidal function for the pH-dependent enzyme activity (fpH,act,E1,P1) could 

be fitted to the experimentally determined data with R2 = 0.985.  

At a pH of 0, the double sigmoidal function for the pH-dependent enzyme stability of 

Termamyl SC (fpH,sta,E1,P1) has a value of 1.0. At a pH of 3, fpH,sta,E1,P1 drops to the minimum 

value of 0.1. At a pH of 9, fpH,sta,E1,P1 rises to the maximum value of 1.0. 

Figure 21 shows how pH affects the activity of Spirizyme Ultra (E2) used in the starch 

hydrolysis process. Furthermore, the double sigmoidal functions representing the pH-

dependent activity and stability of the enzyme in the model are presented. 
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Figure 21: Experimentally (Activity E2 (exp)) determined pH-dependent enzyme activity of 

Spirizyme Ultra (E2), T = 60 °C, with fitted double sigmoidal function for pH-dependent enzyme 

activity (Activity E2 (DSig)), R2 = 0.990 and assumed double sigmoidal function for pH-depend-

ent enzyme stability (Stability E2 (DSig). Error bars represent the mean value ± of one standard 

deviation resulting from a triple determination. 

For Spirizyme Ultra, almost no activity could be determined at pH values below 3 and 

above 10. The highest activity was found at pH values between 5 and 7. 

The double sigmoidal function for the pH-dependent enzyme activity (fpH,act,E2,P1) could 

be fitted to the experimentally determined data with R2 = 0.990.  

At a pH value of 0, the double sigmoidal function for the pH-dependent enzyme stability 

of Spirizyme Ultra (fpH,sta,E2,P1) has a value of 1.0. At a pH of 3, fpH,sta,E2,P1 drops to the 

minimum of 0.1. At a pH of 11, fpH,sta,E2,P1 rises to the maximum value of 1.0. 

4.2.2 Temperature and pH dependence of the proteolysis enzymes 

Figure 22 shows how temperature affects the activity of EnerZyme P7 (E1, P2) and Fla-

vourzyme (E2, P2) used in the proteolysis process (P2). Furthermore, sigmoidal and dou-

ble sigmoidal functions representing the temperature-dependent activity and stability 

of the enzymes in the model for enzymatic hydrolysis processes are presented. 
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Figure 22: Experimentally (Activity E1 (exp)) determined temperature-dependent enzyme activ-

ity of EnerZyme P7 (E1), pH = 7.0, with fitted double sigmoidal function for temperature-de-

pendent enzyme activity (Activity E1 (DSig)), R2 = 0.944 and assumed sigmoidal function for 

temperature-dependent enzyme stability (Stability E1 (Sig). Error bars represent the mean 

value ± of one standard deviation resulting from a triple determination. 

EnerZyme P7 showed the highest activity at a temperature of around 55 °C. Conversely, 

the enzyme activity decreases by over 50% at temperatures below 30 °C and above 

70 °C.  

The double sigmoidal function for the temperature-dependent enzyme activity 

(fT,act,E1,P2) could be fitted to the experimentally determined data with R2 = 0.944. 

From 0-50°C, the sigmoidal function for the temperature-dependent enzyme stability of 

EnerZyme P7 (fT,sta,E1,P2) remains at the minimum value of 0.1. Between 50-100 °C, 

fT,sta,E1,P2 increases to a value of 1.0. 

Figure 23 shows how temperature affects the activity of Flavourzyme (E2, P2) used in 

the proteolysis process (P2). Furthermore, sigmoidal and double sigmoidal functions 

representing the temperature-dependent activity and stability of the enzyme in the 

model are presented. 
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Figure 23: Experimentally (Activity E2 (exp)) determined temperature-dependent enzyme activ-

ity of Flavourzyme (E2), pH = 7.0, with fitted double sigmoidal function for temperature-de-

pendent enzyme activity (Activity E2 (DSig)), R2 = 0.992 and assumed sigmoidal function for 

temperature-dependent enzyme stability (Stability E2 (Sig). Error bars represent the mean 

value ± of one standard deviation resulting from a triple determination. 

Flavourzyme showed the highest activity at a temperature of about 50 °C. Conversely, 

the enzyme activity decreases by over 50% at temperatures below 30 °C and above 

70 °C.  

The double sigmoidal function for the temperature-dependent enzyme activity 

(fT,act,E2,P2) could be fitted to the experimentally determined data with R2 = 0.992.  

From 0-50°C, the sigmoidal function for the temperature-dependent enzyme stability of 

Flavourzyme (fT,act,E2,P2) remains at the minimum value of 0.1. Between 50-100 °C, 

fT,act,E2,P2 increases to a value of 1.0. 

Figure 24 shows the experimentally determined pH dependency of EnerZyme P7 (E1, P2) 

used in the proteolysis process (P2). Furthermore, the double sigmoidal functions rep-

resenting the pH-dependent activity and stability of the enzyme in the model are pre-

sented. 
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Figure 24: Experimentally (Activity E1 (exp)) determined pH-dependent enzyme activity of Ener-

Zyme P7 (E1), T = 50 °C, with fitted double sigmoidal function for pH-dependent enzyme activity 

(Activity E1 (DSig)), R2 = 0.991 and assumed double sigmoidal function for pH-dependent en-

zyme stability (Stability E1 (DSig)). Error bars represent the mean value ± of one standard devi-

ation resulting from a triple determination. 

For EnerZyme P7, only low activities could be determined at pH values below 5 and 

above 9. The highest activity was achieved at a pH value of approx. 7. The enzyme activ-

ity decreases by over 80% at a pH below 5 and above 9.  

For EnerZyme P7, the double sigmoidal function for the pH-dependent enzyme activity 

(fpH,act,E1,P2) could be fitted to the experimentally determined data with R2 = 0.991.  

At a pH value of 0, the double sigmoidal function for the pH-dependent enzyme stability 

of EnerZyme P7 (fpH,sta,E1,P2) ranges at a value of 1.0. At a pH of 5, fpH,sta,E1,P2 drops to the 

minimum of 0.1. At a pH of 9, fpH,sta,E1,P2 rises to the maximum value of 1.0. 

Figure 25 shows the experimentally determined pH dependency of Flavourzyme (E2, P2) 

used in the proteolysis process (P2). Furthermore, the double sigmoidal functions rep-

resenting the pH-dependent activity and stability of the enzyme in the model are pre-

sented. 
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Figure 25: Experimentally (Activity E2 (exp)) determined pH-dependent enzyme activity of Fla-

vourzyme (E2), T = 50 °C, with fitted double sigmoidal function for pH-dependent enzyme activ-

ity (Activity E2 (DSig)), R2 = 0.901 and assumed double sigmoidal function for pH-dependent en-

zyme stability (Stability E2 (DSig)). Error bars represent the mean value ± of one standard devi-

ation resulting from a triple determination. 

For Flavourzyme, only low activities could be determined at pH values below 5 and 

above 9. The enzyme activity decreases by more than 80% at a pH below 5 and more 

than 30% above a pH of 9. Flavourzyme showed the highest activity at a pH value of 

approx. 7. 

Flavourzyme's double sigmoidal function for the pH-dependent enzyme activity 

(fpH,act,E2,P2) could be fitted to the experimentally determined data with R2 = 0.901.  

At a pH value of 0, the double sigmoidal function for the pH-dependent enzyme stability 

of Flavourzyme (fpH,sta,E2,P1) has a value of 1.0. At a pH of 5, fpH,sta,E2,P2 drops to the mini-

mum of 0.1. At a pH of 9, fpH,sta,E2,P2 rises to a maximum of 1.0. 

4.2.3 Pressure dependence of the enzymes used for starch hydrolysis 

The enzymes (Termamyl SC and Spirizyme Ultra) used in the starch hydrolysis process 

were treated at 1 to 2000 bar in a high-pressure homogeniser. Subsequently, the en-

zyme activity was examined under normal pressure conditions and compared with the 

enzyme activity of the untreated enzymes (Section 3.3). 
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Figure 27 shows the results of oligosaccharide formation from potato starch by un-

treated (native) and high-pressure homogenised (500, 1000, 1500 and 2000 bar) Ter-

mamyl SC at 40, 60 and 80 °C under normal pressure conditions. 

 

Figure 26: Oligosaccharide formation of untreated (native) and high-pressure homogenised 

(500, 1000, 1500, 2000 bar) Termamyl SC, V = 40.0 mL, csubstrate = 20 g L-1, cenzyme = 6.25 µg L-1, 

pH = 5.0, t = 20 min. Error bars represent the mean value ± of one standard deviation resulting 

from a quadruple determination. 

At a reaction temperature of 40 °C, the native form of the enzyme produced an oligo-

saccharide concentration of 3.6 ± 0.2 g L-1. The high-pressure homogenisation of the en-

zyme resulted in an oligosaccharide concentration of 0.8 ± 0.1 g L-1 at 500 bar, 

1.6 ± 0.1 g L-1 at 1000 bar, 3.8 ± 0.3 g L-1 at 1500 bar, and 3.6 ± 0.2 g L-1 at 2000 bar. 

At a reaction temperature of 60 °C, the native form of the enzyme produced an oligo-

saccharide concentration of 4.7 ± 0.1 g L-1. The high-pressure homogenisation of the en-

zyme resulted in an oligosaccharide concentration of 4.6 ± 0.4 g L-1 at 500 bar, 

5.0 ± 0.3 g L-1 at 1000 bar, 2.9 ± 0.1 g L-1 at 1500 bar, and 2.0 ± 0.1 g L-1 at 2000 bar. 

At a reaction temperature of 80 °C, the native form of the enzyme produced an oligo-

saccharide concentration of 11.6 ± 0.9 g L-1. The high-pressure homogenisation of the 

enzyme resulted in an oligosaccharide concentration of 11.2 ± 1.5 g L-1 at 500 bar, 

12.1 ± 0.6 g L-1 at 1000 bar, 12.9 ± 2.0 g L-1 at 1500 bar, and 10.3 ± 0.9 g L-1 at 2000 bar. 
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Using the dependent samples t-test (Student, 1908), no significant increase in enzyme 

activity could be determined after high-pressure homogenisation compared to the na-

tive untreated form of Termamyl SC. 

Figure 27 shows the results of glucose formation from starch using untreated (native) 

and high-pressure homogenised (500, 1000, 1500 and 2000 bar) Spirizyme Ultra at 40, 

60 and 80 °C under normal pressure conditions.  

 

Figure 27: Glucose formation of untreated (native) and high-pressure homogenised (500, 1000, 

1500, 2000 bar) Spirizyme Ultra, V = 40.0 mL, csubstrate = 20.0 g L-1, cenzyme = 25.0 µg L-1, pH = 5.0, 

t = 20 min. Error bars represent the mean value ± of one standard deviation resulting from a 

quadruple determination. 

At a reaction temperature of 40 °C, the native form of the enzyme produced a glucose 

concentration of 0.4 ± 0.01 g L-1. The high-pressure homogenisation of the enzyme re-

sulted in a glucose concentration of 0.3 ± 0.01 g L-1 at 500 bar, 0.3 ± 0.01 g L-1 at 

1000 bar, 0.3 ± 0.01 g L-1 at 1500 bar, and 0.3 ± 0.01 g L-1 at 2000 bar. 

At a reaction temperature of 60 °C, the native form of the enzyme produced a glucose 

concentration of 2.2 ± 0.3 g L-1. The high-pressure homogenisation of the enzyme re-

sulted in a glucose concentration of 2.0 ± 0.1 g L-1 at 500 bar, 2.0 ± 0.1 g L-1 at 1000 bar, 

2.1 ± 0.1 g L-1 at 1500 bar, and 2.1 ± 0.1 g L-1 at 2000 bar. 
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At a reaction temperature of 80 °C, the native form of the enzyme produced a glucose 

concentration of 3.3 ± 0.1 g L-1. The high-pressure homogenisation of the enzyme re-

sulted in a glucose concentration of 3.1 ± 0.1 g L-1 at 500 bar, 3.2 ± 0.1 g L-1 at 1000 bar, 

3.4 ± 0.1 g L-1 at 1500 bar, and 3.4 ± 0.1 g L-1 at 2000 bar. 

Using the dependent samples t-test (Student, 1908), no significant increase in enzyme 

activity could be determined after high-pressure homogenisation compared to the na-

tive untreated form of Spirizyme Ultra. 

4.2.4 Pressure dependence of the enzymes used for proteolysis 

The enzymes (EnerZyme P7 and Flavourzyme) used in the proteolysis process were 

treated at 1 to 2000 bar in a high-pressure homogeniser. Subsequently, the enzyme ac-

tivity was examined under normal pressure conditions and compared with the enzyme 

activity of the untreated enzymes (Section 3.3). 

Figure 29 shows the results of free amino acid formation from casein using untreated 

(native) and high-pressure homogenised (500, 1000, 1500 and 2000 bar) EnerZyme P7 

at 25, 50 and 70 °C under normal pressure conditions. 

 

Figure 28: Free amino acid formation of untreated (native) and high-pressure homogenised 

(500, 1000, 1500, 2000 bar) EnerZyme P7, V = 1.0 mL, csubstrate = 2.0 g L-1, cenzyme = 0.2 g L-1, 

pH = 7.5, t = 30 min. Error bars represent the mean value ± of one standard deviation resulting 

from a triple determination. 
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At a reaction temperature of 25 °C, the native form of the enzyme produced a free 

amino acid concentration of 1.1 ± 0.2 mM. High-pressure homogenisation of the en-

zyme resulted in a free amino acid concentration of 1.0 ± 0.2 mM at 500 bar, 

1.1 ± 0.2 mM at 1000 bar, 1.1 ± 0.2 mM at 1500 bar, and 1.1 ± 0.1 mM at 2000 bar. 

At a reaction temperature of 50 °C, the native form of the enzyme produced a free 

amino acid concentration of 1.1 ± 0.3 mM. High-pressure homogenisation of the en-

zyme resulted in a free amino acid concentration of 1.0 ± 0.02 mM at 500 bar, 

1.0 ± 0.03 mM at 1000 bar, 1.2 ± 0.3 mM at 1500 bar, and 1.2 ± 0.2 mM at 2000 bar. 

At a reaction temperature of 70 °C, the native form of the enzyme produced a free 

amino acid concentration of 0.9 ± 0.1 mM. High-pressure homogenisation of the en-

zyme resulted in a free amino acid concentration of 0.7 ± 0.2 mM at 500 bar, 

0.9 ± 0.2 mM at 1000 bar, 0.7 ± 0.1 mM at 1500 bar, and 0.7 ± 0.2 mM at 2000 bar. 

Using the dependent samples t-test (Student, 1908), no significant increase in enzyme 

activity could be determined after high-pressure homogenisation compared to the na-

tive untreated form of EnerZyme P7. 

Figure 29 shows the results of free amino acid formation from casein through untreated 

(native) and high-pressure homogenised (500, 1000, 1500 and 2000 bar) Flavourzyme 

at 25, 50 and 70 °C under normal pressure conditions. 

 

Figure 29: Free amino acid formation of untreated (native) and high-pressure homogenised 

(500, 1000, 1500, 2000 bar) Flavourzyme, V = 1.0 mL, csubstrate = 2.0 g L-1, cenzyme = 0.2 g L-1, 
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pH = 7.5, t = 30 min. Error bars represent the mean value ± of one standard deviation resulting 

from a triple determination. 

At a reaction temperature of 25 °C, the native form of the enzyme produced a free 

amino acid concentration of 1.8 ± 0.1 mM. High-pressure homogenisation of the en-

zyme resulted in a free amino acid concentration of 2.2 ± 0.2 mM at 500 bar, 

2.1 ± 0.1 mM at 1000 bar, 2.0 ± 0.3 mM at 1500 bar, and 1.9 ± 0.4 mM at 2000 bar. 

At a reaction temperature of 50 °C, the native form of the enzyme produced a free 

amino acid concentration of 2.9 ± 0.3 mM. High-pressure homogenisation of the en-

zyme resulted in a free amino acid concentration of 3.3 ± 0.5 mM at 500 bar, 

3.4 ± 0.1 mM at 1000 bar, 3.0 ± 0.3 mM at 1500 bar, and 2.9 ± 0.2 mM at 2000 bar. 

At a reaction temperature of 70 °C, the native form of the enzyme produced a free 

amino acid concentration of 1.4 ± 0.1 mM. High-pressure homogenisation of the en-

zyme resulted in a free amino acid concentration of 1.2 ± 0.2 mM at 500 bar, 

1.5 ± 0.6 mM at 1000 bar, 1.3 ± 0.4 mM at 1500 bar, and 1.3 ± 0.1 mM at 2000 bar. 

A dependent samples t-test (Student, 1908) was run to determine if high-pressure ho-

mogenisation increased the activity of Flavourzyme. The results showed that the pro-

duction of free amino acids at 50 °C was significantly higher after high-pressure homog-

enisation at 1000 bar (3.4 ± 0.1 mM) compared to the native untreated form of the en-

zyme (2.9 ± 0.3 mM), (t(3) = 3.2, p < .05). The enzyme activity was increased by more 

than 19%. 

No significant increase in enzyme activity was determined for the other pressures and 

temperatures investigated. 

4.3 Parameterisation of the model for enzymatic hydrolysis processes 

For the parameterisation of the model for enzymatic hydrolysis processes, batch exper-

iments for starch hydrolysis and proteolysis in a 6 L STR were planned with the devel-

oped model (Sections 3.1.2 and 3.2.2). The parameterisation took place by minimising 

the difference between the data simulated by the model and the experimental data us-

ing the parameterisation tool described in Section 3.4.2. 
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4.3.1 Parameterisation of the starch hydrolysis model 

For the parameterisation of the starch hydrolysis model (P1), two batch experiments 

were carried out in a 6 L STR. Potato starch was used as substrate. The enzyme prepara-

tions Termamyl SC (E1, P1) and Spirizyme Ultra (E2, P1) were used to convert the starch 

into glucose. The processing time was set to 180 min. 

During the parameterisation, the model parameters were adjusted using the parame-

terisation tool described in Section 3.4.2. The parameterisation aimed to achieve agree-

ment between the measured and simulated data with an R2 greater than 0.9. All meas-

ured values of the two parameterisation experiments were weighted equally.  

The parameter set ParInital, which resulted from the small-scale experiments, was used 

as starting values for parameterisation. During parameterisation, the maximum reaction 

rates (rmax) and the half-saturation constants (KM) were adjusted according to Table 6. 

Table 6: Parameters adjusted for the parameterisation of the starch hydrolysis model, with α-

amylase (E1) and glucoamylase (E2). 

Parameter Description 
Lower 
bound 

Upper 
bound 

Initial  
parameterisa-
tion (ParInital) 

Optimised pa-
rameterisation 

(ParOptim) 

rmax,SIP,E1,P1 

Maximum degrada-
tion rate of sub-

strate to intermedi-
ate product. 

0.1 s−1 10.0 s−1 4.23 s−1 8.64 s−1 

KM,SIP,E1,P1 

Half-saturation con-
stant for degrada-

tion of substrate to 
intermediate prod-

uct. 

1.0 g L−1 30.0 g L−1 5.72 g L−1 25.60 g L−1 

rmax,IPP,E2,P1 

Maximum degrada-
tion rate of interme-

diate product to 
product. 

0.1 s−1 10.0 s−1 0.31 s−1 0.82 s−1 

KM,IPP,E2,P1 

Half-saturation con-
stant for degrada-

tion of intermediate 
product to product. 

1.0 g L−1 30.0 g L−1 19.99 g L−1 29.99 g L−1 

Figure 30 shows the simulated (set of parameters: ParOptim) and experimental results of 

the first parameterisation starch hydrolysis batch experiment in a 6 L STR. After a pro-

cessing time of 15 min, Termamyl SC was added to the reactor, followed by Spirizyme 

Ultra after a processing time of 60 min. 
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Figure 30: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the first parameterisation starch hydrolysis batch experiment, with R2
substrate = 0.997 and R2

prod-

uct = 0.980. Vstart = 3.0 L, csubstrate,start = 45 g L−1, T = 60 °C, pH = 4.15 and NStirr = 300 rpm. Addition 

of 40 µL Termamyl SC (E1) after 15 min and 300 µL Spirizyme Ultra (E2) after 60 min. S: sub-

strate (potato starch) concentration, IP: intermediate product concentration, P: product (glu-

cose) concentration, SN: concentration of the non-hydrolysable components of the substrate. 

Error bars represent the mean value ± of one standard deviation resulting from a double deter-

mination. Set of parameters used for simulation: ParOptim. 

The measured substrate concentration started at a value of 44.65 g L-1. After a pro-

cessing time of approx. 75 min, the measured substrate concentration decreased to a 

value of approx. 5 g L-1. After a processing time of 195 min, the measured substrate con-

centration reached the minimum value of 4.83 g L-1. The measured product concentra-

tion started at a value of approx. 0 g L-1. After adding E1 and E2 (t = 15 min), up to a 

processing time of 195 min, the measured product concentration increased to a maxi-

mum value of 40.01 g L-1. 

The substrate and product concentration curves simulated by the model reproduce the 

measured curves with R2
substrate = 0.997 and R2

product = 0.980. 

In the first parameterisation experiment, E1 and E2 were added to the reactor with a 

time delay of 45 min. To ensure that the model can represent different process designs, 
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another experiment was carried out in which E1 and E2 were added to the reactor sim-

ultaneously. Figure 31 shows the simulated and experimental results of the second 

starch hydrolysis batch experiment in a 6 L STR. 

 

Figure 31: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the second parameterisation starch hydrolysis batch experiment, with R2
substrate = 0.995 and 

R2
product = 0.947. Vstart = 3.0 L, csubstrate,start = 45 g L−1, T = 60 °C, pH = 4.15 and NStirr = 300 rpm. Ad-

dition of 41 µL Termamyl SC and 305 µL Spirizyme Ultra after 15 min. S: substrate (potato 

starch) concentration, IP: intermediate product concentration, P: product (glucose) concentra-

tion, SN: concentration of the non-hydrolysable components of the substrate. Error bars repre-

sent the mean value ± of one standard deviation resulting from a double determination. Set of 

parameters used for simulation: ParOptim. 

The measured substrate concentration started at a value of 42.37 g L-1. After a pro-

cessing time of approx. 60 min, the measured substrate concentration decreased to a 

value of approx. 6 g L-1. After a processing time of 180 min, the measured substrate con-

centration reached the minimum value of 5.98 g L-1. The measured product concentra-

tion started at a value of approx. 0 g L-1. After adding E1 and E2 (t = 15 min), up to a 

processing time of 180 min, the measured product concentration increased to a maxi-

mum value of 36.50 g L-1. 

The substrate and product concentration curves simulated by the model reproduce the 

measured values with R2
substrate = 0.995 and R2

product = 0.947. 
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4.3.2 Parameterisation of the proteolysis model 

For the parameterisation of the proteolysis model, one batch experiment was carried 

out in a 6 L STR. Organic sunflower seed meal was used as substrate. The enzyme prep-

aration Flavourzyme (E1, P2 and E2, P2) was used to convert the protein (substrate) into 

free amino acids (product). 

During the parameterisation, the model parameters were adjusted using the parame-

terisation tool described in Section 3.4.2. The parameterisation aimed to achieve agree-

ment between the measured and simulated data with an R2 greater than 0.9. All meas-

ured values of the two parameterisation experiments were weighted equally. The pa-

rameter set ParInital, which resulted from the small-scale experiments, was used as start-

ing values for the parameterisation. All measured values of the parameterisation exper-

iment were weighted equally. For the parameterisation of the proteolysis model, the 

maximum reaction rates (rmax) and the half-saturation constants (KM) were adjusted ac-

cording to Table 7. 

Table 7: Parameters adjusted for the parameterisation of the proteolysis model, with endopep-

tidase (E1) and exopeptidase (E2). 

Parameter Description 
Lower 
bound 

Upper 
bound 

Initial  
parameterisa-
tion (ParInital) 

Optimised pa-
rameterisation 

(ParOptim) 

rmax,SIP,E1,P2 

Maximum degrada-
tion rate of sub-

strate to intermedi-
ate product. 

0.1 s−1 10.0 s−1 0.25 s−1 0.57 s−1 

KM,SIP,E1,P2 

Half-saturation 
constant for degra-
dation of substrate 

to intermediate 
product. 

1.0 g L−1 30.0 g L−1 5.29 g L−1 22.55 g L−1 

rmax,IPP,E2,P2 

Maximum degrada-
tion rate of inter-

mediate product to 
product. 

0.1 s−1 10.0 s−1 0.11 s−1 0.67 s−1 

KM,IPP,E2,P2 

Half-saturation 
constant for degra-
dation of interme-
diate product to 

product. 

1.0 g L−1 30.0 g L−1 1.57 g L−1 1.57 g L−1 

Figure 32 shows the results of the proteolysis batch experiment used for parameterisa-

tion and the corresponding results simulated by the model. 
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Figure 32: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the parameterisation proteolysis batch experiment, with R2
product = 0.971. V = 3.0 L, csub-

strate,start = 30 g L−1, T = 50 °C, pH = 7.5 and Nstirr = 300 rpm. Addition of 1.332 mL Flavourzyme (E1 

and E2) after a processing time of 0 min. S: substrate (sunflower seed meal) concentration, IP: 

intermediate product concentration, P: product (free amino acid) concentration, SN: concentra-

tion of the non-hydrolysable components of the substrate. Error bars represent the mean value 

± of one standard deviation resulting from a triple determination. Set of parameters used for 

simulation: ParOptim. 

The measured product concentration started at a value of 4.47 g L-1. After a processing 

time of 300 min, the measured product concentration reached the maximum value of 

9.52 g L-1. 

The curve of the product concentration simulated by the model reproduces the meas-

ured curve with R2
product = 0.971. 

4.4 Discussion 

Within the scope of this research work, a new mechanistic model for enzymatic hydrol-

ysis processes (combined starch hydrolysis and proteolysis) was developed. The reaction 

rates could be calculated using  Michaelis-Menten kinetics. By implementing double sig-

moidal functions, the dependence of the enzyme activity on temperature and pH value 

can be mapped (Brüning, 2016; Kuntzsch, 2014). The double sigmoidal functions for rep-

resenting the temperature and pH-dependent enzyme activity were manually adapted 
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to experimentally determined data. As a result, the agreement is always higher than 

90%. 

For the parameterisation of the model for enzymatic hydrolysis processes, two STR 

batch experiments were carried out for starch hydrolysis and one for proteolysis. Using 

a newly developed tool for model parameterisation, which was realised in R, the model 

could be adapted based on the experimental data. Only four parameters had to be esti-

mated per enzymatic process for the parameterisation. As a result, the model can re-

produce the experimentally generated data with an agreement of more than 90%. 

Furthermore, the influence of high-pressure homogenisation on the activity of Ter-

mamyl SC (α-amylase), Spirizyme Ultra (α- and glucoamylase), EnerZyme P7 (endopep-

tidase) and Flavourzyme (endopeptidase and exopeptidase) was investigated. For Ter-

mamyl SC, an increase of approx. 7% in the 60 °C-activity was reached after high-pres-

sure homogenisation at 1000 bar. An increase of approx. 5-12% in the 80 °C-activity was 

reached after high-pressure homogenisation at 1000-1500 bar. The increase in activity 

determined by Buckow et al. (2007) could not be detected for this α-amylase. For 

Spirizyme Ultra, an increase of approx. 1-4% in the 80 °C-activity was reached after high-

pressure homogenisation at 1500-2000 bar. For EnerZyme P7, an increase of approx. 6% 

in the 25 °C-activity was reached after high-pressure homogenisation at 2000 bar. An 

increase of approx. 3-5% in the 50 °C-activity was reached after high-pressure homoge-

nisation at 1500-2000 bar. For Flavourzyme, an increase of approx. 18-22% in the 25 °C-

activity and approx. 13-20% in the 50 °C-activity was reached after high-pressure ho-

mogenisation at 500-1000 bar. Compared to Tribst et al. (2012), the highest increase of 

the 25 °C-activity could be achieved after treatment at 500-1000 bar and not at 2000 

bar. 

When investigating the enzyme activity after high-pressure treatment, the experimental 

results of all investigated enzyme preparations showed partially high standard devia-

tions, which is why further investigations are necessary. A significantly higher enzyme 

activity could only be determined for high-pressure homogenisation of Flavourzyme at 

1000 bar and 50 °C. 

The design of most STRs only allows operation under normal pressure conditions, so the 

influence of pressure has not been included in the model.  
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5 Digital twins for enzymatic hydrolysis processes 

To create the new stand-alone digital twin for enzymatic hydrolysis processes in an STR, 

the developed model for enzymatic hydrolysis was implemented into an existing stand-

alone digital twin of a 20 L STR. Furthermore, a precursor of a stand-alone digital twin 

for enzymatic hydrolysis processes in a PBR was created using the stand-alone digital 

twin of an STR. 

5.1 Development of a stand-alone digital twin for enzymatic hydrolysis processes 

in a stirred tank reactor 

Once the C-eStIM model for enzymatic hydrolysis processes was able to represent starch 

hydrolysis and proteolysis satisfactorily, the model was implemented into the existing 

stand-alone digital twin of a 20 L STR (Section 3.5) developed by the working group of 

Prof. Dr. Volker C. Hass at Furtwangen University (Appl et al., 2021; Gerlach et al., 2013; 

Gerlach et al., 2015; Hass et al., 2005a, 2005b; Hass, 2005; Hass et al., 2012; Hass, 2016; 

Hirschmann et al., 2018; Hirschmann, 2021; Isimite et al., 2018). 

For the implementation, the model equations of the C-eStIM model for enzymatic hy-

drolysis processes were included in the digital twin core model of the stand-alone digital 

twin, which was also realised in C-eStIM. Subsequently, the adapted C-eStIM-DLL inter-

face of the digital twin core model was reimplemented in the WinErs project of the 

stand-alone digital twin. 

The new stand-alone digital twin can represent the enzyme kinetics, as well as the com-

plex behaviour of a 20 L STR (Biostat C, B. Braun Sartorius, Göttingen, Germany) with 

plant, periphery (e.g., pumps) and control (e.g., level, temperature, pH). 

Integration into the stand-alone digital twin offers a wide range of possibilities: 

• Mapping of the complex reactor behaviour (e.g., temperature and pH value). 

• Mapping the complex behaviour of the plant and periphery (e.g., tanks, pumps 

and pipes). 

• Implementation of measurement noise for the online measurement data. 

• Design, test, and parameterise standard control (e.g., P, PI, PID) and model-

based process design strategies (e.g., OLFO). 
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Furthermore, the GUI of the stand-alone digital twin was adapted (Figure 33). The GUI 

was designed to correspond to the process control system connected to the actual STR. 

 

Figure 33: GUI of the stand-alone digital twin for simultaneous saccharification, proteolysis, 

fermentation and biocatalysis in a 20 L STR. 

With the new stand-alone digital twin for the enzymatic hydrolysis processes, it is pos-

sible to accelerate the simulation of the enzymatic hydrolysis processes in a 20 L STR up 

to 100-fold. This makes it possible to simulate different process control strategies 

quickly and thus improve them. Furthermore, the parameterisation of the controllers 

implemented in the stand-alone digital twin can be adjusted via sub-windows of the GUI. 

Since the process control system of the STRs available at Furtwangen University was also 

realised using WinErs, the process control strategies developed for the stand-alone dig-

ital twin can be easily applied to actual processes. 

5.1.1 Implementation of standard and multivariable control strategies to the stand-

alone digital twin for enzymatic hydrolysis processes in a stirred tank reactor 

To enable the new stand-alone digital twin for enzymatic hydrolysis processes in an STR 

to reproduce not only the biokinetic processes but also the behaviour of the existing 

system with the standard control strategies available there, these standard control strat-

egies were implemented to the digital twin and parameterised based on simulations. 
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For the implementation and optimisation of the standard control strategies to the stand-

alone digital twin for enzymatic hydrolysis processes in an STR, the procedure shown in 

Figure 34 was established. 

 

Figure 34: Development and optimisation of standard control strategies to the stand-alone dig-

ital twin for enzymatic hydrolysis processes in an STR. 

In the first step, the desired control targets were defined, and the related system be-

haviour was characterised by using simulations. Then, suitable control strategies were 

selected for the associated control target. Subsequently, the selected process control 

strategies were implemented in the stand-alone digital twin. By simulating step re-

sponses and the controller behaviour in case of disturbances, the implemented control-

lers were tested, and the most suitable controller for the respective controlled variable 

was picked. Finally, the parameterisation of the selected controller was further opti-

mised until the desired control target was achieved. 

For a better representation of the actual STR and the equipped controls, standard mul-

tivariable controls for level, temperature, and pH have been implemented on the stand-

alone digital twin for enzymatic hydrolysis processes in a 20 L STR (Figure 35). 

Digital twin

Evaluation of control result

Optimised control 
strategy

Control strategies

Control target is achieved

Improvement of control 
strategy

Transfer of preselected control 
strategy to stand-alone digital twin

Definition of 
control target

Preselection of suitable control 
strategies
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Figure 35: P&ID flowchart of the stand-alone digital twin for enzymatic hydrolysis processes in 

an STR. 

The volume level in the reactor is controlled via the outflow of broth from the reactor 

(FB,1). The level control was implemented in the digital twin using a PI controller. The 

broth temperature in the reactor is controlled via the temperature of the heating fluid 

inflow to the reactor's heating jacket. The temperature control was implemented in the 

digital twin using a PI controller. Finally, the pH of the broth in the reactor is controlled 

via the inflow of acid (20% w/v HCl) and base (20% w/v KOH) to the reactor. The pH 

control was implemented in the digital twin using a PI controller. 

Figure 36 shows the simulated results of the implemented PI temperature control with 

a setpoint change of 5 °C. The signal of TB,m was provided with measurement noise to 

make the behaviour of the stand-alone digital twin even more realistic. 

DescriptionLabel

E1 (Termamyl SC) – P1B 001

E2 (Spirizyme Ultra) – P1B 002

E1 (EnerZyme P7) – P2B 003

E2 (Flavourzyme) – P2B 004

S (Potato starch) – P1B 005

S (Sunflower protein) – P2B 006

Acid – 20% w/v HClB 007

Base – 20% w/v KOHB 008

Temperature controlTIC 001

pH controlXIC 002

Level controlLIC 003

Product conc. control – P1QIC 004

Product conc. control – P2QIC 005
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Figure 36: Simulation result of PI temperature control (Gain = 1.35, Ti = 420 s), with VB = 10 L 

and inflow of heating fluid to the heating jacket FJ,0 = 40 L min-1. TB,m = measured broth temper-

ature in the reactor, TB,set = setpoint for the temperature of broth in the reactor, TJ,0 = tempera-

ture of the heating fluid in the inflow to the heating jacket. 

To check the quality of the implemented PI temperature control, the setpoint for the 

temperature of the broth was increased from 55 °C to 60 °C. After a rise time of approx. 

390 s, TB,m reached the setpoint for the first time. Since the tolerance range is not left 

afterwards, the rise time corresponds to the settling time. No overshoot of TB,m was ob-

served. 

Furthermore, standard controls for product concentration control (glucose and free 

amino acids) have been implemented in the stand-alone digital twin for enzymatic hy-

drolysis processes in an STR. For the realisation of these controls, it was assumed that 

there is an online signal for the product concentrations.  

Figure 37 shows how the developed PID starch hydrolysis product concentration control 

responded to broth temperature changes (TB). The product concentration is controlled 

by the inflows of the enzyme solutions (FE1 and FE2). 



 

85 
 

 

Figure 37: Simulation result of a continuous process in an STR, with PID starch hydrolysis prod-

uct concentration control (Gain = 5 e-10, Ti = 8000 s, Td = 900 s) and V = 10 L. Psim = measured 

product concentration, Pset = setpoint for the product concentration, FE1 = inflow of α-amylase 

solution to the reactor, FE2 = inflow of glucoamylase solution to the reactor. 

The setpoint for the product concentration control was set to 100 g L-1. A decrease in 

temperature after a processing time of 1 h led to a slight overshoot of the product con-

centration, which the controller could compensate for after a processing time of  5 h. 

After a processing time of 8 h, the temperature was increased from 55 to 65 °C, which 

caused the product concentration to drop below 90 g L-1. It took the controller approx. 

17 h to stabilise the product concentration at 100 g L-1 again. After a processing time of 

27 h, the temperature was set to 60 °C again, which caused the product concentration 

to overshoot to over 110 g L-1. After another 8 h, the product concentration stabilised at 

100 g L-1. 

The scenario simulated using the stand-alone digital twin for enzymatic hydrolysis pro-

cesses in an STR shows clearly how temperature and product concentration control af-

fect each other. Especially in continuous processes with a high reactor volume, even 

small changes in the broth's temperature can significantly change the formation of the 

product. Developing a product concentration control on the existing system for this case 

is only possible with great effort. Therefore, the use of the digital twin can be beneficial 

here.  
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5.2 Precursor of a stand-alone digital twin for enzymatic hydrolysis processes in a 

packed bed flow tube reactor 

Figure 38 shows the model structure of a stand-alone digital twin for enzymatic hydrol-

ysis processes in a PBR. The stand-alone digital twin can map the enzymatic hydrolysis 

processes in a PBR with lPBR = 0.03 m, dPBR = 0.003 m and VPBR = 0.212 mL. To reflect the 

conditions in the PBR, a cascade of ten modified STRs with lSTR = 0.003 m, dSTR = 0.003 m 

and VSTR = 0.0212 mL was created in the reactor submodel of the stand-alone digital 

twin. 

 

Figure 38: Reactor model structure of the stand-alone digital twin for enzymatic hydrolysis pro-

cesses in a PBR (ten connected STRs) with immobilised enzymes. 

It was assumed, that the enzymes are immobilised on a carrier substance retained in the 

individual STRs. The carrier substance was assumed to take up 75% of the volume in the 

PBR. This results in a VPBR,free = 0.053 mL. The ideally mixed substrate solution passes 

through the STRs. In addition, back mixing between the individual STRs can be simulated 

to approximate non-ideal flow behaviour. Each STR model uses the same biokinetic and 

physico-chemical submodel with only one set of parameters. 

The developed strategy for mapping a PBR model by coupling several STR models was 

validated using a model representing the enzymatic regeneration of cytidine triphos-

phate (CTP) from cytidine diphosphate (CDP) in a PBR (Arndt, 2022). The PBR model was 

realised using partial differential equations and validated based on experimental data. 

The equations used in the model for the enzymatic regeneration of CTP from CDP in a 

PBR were transferred to the PBR model with coupled STR models. Subsequently, various 

process scenarios were simulated using the two models. Comparing the simulated re-

sults showed an agreement between the models of over 80%. 

STR1 STR2 STR3 STR4 STR5 STR6 STR7 STR8 STR9 STR10

lSTR = 0.003 m 

lPBR = 0.03 m 

d = 0.003 m 
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A scenario for the combined starch hydrolysis and proteolysis was simulated with the 

new stand-alone digital twin for enzymatic hydrolysis processes in a PBR. The PBR con-

tained  30 g L-1 α-amylase, 20 g L-1 glucoamylase, 50 g L-1 endopeptidase and 50 g L-1 ex-

opeptidase. The substrate solution (pH = 6) containing 50 g L-1 potato starch (90% hy-

drolysable) and 50 g L-1 sunflower seed meal (8.5 g L-1 hydrolysable, 34.0 g L-1 non-hy-

drolysable, 7.5 g L-1 product) continuously passed through the PBR. The temperature in 

the PBR was set to 60 °C. 

Figure 39 shows the start-up phase of a continuous starch hydrolysis process in a PBR, 

simulated with the developed stand-alone digital twin.  

 

Figure 39: Simulation results of starch hydrolysis (P1) in ten connected STRs (STR1-STR10) repre-

senting a PBR (l = 0.03 m, d = 0.003 m), with T = 60 °C, pH = 6, cE1,P1 = 30 g L-1, cE2,P1 = 20 g L-1, 

inflow of substrate solution = 1 mL min-1 (50 g L-1 potato starch (90% hydrolysable), back mix-

ing = 0.1 mL min-1 and outflow of 1 mL min-1. P: product (glucose) concentration. Set of param-

eters used for simulation: ParOptim. 

After a processing time of approx. 4 s, almost stationary conditions with a product con-

centration of approx. 2 g L-1 are reached in STR1. After a processing time of approx. 9 s, 

almost stationary conditions with a product concentration of approx. 22 g L-1 are 

reached in STR10. 

The product concentration increases over the length of the PBR from STR1 with a prod-

uct concentration of approx. 2.0 g L-1 to STR10 with a product concentration of approx. 

22 g L-1. 



 

88 
 

Figure 40 shows the start-up phase of a continuous proteolysis process in a PBR, simu-

lated with the developed stand-alone digital twin. 

 

Figure 40: Simulation results of proteolysis (P2) in ten connected STRs representing a PBR 

(l = 0.03 m, d = 0.003 m), with T = 60 °C, pH = 6, cE1 = 50 g L-1, cE2 = 50 g L-1, inflow of substrate 

solution = 1 mL min-1 (50 g L-1 sunflower seed meal (8.5 g L-1 hydrolysable, 34.0 g L-1 non-hydro-

lysable, 7.5 g L-1 product)), back mixing = 0.1 mL min-1 and outflow of 1 mL min-1. P: product 

(glucose) concentration. Set of parameters used for simulation: ParOptim. 

After a processing time of about 2 s, almost stationary conditions with a product con-

centration of approx. 8 g L-1 were reached in STR1. After a processing time of about 9 s, 

almost stationary conditions with a product concentration of approx. 13 g L-1 were 

reached in STR10. The product concentration increased over the length of the PBR from 

STR1 with a product concentration of approx. 8 g L-1, over STR5 with a product concen-

tration of approx. 11 g L-1 to STR10 with a product concentration of approx. 13 g L-1. 

5.3 Discussion 

The developed model for enzymatic hydrolysis processes was implemented in the digital 

twin core model of a stand-alone digital twin (operator training simulator) of a 20 L STR. 

The new stand-alone digital twin can represent the enzyme kinetics, as well as the be-

haviour of a 20 L STR (e.g., temperature) with plant, periphery (e.g., pumps) and control 

(e.g., level, temperature, pH).  
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Standard controls for level, temperature and pH were implemented in the stand-alone 

digital twin for enzymatic hydrolysis processes and optimised based on simulations. As 

a result, the digital twin is now able to reproduce the control behaviour in a similar way 

to the existing system.  

In addition, the stand-alone digital twin could be used to design precursors of PID prod-

uct concentration controls for the enzymatic hydrolysis processes. 

Furthermore, the digital twin core model of the new stand-alone digital twin for enzy-

matic hydrolysis processes in a 20 L STR was successfully integrated into a newly devel-

oped PBR reactor model. The now available precursor of a stand-alone digital twin can 

map enzymatic hydrolysis processes in a PBR with immobilised enzymes and can be used 

for model-based process optimisation. With the help of the stand-alone digital twin of a 

PBR, future experiments can be planned to determine the enzyme stability under differ-

ent process conditions (temperature, pH). Decreased enzyme activity affects substrate 

conversion to product in starch hydrolysis and proteolysis. The enzyme denaturation 

constant can be identified by determining the substrate and product concentrations 

throughout the process. 

The new stand-alone digital twins are an ideal tool for developing, testing and optimising 

process control and design strategies. Moreover, they are perfectly suitable for training 

in control engineering. The parameterisation of the implemented controllers can be 

changed directly via the GUI of the digital twin, and thus the resulting changes to the 

system can be observed. Such an investigation of the existing system is only possible 

with a high investment of resources and time. 
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6 Model-based design and optimisation of enzymatic hydrolysis processes 

The processing time is relatively short in enzymatic batch processes due to the high re-

action rates. An adjustment of the control strategy by the OLFO strategy on the running 

process is, therefore, challenging to implement. However, it is possible to use the OLFO 

strategy to design successive batch processes.  

To use the OLFO strategy for the design of successive batch processes, the model is 

adapted based on the previous batch process, and the subsequent batch process is de-

signed to achieve the best result. This becomes particularly interesting when there are 

large fluctuations in the quality of the substrates or enzymes. This is often the case, es-

pecially in processes using organic resources. 

Starch hydrolysis and proteolysis were optimised separately since these processes are 

also conducted separately in reality. If the products from the enzymatic hydrolysis pro-

cesses are to be used as a nutrient medium, e.g., for cultivating S. cerevisiae, they must 

be autoclaved in advance. Excessive heating of carbon (sugar) and nitrogen (free amino 

acids) sources can lead to the Maillard reaction, which causes the colour and properties 

of the nutrient medium to change (Hodge, 1953; Maillard, 1912). 

The developed OLFO controller (Section 3.6.2) was applied to optimise enzymatic hy-

drolysis batch processes in an STR. In addition, parts of the “mDoE toolbox” (Section 

3.6.3) were used to validate the result of the OLFO controller. OLFO and mDoE used the 

digital twin core model of the new stand-alone digital twin for enzymatic hydrolysis pro-

cesses in an STR. For process optimisation, a desirability score (DS) was defined (Equa-

tion 30). The optimisation aimed to maximise DS. 

𝐷𝑆 = 𝑤𝑃 ∙ 𝑃1 − (𝑤𝑆 ∙ 𝑆𝑆𝑡𝑎𝑟𝑡 + 𝑤𝐼𝑃 ∙ 𝐼𝑃1 + 𝑤𝐸1 ∙ 𝐸11 + 𝑤𝐸2 ∙ 𝐸21) (30) 

The DS describes the difference between the product generated (P1), the substrate 

(SStart), and the enzymes used for production. For the concentrations of the enzymes, 

the values at the end of the processing time were used since enzyme denaturation has 

hardly any effect on the enzyme concentrations at a processing time of less than 5 h. 

Furthermore, the final concentration of the intermediate product (IP1) is subtracted. The 

concentrations in the DS can be weighted differently by specific weighting factors (w). 

For example, the price of the substrate, the product or the enzymes can be considered.  
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6.1 Model-based design and optimisation of a starch hydrolysis batch process in 

a stirred tank reactor 

At the beginning of the process optimisation, the general conditions of the starch hy-

drolysis batch process were defined. The fixed settings for optimising the process were 

VStart = 3.0 L, SStart = 45 g L-1, T = 60 °C, pH = 4.15, NStirr = 300 rpm and t = 180 min. Potato 

starch was used as substrate. 

The control variables to be optimised were the addition of the enzymes Termamyl SC 

(FE1) and Spirizyme Ultra (FE2) after a processing time of 15 min. The limits for adding 

enzymes were set to 0.0-1.0 mL for FE1 and 0.1-0.4 mL for FE2. The model-based process 

optimisation aimed at producing the maximum amount of product with the least possi-

ble use of enzymes. 

To determine the DSSH for starch hydrolysis optimisation, mDoEs were carried out and 

the response surfaces were analysed. 

For DSSH,1, the concentration E11 and E12 were weighted equally with a value of 1000 

(Equation 31). 

𝐷𝑆𝑆𝐻,1 = 50 ∙ 𝑃1 − (20 ∙ 45 + 1 ∙ 𝐼𝑃1 + 1000 ∙ 𝐸11 + 1000 ∙ 𝐸21) (31) 

In the first mDoE, DSSH,1 was calculated for 1000 equally distributed points in the DoE 

design space. For DSSH,1, the mDoE resulted in the response surface shown in Figure 41. 
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Figure 41: Results of the first mDoE performed for an enzymatic starch hydrolysis batch experi-

ment. DSSH,1 with wE1 = 1000 and wE2 = 1000. Vstart = 3.0 L, csubstrate,start = 45 g L−1, T = 60 °C, 

pH = 4.15 and NStirr = 300 rpm. Addition of 0.0-1.0 mL Termamyl SC (FE1) and 0.1-0.4 mL 

Spirizyme Ultra (FE2) after a processing time of 15 min. Set of parameters used for simulation: 

ParOptim. 

Weighting E11 and E21 with a value of 1000 results in the optimum of DSSH,1 for 

FE1 = 0.000-0.010 mL and FE2 = 0.190-0.220 mL. FE2 (Spirizyme Ultra) also contains ap-

prox. 30% of E11. If E11 is weighted too high, adding FE1 is not profitable, as seen in the 

response surface of the mDoE. For this reason, the weighting of E11 was reduced from 

1000 to 1. 

For DSSH,2, the concentration E11 was weighted at 1 and E21 with 1000 (Equation 32). 

𝐷𝑆𝑆𝐻,2 = 50 ∙ 𝑃1 − (20 ∙ 45 + 1 ∙ 𝐼𝑃1 + 1 ∙ 𝐸11 + 1000 ∙ 𝐸21) (32) 

In the second mDoE, DSSH,2 was calculated for 1000 equally distributed points in the DoE 

design space. For DSSH,2, the mDoE resulted in the response surface shown in Figure 42. 
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Figure 42: Results of the second mDoE performed for an enzymatic starch hydrolysis batch ex-

periment. DSSH,2 with wE1 = 1 and wE2 = 1000. Vstart = 3.0 L, csubstrate,start = 45 g L−1, T = 60 °C, 

pH = 4.15 and NStirr = 300 rpm. Addition of 0.0-1.0 mL Termamyl SC (FE1) and 0.1-0.4 mL 

Spirizyme Ultra (FE2) after a processing time of 15 min. Set of parameters used for simulation: 

ParOptim. 

Weighting E11 with a value of 1 leads to a very long-drawn-out optimum for FE1 between 

0.020 and 1.000 mL. Due to the low weighting, FE1 thus has little effect on DSSH,2. There-

fore, the only decisive factor here was FE2 in the range of 0.220 to 0.230 mL. For this 

reason, the weighting of E11 was increased from 1 to 10. 

For DSSH,3, the concentration E11 was weighted with a value of 10 and E21 with 1000 

(Equation 33). 

𝐷𝑆𝑆𝐻,3 = 50 ∙ 𝑃1 − (20 ∙ 45 + 1 ∙ 𝐼𝑃1 + 10 ∙ 𝐸11 + 1000 ∙ 𝐸21) (33) 

In the third mDoE, DSSH,3 was calculated for 1000 equally distributed points in the DoE 

design space. For DSSH,3, the mDoE resulted in the response surface shown in Figure 43. 
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Figure 43: Results of the third mDoE performed for an enzymatic starch hydrolysis batch experi-

ment. DSSH,3 with wE1 = 10 and wE2 = 1000. Vstart = 3.0 L, csubstrate,start = 45 g L−1, T = 60 °C, 

pH = 4.15 and NStirr = 300 rpm. Addition of 0.0-1.0 mL Termamyl SC (FE1) and 0.1-0.4 mL 

Spirizyme Ultra (FE2) after a processing time of 15 min. Set of parameters used for simulation: 

ParOptim. 

To highlight the points of optimal conditions, the resolution of DSSH,3 was changed from 

1000-1050 to 1038-1042 (Figure 44). 

 

Figure 44: Results of the third mDoE performed for an enzymatic starch hydrolysis batch experi-

ment. DSSH,3 with wE1 = 10 and wE2 = 1000. Vstart = 3.0 L, csubstrate,start = 45 g L−1, T = 60 °C, 

pH = 4.15 and NStirr = 300 rpm. Addition of 0.0-1.0 mL Termamyl SC (FE1) and 0.1-0.4 mL 

Spirizyme Ultra (FE2) after a processing time of 15 min. Set of parameters used for simulation: 

ParOptim. 

Val II

Val III
Optim

Val I
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A weighting of E11 with 10 leads to a much clearer optimum of FE1 = 0.050-0.300 mL and 

FE2 = 0.220-0.230 mL. 

To determine the absolute optimum, the now-determined DSSH,3 was used for the opti-

misation with the OLFO controller. The optimisation part of the OLFO controller deter-

mined the highest DSSH,3 with a value of 1042.115 for FE1 = 0.142 mL and FE2 = 0.208 mL. 

Sixty-two iterations were needed to determine the result. 

Based on the results from the mDoE (Figure 44), three experiments were planned to 

validate the optimised process conditions determined by the optimisation part of the 

OLFO controller (Table 8).  

Table 8: Starch hydrolysis batch experiments planned based on the mDoE result. 

Experiment St = 0 min [g L-1] FE1 [ml] FE2 [ml] DSSH,3 

Optimised (Optim) 45.00 0.142 0.208 1042.115 

Validation I (Val I) 45.00 0.025 0.150 1006.094 

Validation II (Val II) 45.00 0.100 0.350 1015.425 

Validation III (Val III) 45.00 0.800 0.210 1039.991 

Before the experiments (Optim, Val I, Val II, Val III) were carried out, they were pre-

simulated with the new model for enzymatic hydrolysis processes. To verify whether a 

statement can be made after the execution of the experiments on whether the opti-

mised experiment delivers the best results, the simulation courses of the validation ex-

periments were compared with the simulated course of the optimised experiment (Fig-

ure 45). 
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Figure 45: Simulation results of the validation (Val I, Val II, Val III) and optimised (Optim) starch 

hydrolysis batch experiments. Vstart = 3.0 L, csubstrate,start = 45 g L−1, T = 60 °C, pH = 4.15 and 

NStirr = 300 rpm. Addition of 142 µL (Optim), 25 µL (Val I), 100 µL (Val II), 800 µL (Val III) Ter-

mamyl SC and 208 µL (Optim), 150 µL (Val I), 350 µL (Val II), 210 µL (Val III) Spirizyme Ultra af-

ter a processing time of 15 min. S: substrate (potato starch) concentration, P: product (glucose) 

concentration. Set of parameters used for simulation: ParOptim. 

In all planned experiments, the simulated substrate concentration started at a value of 

approx. 45 g L-1. In the optimised experiment (Optim), the minimum simulated substrate 

concentration of approx. 5 g L-1 is reached after a processing time of 30 min, in the first 

validation experiment (Val I) after a processing time of 60 min, in the second validation 

experiment (Val II) after a processing time of 30 min and in the third validation experi-

ment (Val III) after a processing time of 20 min. 

In all experiments, the simulated product concentration started at a value of approx. 

0.00 g L-1. After a processing time of approx. 180 min, the simulated product concentra-

tion reached the maximum value of 39.85 g L-1 in the optimised experiment (Optim), 

38.87 g L-1 in the first validation experiment (Val I), 39.99 g L-1 in the second validation 

experiment (Val II) and 39.86 g L-1 in the third validation experiment (Val III). 
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6.1.1 Experimental validation of the optimised starch hydrolysis batch process in a 

stirred tank reactor 

The experiments shown in Table 9 were carried out to validate the optimised starch hy-

drolysis batch process. 

Table 9: Starch hydrolysis batch experiments in a 6 L STR. 

Experiment St = 0 min [g L-1] FE1 [ml] FE2 [ml] 

Optimised (Optim) 45.00 0.142 0.208 

Validation I (Val I) 45.00 0.025 0.150 

Validation II (Val II) 45.00 0.100 0.350 

Validation III (Val III) 45.00 0.800 0.210 

Figure 46 presents the comparison of the experimental and simulated results of the op-

timised starch hydrolysis batch process. Here, 0.142 mL of Termamyl SC and 0.208 mL 

of Spirizyme Ultra were added to the reactor after a processing time of 15 min. The initial 

substrate concentration was adjusted to the experimentally determined data for the 

post-simulation with the model.  
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Figure 46: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the optimised starch hydrolysis batch experiment (Optim), with R2
substrate = 0.989 and R2

prod-

uct = 0.970. Vstart = 3.0 L, csubstrate,start = 42.29 g L−1, T = 60 °C, pH = 4.15 and NStirr = 300 rpm. Addi-

tion of 0.142 mL Termamyl SC and 0.208 mL Spirizyme Ultra after a processing time of 15 min. 

S: substrate (potato starch) concentration, IP: intermediate product concentration, P: product 

(glucose) concentration, SN: concentration of the non-hydrolysable components of the sub-

strate. Error bars represent the mean value ± of one standard deviation resulting from a double 

determination. Set of parameters used for simulation: ParOptim. 

The measured substrate concentration started at a value of 42.29 g L-1. After a pro-

cessing time of approx. 30 min, the measured substrate concentration decreased to a 

value of approx. 7 g L-1. After a processing time of 180 min, the measured substrate con-

centration reached the minimum value of 4.90 g L-1. The product concentration started 

at a value of approx. 0 g L-1. After adding Termamyl SC and Spirizyme Ultra (t = 15 min) 

up to a processing time of 180 min, the measured product concentration increased to a 

maximum value of 36.02 g L-1. 

The substrate and product concentration curves simulated by the model reproduce the 

measured values with R2
substrate = 0.989 and R2

product = 0.970. 

Figure 47 presents the comparison of the experimental and simulated results of the first 

validation starch hydrolysis batch process (Val I). Here, 0.025 mL of Termamyl SC and 

0.150 mL Spirizyme Ultra were added to the reactor after a processing time of 15 min. 
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The initial substrate concentration was adjusted to the experimentally determined data 

for the post-simulation with the model. 

 

Figure 47: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the first validation starch hydrolysis batch experiment (Val I), with R2
substrate = 0.982 and R2

prod-

uct = 0.967. Vstart = 3.0 L, csubstrate,start = 41.40 g L−1, T = 60 °C, pH = 4.15 and NStirr = 300 rpm. Addi-

tion of 0.025 mL Termamyl SC and 0.150 mL Spirizyme Ultra after a processing time of 15 min. 

S: substrate (potato starch) concentration, IP: intermediate product concentration, P: product 

(glucose) concentration, SN: concentration of the non-hydrolysable components of the sub-

strate. Error bars represent the mean value ± of one standard deviation resulting from a double 

determination. Set of parameters used for simulation: ParOptim. 

The measured substrate concentration started at a value of 41.40 g L-1. After a pro-

cessing time of approx. 60 min, the measured substrate concentration decreased to a 

value of approx. 6 g L-1. After a processing time of 180 min, the measured substrate con-

centration reached the minimum value of 5.40 g L-1. The product concentration started 

at a value of approx. 0 g L-1. After adding Termamyl SC and Spirizyme Ultra (t = 15 min) 

up to a processing time of 180 min, the product concentration increased to a maximum 

value of 33.49 g L-1. 

The substrate and product concentration curves simulated by the model reproduce the 

measured values with R2
substrate = 0.982 and R2

product = 0.967. 

Figure 48 presents the comparison of the experimental and simulated results of the sec-

ond validation starch hydrolysis batch process (Val II). Here, 0.100 mL of Termamyl SC 
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and 0.350 mL Spirizyme Ultra were added to the reactor after a processing time of 15 

min. The initial substrate concentration was adjusted to the experimentally determined 

data for the post-simulation with the model. 

 

Figure 48: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the second validation starch hydrolysis batch experiment (Val II), with R2
substrate = 0.960 and 

R2
product = 0.961. Vstart = 3.0 L, csubstrate,start = 41.26 g L−1, T = 60 °C, pH = 4.15 and NStirr = 300 rpm. 

Addition of 0.100 mL Termamyl SC and 0.350 mL Spirizyme Ultra after a processing time of 

15 min. S: substrate (potato starch) concentration, IP: intermediate product concentration, P: 

product (glucose) concentration, SN: concentration of the non-hydrolysable components of the 

substrate. Error bars represent the mean value ± of one standard deviation resulting from a 

double determination. Set of parameters used for simulation: ParOptim. 

The measured substrate concentration started at a value of 41.26 g L-1. After a pro-

cessing time of approx. 30 min, the measured substrate concentration decreased to a 

value of approx. 7 g L-1. After a processing time of 180 min, the measured substrate con-

centration reached the minimum value of 4.56 g L-1. The measured product concentra-

tion started at a value of approx. 0 g L-1. After adding Termamyl SC and Spirizyme Ultra 

(t = 15 min) up to a processing time of 180 min, the measured product concentration 

increased to a maximum value of 37.68 g L-1. 

The substrate and product concentration curves simulated by the model reproduce the 

measured values with R2
substrate = 0.960 and R2

product = 0.961. 
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Figure 49 presents the comparison of the experimental and simulated results of the third 

validation starch hydrolysis batch process (Val III). Here, 0.800 mL of Termamyl SC and 

0.210 mL Spirizyme Ultra were added to the reactor after a processing time of 15 min. 

The initial substrate concentration was adjusted to the experimentally determined data 

for the post-simulation with the model. 

 

Figure 49: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the third validation starch hydrolysis batch experiment (Val III), with R2
substrate = 0.991 and R2

prod-

uct = 0.966. Vstart = 3.0 L, csubstrate,start = 38.86 g L−1, T = 60 °C, pH = 4.15 and NStirr = 300 rpm. Addi-

tion of 0.800 mL Termamyl SC and 0.210 mL Spirizyme Ultra after a processing time of 15 min. 

S: substrate (potato starch) concentration, IP: intermediate product concentration, P: product 

(glucose) concentration, SN: concentration of the non-hydrolysable components of the sub-

strate. Error bars represent the mean value ± of one standard deviation resulting from a double 

determination. Set of parameters used for simulation: ParOptim. 

The measured substrate concentration started at a value of 38.86 g L-1. After a pro-

cessing time of approx. 20 min, the measured substrate concentration decreased to a 

value of approx. 8 g L-1. After 180 min, the measured substrate concentration reached 

the minimum value of 6.14 g L-1. The measured product concentration started at a value 

of approx. 0 g L-1. After adding Termamyl SC and Spirizyme Ultra (t = 15 min) up to a 

processing time of 180 min, the measured product concentration increased to the max-

imum value of 32.65 g L-1. 
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The substrate and product concentration curves simulated by the model reproduce the 

measured values with R2
substrate = 0.991 and R2

product = 0.966. 

Table 10 presents a comparison of the experimental results of the performed starch hy-

drolysis batch experiments.  

Table 10: Summary of the starch hydrolysis batch experimental results. 

Experi-
ment 

St = 0 min 
[g L-1] 

St = 180 min 
[g L-1] 

FE1 
[ml] 

FE2 
[ml] 

IPcal, t = 180 min 
[g L-1] 

Pexp, t = 180 min 
[g L-1] 

DSSH,3 

Optim 42.29 4.90 0.142 0.208 0.00 36.02 904.64 

Val I 41.40 5.40 0.025 0.150 0.82 33.49 809.48 

Val II 41.26 4.56 0.100 0.350 0.00 37.68 974.19 

Val III 38.86 6.14 0.800 0.210 0.00 32.65 802.00 

After carrying out and evaluating all planned experiments, the experimental results of 

the optimised experiment for batch starch hydrolysis delivered the second highest DSSH,3 

with a value of 904.64. The highest experimental result for DSSH,3 was achieved in the 

second validation experiment with a value of 974.19. 

In the optimised experiment, the second highest product concentration of 36.02 g L-1 

was obtained after 180 min. Here, 3.94 µL Termamyl SC and 5.78 µL Spirizyme Ultra 

were required to generate 1 g L-1 product. In the second validation experiment, where 

the highest product concentration of 37.68 g L-1 was achieved, 2.65 µL Termamyl SC and 

9.29 µL Spirizyme Ultra were needed to generate 1 g L-1 product. 60% more Spirizyme 

Ultra was required to increase the product concentration by 1.66 g/L. 
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6.2 Model-based design and optimisation of a proteolysis batch process in a 

stirred tank reactor 

At the beginning of the process optimisation, the general conditions of the proteolysis 

batch process were defined. The fixed settings for optimising the proteolysis batch pro-

cess were VStart = 3.0 L, SStart = 50 g L-1, T = 50 °C, pH = 7.50, NStirr = 300 rpm and 

t = 180 min. Organic sunflower seed meal (All Organic Treasures GmbH) was used as 

substrate. 

The control variable to be optimised was the addition of the enzyme Flavourzyme (FE2) 

after a processing time of 15 min. The limit for adding the enzyme was set to 0.0-5.0 mL. 

The model-based process optimisation aimed at producing the maximum amount of 

product with the lowest possible enzyme input. 

For the verification of the DSPR for proteolysis optimisation (Equation 34), a mDoE was 

carried out, and the response surface was analysed. 

𝐷𝑆𝑃𝑅,1 = 150 ∙ 𝑃1 − (25 ∙ 42.5 + 1 ∙ 𝐼𝑃1 + 500 ∙ 𝐸11 + 500 ∙ 𝐸21) (34) 

DSPR,1 was calculated for 1000 equally distributed points in the DoE design space 

(FE2 = 0.0-5.0 mL). The result of the mDoE can be seen in Figure 50. 

 

Figure 50: Results of mDoE performed for an enzymatic proteolysis batch experiment. 

Vstart = 3.0 L, csubstrate,start = 50 g L−1, T = 50 °C, pH = 7.5 and NStirr = 300 rpm. Addition of 0.0-

5.0 mL Flavourzyme  (FE2) after a processing time of 15 min. The total process time is 180 min. 

Set of parameters used for simulation: ParOptim. 

Optim

Val I

Val II
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For FE2 = 0 mL, DSPR,1 has the lowest value of approx. 30. If FE2 increases, DSPR,1 increases 

until the maximum value of approx. 1000 is reached at FE2 = approx. 1.5 mL. With FE2 

above 1.5 mL, DSPR,1 decreases to a value of approx. 500 at FE2 = 5.0 mL.  

To determine the absolute optimum, the determined DSPR,1 (Equation 34) was used for 

the optimisation with the OLFO controller. The optimisation part of the OLFO controller 

determined the highest DSPR,1 with 1001.69 for FE2 = 1.483 mL. Fifty-seven iterations 

were needed to determine the result. 

Based on the result of the mDoE (Figure 50), two experiments were planned to validate 

the optimised experiment (Table 11). 

Table 11: Proteolysis batch experiments planned based on mDoE result. 

Experiment St = 0 min [g L-1] FE2 [ml] DSPR,1 

Optimised (Optim) 50.00 1.483 1001.69 

Validation I (Val I) 50.00 0.500 693.19 

Validation II (Val II) 50.00 2.500 902.24 

Subsequently, the validation experiments were pre-simulated to see if a conclusion 

could be drawn about whether the optimised experiment was the best one based on 

the expected results. Figure 51 shows the pre-simulated results of the batch proteolysis 

experiment planned based on the result of the mDoE. 
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Figure 51: Simulation (index: sim) results of the optimised (Optim) and validation (Val I, Val II) 

proteolysis batch experiments, with Vstart = 3.0 L, csubstrate,start = 50 g L−1, T = 50 °C, pH = 7.5 and 

Nstirr = 300 rpm. Addition of 1.483 mL (Optim), 0.500 mL (Val I) and 2.500 mL (Val II) Fla-

vourzyme (E2) after a processing time of 15 min. S: substrate (protein) concentration, P: prod-

uct (free amino acid) concentration. Set of parameters used for simulation: ParOptim. 

In all planned experiments, the simulated substrate concentration started at a value of 

approx. 42.5 g L-1. After a processing time of approx. 180 min, the simulated substrate 

concentration reached the minimum value of 34.54 g L-1 in the optimised experiment 

(Optim), 37.71 g L-1 in the first validation experiment (Val I) and 34.04 g L-1 in the second 

validation experiment (Val II). 

In all experiments, the simulated product concentration started at 7.50 g L-1. After a pro-

cessing time of approx. 180 min, the simulated product concentration reached the max-

imum value of 15.43 g L-1 in the optimised experiment (Optim), 12.27 g L-1 in the first 

validation experiment (Val I) and 15.92 g L-1 in the second validation experiment (Val II). 
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6.2.1 Experimental validation of the optimised proteolysis batch process in a stirred 

tank reactor 

The experiments shown in Table 12 were carried out to validate the optimised proteol-

ysis batch process. 

Table 12: Proteolysis batch experiments in a 6 L STR. 

Experiment St = 0 min [g L-1] FE2 [ml] 

Optimised (Optim) 50.00 1.483 

Validation I (Val I) 50.00 0.500 

Validation II (Val II) 50.00 2.500 

Figure 52 compares the experimental results of the optimised (Optim) batch proteolysis 

experiment with the results simulated by the model. Here, 1.11 mL Flavourzyme was 

added to the STR after a processing time of 15 min. 

 

Figure 52: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the optimised proteolysis batch experiment (Optim), with R2
product = 0.996. Vstart = 3.0 L, csub-

strate,start = 50 g L−1, T = 50 °C, pH = 7.5 and Nstirr = 300 rpm. Addition of 1.11 mL Flavourzyme (FE2) 

after a processing time of 15 min. S: substrate (sunflower seed meal) concentration, IP: inter-

mediate product concentration, P: product (free amino acid) concentration, SN: concentration 

of the non-hydrolysable components of the substrate. Error bars represent the mean value ± of 

one standard deviation resulting from a triple determination. Set of parameters used for simu-

lation: ParOptim. 
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The measured product concentration started at a value of 7.51 g L-1. After a processing 

time of 180 min, the measured product concentration reached the maximum value of 

15.15 g L-1. 

The curve of the product concentration simulated by the model reproduces the meas-

ured values with R2
product = 0.996. 

Figure 53 compares the experimental results of the first validation (Val I) batch proteol-

ysis experiment with the results simulated by the model. Here, 0.5 mL Flavourzyme was 

added to the STR after a processing time of 15 min. 

 

Figure 53: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the first validation proteolysis batch experiment (Val I), with R2
product = 0.984. Vstart = 3.0 L, csub-

strate,start = 50 g L−1, T = 50 °C, pH = 7.5 and Nstirr = 300 rpm. Addition of 0.5 mL Flavourzyme (FE2) 

after a processing time of 15 min. S: substrate (sunflower seed meal) concentration, IP: inter-

mediate product concentration, P: product (free amino acid) concentration, SN: concentration 

of the non-hydrolysable components of the substrate. Error bars represent the mean value ± of 

one standard deviation resulting from a triple determination. Set of parameters used for simu-

lation: ParOptim. 

The measured product concentration started at a value of 7.45 g L-1. After a processing 

time of 180 min, the measured product concentration reached the maximum value of 

12.74 g L-1. The curve of the product concentration simulated by the model reproduces 

the measured values with R2
product = 0.984. 
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Figure 54 compares the experimental results of the second validation (Val II) batch pro-

teolysis experiment with the results simulated by the model. Here, 2.5 mL Flavourzyme 

was added to the STR after a processing time of 15 min. 

 

Figure 54: Comparison between simulation (index: sim) and experimental (index: exp) results of 

the second validation proteolysis batch experiment (Val II), with R2
product = 0.995. Vstart = 3.0 L, 

csubstrate,start = 50 g L−1, T = 50 °C, pH = 7.5 and Nstirr = 300 rpm. Addition of 2.5 mL Flavourzyme 

(FE2) after a processing time of 15 min. S: substrate (sunflower seed meal) concentration, IP: in-

termediate product concentration, P: product (free amino acid) concentration, SN: concentra-

tion of the non-hydrolysable components of the substrate. Error bars represent the mean value 

± of one standard deviation resulting from a triple determination. Set of parameters used for 

simulation: ParOptim. 

The measured product concentration started at a value of 7.62 g L-1. After a processing 

time of approx. 180 min, the measured product concentration reached the maximum 

value of 16.02 g L-1. The curve of the product concentration simulated by the model re-

produces the measured values with R2
product = 0.995.  
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In Table 13 the experimental results of the performed proteolysis batch experiments are 

summarised. 

Table 13: Summary of the proteolysis batch experimental results. 

Experiment FE2 [ml] St = 0 min [g L-1] Pexp, t = 0 min [g L-1] Pexp, t = 180 min [g L-1] DSPR,1 

Optim 1.483 42.49 7.51 15.15 961.31 

Val I 0.500 42.55 7.45 12.74 761.63 

Val II 2.500 42.38 7.62 16.02 915.42 

After carrying out and evaluating all planned experiments, the experimental results of 

the optimised batch proteolysis experiment delivered the highest DSPR,1 with a value of 

961.31. 

In the optimised experiment, the second highest product concentration of 15.15 g L-1 

was obtained after 180 min. Here, 97,89 µL Flavourzyme was required to generate 1 g L-1 

product. In the second validation experiment, where the highest product concentration 

of 16.02 g L-1 was achieved, 156.05 µL Flavourzyme was needed to generate 1 g L-1 prod-

uct. 59.42% more Flavourzyme was required to increase the product concentration by 

0.87 g L-1. 
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6.3 Discussion 

The model-based process design strategy, according to the OLFO principle, was success-

fully established and applied for enzymatic batch processes in a STR. Furthermore, 

through the combination with the mDoE strategy, the process conditions optimised by 

the OLFO could also be verified, and further experiments could be planned to validate 

the optimised experiment. Furthermore, the digital twin core model of the new stand-

alone digital twin for enzymatic hydrolysis processes used for the optimisation could 

reproduce all the experiments carried out with an agreement of over 90%. 

In the starch hydrolysis process, the enzyme used was reduced by more than 30% com-

pared to the best validation experiment. In the proteolysis process, the amount of en-

zyme used was reduced by more than 50% compared to the best validation experiment. 

Since the optimisation aimed to reduce the amount of enzyme used while maximising 

product formation, it can be said that the optimiser of the OLFO controller was able to 

determine the optimal process conditions. The developed DS can be extended to further 

improve the enzymatic hydrolysis batch processes. Here, for example, costs for energy 

or processing time could be considered. 

Comparing the new strategies for model-based process design optimisation with the 

classical DoE method, an apparent reduction in the number of experiments required for 

optimisation can be seen. 

With two variable parameters, four experiments must be carried out per DoE run for 

corner points of the DoE design space and two experiments for the centre point. To be 

able to determine the relatively small optimum that resulted from the starch hydrolysis 

process, at least 2-3 DoE runs would have been necessary. This would have resulted in 

about 12-18 experiments. Only six experiments were necessary with the process design 

optimisation strategies developed in this research work. The experimental effort could 

thus be reduced by more than 50%. Since the mDoE was only used to validate the result 

calculated by the OLFO controller, these experiments could also be eliminated, whereby 

only three experiments would have been necessary. 

By using the new digital twin core model, the DoE design space can be narrowed down. 

This would have been difficult or even impossible with the classic DoE method. 
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7 Conclusion 

Within the scope of this research work, a mechanistic model for enzymatic hydrolysis 

processes was developed. Michaelis-Menten kinetics were implemented to map the re-

action rates. Double sigmoidal functions represent the influence of temperature and pH 

on enzyme activity and stability. The enzymatic hydrolysis processes of starch hydrolysis 

and proteolysis can be simulated with an agreement of over 90%. 

Furthermore, a stand-alone digital twin for enzymatic hydrolysis processes in a 20 L STR 

was developed. Therefore, the model for the combined enzymatic starch hydrolysis and 

proteolysis was implemented into an existing stand-alone digital twin of a 20 L STR de-

veloped by the working group of Prof. Dr. Volker C. Hass at Furtwangen University (Appl 

et al., 2021; Gerlach et al., 2013; Gerlach et al., 2015; Hass et al., 2005a, 2005b; Hass, 

2005; Hass et al., 2012; Hass, 2016; Hirschmann et al., 2018; Hirschmann, 2021; Isimite 

et al., 2018).  

The new stand-alone digital twin can now map the nutrient media production through 

enzymatic hydrolysis, the cultivation of S. cerevisiae, the production of ethanol by 

S. cerevisiae and the whole-cell biocatalysis of ethyl-3-hydroxy-butyrate from the sub-

strate ethyl acetoacetate in a 20 L STR under aerobic and anaerobic conditions.  

Furthermore, the digital twin core model of the new stand-alone digital twin for enzy-

matic hydrolysis processes in a STR was coupled with new model-based process design 

strategies based on a combination of the OLFO and mDoE approaches and applied to 

enzymatic hydrolysis processes batch experiments in a STR. The new strategies im-

proved starch hydrolysis and proteolysis batch processes in a STR and thus reduced en-

zyme consumption by more than 50% compared to the validation experiments. 

In addition, it was investigated how the activity of the hydrolytic enzymes can be en-

hanced using high-pressure homogenisation. For Termamyl SC (α-amylase), an increase 

of approx. 7% in the 60 °C-activity was reached after high-pressure homogenisation at 

1000 bar. An increase of approx. 5-12% in the 80 °C-activity was reached after high-pres-

sure homogenisation at 1000-1500 bar. For Spirizyme Ultra (α-amylases and glucoamyl-

ases), an increase of approx. 1-4% in the 80 °C-activity was reached after high-pressure 

homogenisation at 1500-2000 bar. For EnerZyme P7 (endopeptidases), an increase of 

approx. 6% in the 25 °C-activity was reached after high-pressure homogenisation at 
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2000 bar. An increase of approx. 3-5% in the 50 °C-activity was reached after high-pres-

sure homogenisation at 1500-2000 bar. For Flavourzyme (endopeptidases and exopep-

tidases), an increase of approx. 18-22% in the 25 °C-activity and approx. 13-20% in the 

50 °C-activity was reached after high-pressure homogenisation at 500-1000 bar.  

When investigating the enzyme activity after high-pressure homogenisation, the exper-

imental results of all investigated enzyme preparations showed partially high standard 

deviations, which is why further investigations are necessary. A significantly higher en-

zyme activity could only be determined for high-pressure homogenisation of Fla-

vourzyme at 1000 bar and 50 °C. 

The model-based strategies and tools resulting from this work can find a wide range of 

industrial applications in the future. They can soon be used for the industrial production 

of organic nutrient media from regenerative substrates for the cultivation of a wide va-

riety of microorganisms such as S. cerevisiae or E. coli. Furthermore, they provide the 

basis for reducing the costs of various enzymatic processes and thus improving their 

competitiveness compared to conventional chemical processes. 
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8 Outlook 

The new model for enzymatic hydrolysis processes was designed to be as generic as 

possible. Thus, it can be quickly adapted to other enzymatic processes. The require-

ments for replacing the implemented Michaelis-Menten kinetics with other kinetics 

were created for this purpose. 

The model for enzymatic hydrolysis processes was successfully integrated into stand-

alone digital twins for an STR and a PBR. The new model could be integrated into other 

reactor concepts with various process setups (Section 1.3). This allows a comparison of 

which reactor is best suited for carrying out enzymatic hydrolysis processes. Further-

more, integration into more significant digital twin concepts, such as the "Biorefinery 

Black Forest" concept developed at Furtwangen University, is an attractive possibility. 

In this concept, the complete biotechnological processing of local renewable raw mate-

rials is considered, from producing nutrient media and cultivating microorganisms to 

producing products (e.g., ethanol, biogas). 

Another possible application of the new stand-alone digital twin for enzymatic hydroly-

sis processes is its use for educational purposes. With this new tool, students can learn 

the basics of control engineering and bioprocess development in a very illustrative and 

hands-on way. However, due to the usually very high number of students in the courses, 

it is usually impossible for educational institutions to conduct such experiments on ex-

isting systems. 

The digital twin core model of the new stand-alone digital twin for enzymatic hydroly-

sis processes in an STR was linked to new strategies for model-based process optimisa-

tion based on the OLFO and mDoE approaches. This made it possible to improve the 

enzymatic hydrolysis processes of starch hydrolysis and proteolysis with only a few ex-

periments. Potato starch was used as substrate for starch hydrolysis, and sunflower 

seed meal was used as substrate in proteolysis. The strategies developed in this work 

could also be used to optimise these processes with other substrates (e.g., rice flour or 

soy protein powder). The developed model must only be adapted to the changed pro-

cess properties using a few parameterisation experiments. This offers exciting possibili-

ties for industrial application.  
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B States, variables and parameters of the model for enzymatic hydrolysis pro-

cesses 

The states, manipulated variables and parameters (ParOptim) listed in the following tables 

were defined to create the digital twin core model for enzymatic hydrolysis processes. 

Table B1: State variables of the model for enzymatic hydrolysis processes in a stirred tank reac-

tor. 

Abbreviation Description 
Lower 
bound 

Upper 
bound 

Unit 

STR – Model 

VB Volume of the broth in the STR. 1 · 10-10 0.02 m³ 

Fin Total inflow to the STR. 0 1.67 · 10-6 m³/s 

Process 1 (P1) – Starch hydrolysis with α-amylase (E1) and glucoamylase (E2) 

S1,P1 
Concentration of total substrate (starch) in 
the STR. 

0 500 kg/m3 

SH1,P1 
Concentration of hydrolysable substrate in 
the STR. 

0 500 kg/m3 

SN1,P1 
Concentration of non-hydrolysable  
components of substrate in the STR. 

0 500 kg/m3 

E11,P1 Concentration of E1 in the STR. 0 1000 kg/m3 

E21,P1 Concentration of E2 in the STR. 0 1000 kg/m3 

IP1,P1 
Concentration of intermediate product  
(oligosaccharide) in the STR. 

0 500 kg/m3 

P1,P1 
Concentration of product (glucose) in the 
STR. 

0 500 kg/m3 

rSIP,E1,P1 
Degradation rate of E1 (substrate to  
intermediate product). 

0 100 1/s 

rIPP,E2,P1 
Degradation rate of E2 (intermediate  
product to product). 

0 100 1/s 

rIPS,E1,P1 
Build-up rate of E1 (intermediate product 
from substrate). 

0 100 1/s 

rPS,E1,P1 
Build-up rate of E1 (product from  
substrate). 

0 100 1/s 

rPIP,E2,P1 
Build-up rate of E2 (product from  
intermediate product). 

0 100 1/s 

rden,E1,P1 Denaturation rate of E1. 0 1 1/s 
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rden,E2,P1 Denaturation rate of E2. 0 1 1/s 

fT,act,E1,P1 
Factor for the temperature-dependent  
activity of E1. 

0 1 - 

fT,act,E2,P1 
Factor for the temperature-dependent  
activity of E2. 

0 1 - 

fT,sta,E1,P1 
Factor for temperature-dependent stability 
of E1. 

0 1 - 

fT,sta,E2,P1 
Factor for temperature-dependent stability 
of E2. 

0 1 - 

fpH,act,E1,P1 Factor for the pH-dependent activity of E1. 0 1 - 

fpH,act,E2,P1 Factor for the pH-dependent activity of E2. 0 1 - 

fpH,sta,E1,P1 Factor for pH-dependent stability of E1. 0 1 - 

fpH,sta,E2,P1 Factor for pH-dependent stability of E2. 0 1 - 

Process 2 (P2) – Proteolysis with endo- (E1) and exopeptidase (E2) 

S1,P2 
Concentration of total substrate (protein) in 
the STR. 

0 500 kg/m3 

SH1,P2 
Concentration of hydrolysable substrate in 
the STR. 

0 500 kg/m3 

SN1,P2 
Concentration of non-hydrolysable  
components of substrate in the STR. 

0 500 kg/m3 

E11,P2 Concentration of E1 in the STR. 0 1000 kg/m3 

E21,P2 Concentration of E2 in the STR. 0 1000 kg/m3 

IP1,P2 
Concentration of intermediate product 
(peptide) in the STR. 

0 500 kg/m3 

P1,P2 
Concentration of product (free amino acids) 
in the STR. 

0 500 kg/m3 

rSIP,E1,P2 
Degradation rate of E1 (substrate to  
intermediate product). 

0 100 1/s 

rIPP,E2,P2 
Degradation rate of E2 (intermediate  
product to product). 

0 100 1/s 

rIPS,E1,P2 
Build-up rate of E1 (intermediate product 
from substrate). 

0 100 1/s 

rPS,E1,P2 
Build-up rate of E1 (product from  
substrate). 

0 100 1/s 

rPIP,E2,P2 
Build-up rate of E2 (product from  
intermediate product). 

0 100 1/s 



 

128 
 

rden,E1,P2 Denaturation rate of E1. 0 1 1/s 

rden,E2,P2 Denaturation rate of E2. 0 1 1/s 

fT,act,E1,P2 
Factor for the temperature-dependent  
activity of E1. 

0 1 - 

fT,act,E2,P2 
Factor for the temperature-dependent  
activity of E2. 

0 1 - 

fT,sta,E1,P2 
Factor for temperature-dependent stability 
of E1. 

0 1 - 

fT,sta,E2,P2 
Factor for temperature-dependent stability 
of E2. 

0 1 - 

fpH,act,E1,P2 Factor for the pH-dependent activity of E1. 0 1 - 

fpH,act,E2,P2 Factor for the pH-dependent activity of E2. 0 1 - 

fpH,sta,E1,P2 Factor for pH-dependent stability of E1. 0 1 - 

fpH,sta,E2,P2 Factor for pH-dependent stability of E2. 0 1 - 

 

Table B2: Manipulated variables of the model for enzymatic hydrolysis processes. 

Abbreviation Description 
Lower 
bound 

Upper 
bound 

Unit 

STR – Model 

TB Temperature (profile) of broth in the STR. 273.15 373.15 K 

pHB Value (profile) of broth pH in the STR. 0 14 - 

FB,1 Outflow of broth from the STR. 0 1.67 · 10-6 m³/s 

Process 1 (P1) – Starch hydrolysis with α-amylase (E1) and glucoamylase (E2) 

FS,0,P1 
Inflow of substrate (protein) solution to the 
STR. 

0 1.67 · 10-7 m³/s 

FE1,0,P1 Inflow of E1 solution to the STR.  0 1.67 · 10-8 m³/s 

FE2,0,P1 Inflow of E2 solution to the STR. 0 1.67 · 10-8 m³/s 

SH0,P1 
Concentration of hydrolysable substrate in 
the FS,0,P1. 

0 500 kg/m3 
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SN0,P1 
Concentration of non-hydrolysable substrate 
in FS,0,P1. 

0 500 kg/m3 

E10,P1 Concentration of E1 in FE1,0,P1. 0 1000 kg/m3 

E20,P1 Concentration of E2 in FE2,0,P1. 0 1000 kg/m3 

IP0,P1 
Concentration of intermediate product  
(peptide) in FS,0,P1. 

0 500 kg/m3 

P0,P1 
Concentration of product (free amino acids) 
in FS,0,P1. 

0 500 kg/m3 

Process 2 (P2) – Proteolysis with endo- (E1) and exopeptidase (E2) 

FS,0,P2 
Inflow of substrate (protein) solution to the 
STR. 

0 1.67 · 10-7 m³/s 

FE1,0,P2 Inflow of E1 solution to the STR.  0 1.67 · 10-8 m³/s 

FE2,0,P2 Inflow of E2 solution to the STR. 0 1.67 · 10-8 m³/s 

SH0,P2 
Concentration of hydrolysable substrate in 
the FS,0,P2. 

0 500 kg/m3 

SN0,P2 
Concentration of non-hydrolysable substrate 
in FS,0,P2. 

0 500 kg/m3 

E10,P2 Concentration of E1 in FE1,0,P2. 0 1000 kg/m3 

E20,P2 Concentration of E2 in FE2,0,P2. 0 1000 kg/m3 

IP0,P2 
Concentration of intermediate product  
(peptide) in FS,0,P2. 

0 500 kg/m3 

P0,P2 
Concentration of product (free amino acids) 
in FS,0,P2. 

0 500 kg/m3 

 

Table B3: Set of parameters (ParOptim) of the model for enzymatic hydrolysis processes. 

Abbreviation Description 
Lower 
bound 

Upper 
bound 

Unit Value 

Process 1 (P1) – Starch hydrolysis with α-amylase (E1) and glucoamylase (E2) 

rmax,SIP,E1,P1 
Maximal reaction rate of E1 (sub-
strate to intermediate product). 

0 100 1/s 8.64 

KM,SIP,E1,P1 
Michaelis-Menten-constant for E1 
(substrate to intermediate  
product). 

0 10 kg/m3 · s 25.60 

YSIP,E1,P1 
Yield factor during formation of  
intermediate product from  
substrate. 

0 1 kg/kg 0.99 
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rmax,IPP,E2,P1 
Maximal reaction rate of E2 (inter-
mediate product to product). 

0 100 1/s 0.82 

KM,IPP,E2,P1 
Michaelis-Menten-constant for E2 
(intermediate product to product). 

0 10 kg/m3 · s 29.99 

YIPP,E2,P1 
Yield factor during formation of 
product from intermediate prod-
uct. 

0 1 kg/kg 1 

PIP,P1 
Proportional factor for formation 
of intermediate product from  
substrate. 

0 1 - 1 

PP,P1 
Proportional factor for formation 
of product from intermediate  
product. 

0 1 - 1 

fE2,FE1,P1 
Factor for the proportion of E2 in 
FE1,0,P1. 

0 1 - 0 

fE1,FE2,P1 
Factor for the proportion of E1 in 
FE2,0,P1. 

0 1 - 0.3 

rmax,den,E1,P1 Maximal denaturation rate of E1. 0 1 1/s 1e-5 

rmax,den,E2,P1 Maximal denaturation rate of E2. 0 1 1/s 1e-5 

YLS,T,act,E1,P1 
Lowest value on the left side of  
T-DSig for E1 activity. 

0 5 - 0 

Ymid,T,act,E1,P1 
Upper/lower limit between the left 
and the right inflexion points of  
T-DSig for E1 activity. 

0 5 - 1 

YRS,T,act,E1,P1 
Highest value on the right side of  
T-DSig for E1 activity. 

0 5 - 1 

KLS,T,act,E1,P1 Left slope of T-DSig for E1 activity. 0 10 - 0.111 

KRS,T,act,E1,P1 Right slope of T-DSig for E1 activity. 0 10 - 0.111 

rmax,Tlow,act,E1,P1 
Low temperature at which 50% of 
rmax,SIP,E1,P1 are achieved. 

273.15 373.15 K 329 

rmax,Thigh,act,E1,P1 
High temperature at which 50% of 
rmax,SIP,E1,P1 are achieved. 

273.15 373.15 K 329 

YLS,T,act,E2,P1 
Lowest value on the left side of  
T-DSig for E2 activity. 

0 5  0 

Ymid,T,act,E2,P1 
Upper/lower limit between the left 
and the right inflexion points of  
T-DSig for E2 activity. 

0 5  1 

YRS,T,act,E2,P1 
Highest value on the right side of  
T-DSig for E2 activity. 

0 5  1 

KLS,T,act,E2,P1 Left slope of T-DSig for E2 activity. 0 10  0.12 

KRS,T,act,E2,P1 Right slope of T-DSig for E2 activity. 0 10  0.12 
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rmax,Tlow,act,E2,P1 
Low temperature at which 50% of 
rmax,IPP,E2,P1 are achieved. 

273.15 373.15 K 318 

rmax,Thigh,act,E2,P1 
High temperature at which 50% of 
rmax,IPP,E2,P1 are achieved. 

273.15 373.15 K 318 

YLS,T,sta,E1,P1 
Lowest value on the left side of  
T-DSig for E1 stability. 

0 5 - 0.1 

Ymid,T,sta,E1,P1 
Upper/lower limit between the left 
and the right inflexion points of  
T-DSig for E1 stability. 

0 5 - 1 

YRS,T,sta,E1,P1 
Highest value on the right side of  
T-DSig for E1 stability. 

0 5 - 1 

KLS,T,sta,E1,P1 Left slope of T-DSig for E1 stability. 0 10 - 0.2 

KRS,T,sta,E1,P1 
Right slope of T-DSig for E1 stabil-
ity. 

0 10 - 0.2 

rmax,Tcrit,sta,E1,P1 
Critical temperature at which the 
denaturation rate is already 50% of 
rmax,den,E1,P1. 

273.15 373.15 K 393 

YLS,T,sta,E2,P1 
Lowest value on the left side of  
T-DSig for E2 stability. 

0 5 - 0.1 

Ymid,T,sta,E2,P1 
Upper/lower limit between the left 
and the right inflexion points of  
T-DSig for E2 stability. 

0 5 - 1 

YRS,T,sta,E2,P1 
Highest value on the right side of  
T-DSig for E2 stability. 

0 5 - 1 

KLS,T,sta,E2,P1 Left slope of T-DSig for E2 stability. 0 10 - 0.2 

KRS,T,sta,E2,P1 
Right slope of T-DSig for E2 stabil-
ity. 

0 10 - 0.2 

rmax,Tcrit,sta,E2,P1 
Critical temperature at which the 
denaturation rate is already 50% of 
rmax,den,E2,P1. 

273.15 373.15 K 393 

YLS,pH,act,E1,P1 
Lowest value on the left side of pH-
DSig for E1 activity. 

0 5 - 0 

Ymid,pH,act,E1,P1 
Upper/lower limit between the left 
and the right inflexion points of 
pH-DSig for E1 activity. 

0 5 - 1.45 

YRS,pH,act,E1,P1 
Highest value on the right side of 
pH-DSig for E1 activity. 

0 5 - 0 

KLS,pH,act,E1,P1 
Left slope of pH-DSig for E1 activ-
ity. 

0 10 - 2.5 

KRS,pH,act,E1,P1 
Right slope of pH-DSig for E1 activ-
ity. 

0 10 - 1.5 

rmax,pHlow,act,E1,P1 
Low pH value at which 50% of 
rmax,SIP,E1,P1 are achieved. 

0 14 - 4.3 

rmax,pHhigh,act,E1,P1 
High pH value at which 50% of 
rmax,SIP,E1,P1 are achieved. 

0 14 - 6 
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YLS,pH,act,E2,P1 
Lowest value on the left side of pH-
DSig for E2 activity. 

0 5 - 0 

Ymid,pH,act,E2,P1 
Upper/lower limit between the left 
and the right inflexion points of 
pH-DSig for E2 activity. 

0 5 - 1 

YRS,pH,act,E2,P1 
Highest value on the right side of 
pH-DSig for E2 activity. 

0 5 - 0 

KLS,pH,act,E2,P1 
Left slope of pH-DSig for E2 activ-
ity. 

0 10 - 3 

KRS,pH,act,E2,P1 
Right slope of pH-DSig for E2 activ-
ity. 

0 10 - 3 

rmax,pHlow,act,E2,P1 
Low pH at which 50% of rmax,IPP,E2,P1 
are achieved. 

0 14 - 4 

rmax,pHhigh,act,E2,P1 
High pH at which 50% of rmax,IPP,E2,P1 
are achieved. 

0 14 - 8.5 

YLS,pH,sta,E1,P1 
Lowest value on the left side of  
pH-DSig for E1 stability. 

0 5 - 1 

Ymid,pH,sta,E1,P1 
Upper/lower limit between the left 
and the right inflexion points of 
pH-DSig for E1 stability. 

0 5 - 0.1 

YRS,pH,sta,E1,P1 
Highest value on the right side of 
pH-DSig for E1 stability. 

0 5 - 1 

KLS,pH,sta,E1,P1 
Left slope of pH-DSig for E1 stabil-
ity. 

0 10 - 3 

KRS,pH,sta,E1,P1 
Right slope of pH-DSig for E1 stabil-
ity. 

0 10 - 3 

rmax,pHlow,sta,E1,P1 
Low pH, at which the denaturation 
rate is already 50% of rmax,den,E1,P1. 

0 14 - 1.5 

rmax,pHhigh,sta,E1,P1 
High pH, at which the denaturation 
rate is already 50% of rmax,den,E1,P1. 

0 14 - 11 

YLS,pH,sta,E2,P1 
Lowest value on the left side of  
pH-DSig for E2 stability. 

0 5 - 1 

Ymid,pH,sta,E2,P1 
Upper/lower limit between the left 
and the right inflexion points of 
pH-DSig for E2 stability. 

0 5 - 0.1 

YRS,pH,sta,E2,P1 
Highest value on the right side of 
pH-DSig for E2 stability. 

0 5 - 1 

KLS,pH,sta,E2,P1 
Left slope of pH-DSig for E2 stabil-
ity. 

0 10 - 3 

KRS,pH,sta,E2,P1 
Right slope of pH-DSig for E2 stabil-
ity. 

0 10 - 3 

rmax,pHlow,sta,E2,P1 
Low pH, at which the denaturation 
rate is already 50% of rmax,den,E2,P1. 

0 14 - 1.5 

rmax,pHlow,sta,E2,P1 
High pH, at which the denaturation 
rate is already 50% of rmax,den,E2,P1. 

0 14 - 12 
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Process 2 (P2) – Proteolysis with endo- (E1) and exopeptidase (E2) 

rmax,SIP,E1,P2 
Maximal reaction rate of E1 (sub-
strate to intermediate product). 

0 100 1/s 0.57 

KM,SIP,E1,P2 
Michaelis-Menten-constant for E1 
(substrate to intermediate  
product). 

0 10 kg/m3 · s 22.55 

YSIP,E1,P2 
Yield factor during formation of  
intermediate product from  
substrate. 

0 1 kg/kg 0.95 

rmax,IPP,E2,P2 
Maximal reaction rate of E2 (inter-
mediate product to product). 

0 100 1/s 0.67 

KM,IPP,E2,P2 
Michaelis-Menten-constant for E2 
(intermediate product to product). 

0 10 kg/m3 · s 1.57 

YIPP,E2,P2 
Yield factor during formation of 
product from intermediate  
product. 

0 1 kg/kg 1 

PIP,P2 
Proportional factor for formation 
of intermediate product from  
substrate. 

0 1 - 1 

PP,P2 
Proportional factor for formation 
of product from intermediate  
product. 

0 1 - 1 

fE2,FE1,P2 
Factor for proportion of E2 in 
FE1,0,P2. 

0 1 - 0 

fE1,FE2,P2 
Factor for proportion of E1 in 
FE2,0,P2. 

0 1 - 0.5 

rmax,den,E1,P2 Maximal denaturation rate of E1. 0 1 1/s 1e-5 

rmax,den,E2,P2 Maximal denaturation rate of E2. 0 1 1/s 1e-5 

YLS,T,act,E1,P2 
Lowest value on the left side of  
T-DSig for E1 activity. 

0 5 - 0 

Ymid,T,act,E1,P2 
Upper/lower limit between the left 
and the right inflexion points of  
T-DSig for E1 activity. 

0 5 - 1.52 

YRS,T,act,E1,P2 
Highest value on the right side of  
T-DSig for E1 activity. 

0 5 - 0 

KLS,T,act,E1,P2 Left slope of T-DSig for E1 activity. 0 10 - 0.09 

KRS,T,act,E1,P2 Right slope of T-DSig for E1 activity. 0 10 - 0.2 

rmax,Tlow,act,E1,P2 
Low temperature at which 50% of 
rmax,SIP,E1,P2 are achieved. 

273.15 373.15 K 316 

rmax,Thigh,act,E1,P2 
High temperature at which 50% of 
rmax,SIP,E1,P2 are achieved. 

273.15 373.15 K 338 
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YLS,T,act,E2,P2 
Lowest value on the left side of  
T-DSig for E2 activity. 

0 5 - 0 

Ymid,T,act,E2,P2 
Upper/lower limit between the left 
and the right inflexion points of  
T-DSig for E2 activity. 

0 5 - 1.12 

YRS,T,act,E2,P2 
Highest value on the right side of  
T-DSig for E2 activity. 

0 5 - 0 

KLS,T,act,E2,P2 Left slope of T-DSig for E2 activity. 0 10 - 0.13 

KRS,T,act,E2,P2 Right slope of T-DSig for E2 activity. 0 10 - 0.2 

rmax,Tlow,act,E2,P2 
Low temperature at which 50% of 
rmax,IPP,E2,P2 are achieved. 

273.15 373.15 K 301 

rmax,Thigh,act,E2,P2 
High temperature at which 50% of 
rmax,IPP,E2,P2 are achieved. 

273.15 373.15 K 337 

YLS,T,sta,E1,P2 
Lowest value on the left side of  
T-DSig for E1 stability. 

0 5 - 0.1 

Ymid,T,sta,E1,P2 
Upper/lower limit between the left 
and the right inflexion points of  
T-DSig for E1 stability. 

0 5 - 1 

YRS,T,sta,E1,P2 
Highest value on the right side of  
T-DSig for E1 stability. 

0 5 - 1 

KLS,T,sta,E1,P2 Left slope of T-DSig for E1 stability. 0 10 - 0.2 

KRS,T,sta,E1,P2 
Right slope of T-DSig for E1 stabil-
ity. 

0 10 - 0.2 

rmax,Tcrit,sta,E1,P2 
Critical temperature at which the 
denaturation rate is already 50% of 
rmax,den,E1,P2. 

273.15 373.15 K 345 

YLS,T,sta,E2,P2 
Lowest value on the left side of  
T-DSig for stability of E2. 

0 5 - 0.1 

Ymid,T,sta,E2,P2 
Upper/lower limit between the left 
and the right inflexion points of  
T-DSig for E2 stability. 

0 5 - 1 

YRS,T,sta,E2,P2 
Highest value on the right side of  
T-DSig for E2 stability. 

0 5 - 1 

KLS,T,sta,E2,P2 Left slope of T-DSig for E2 stability. 0 10 - 0.2 

KRS,T,sta,E2,P2 
Right slope of T-DSig for E2 stabil-
ity. 

0 10 - 0.2 

rmax,Tcrit,sta,E2,P2 
Critical temperature at which the  
denaturation rate is already 50% of 
rmax,den,E2,P2. 

273.15 373.15 K 345 

YLS,pH,act,E1,P2 
Lowest value on the left side of  
pH-DSig for E1 activity. 

0 5 - 0 



 

135 
 

Ymid,pH,act,E1,P2 
Upper/lower limit between the left 
and the right inflexion points of 
pH-DSig for E1 activity. 

0 5 - 1.1 

YRS,pH,act,E1,P2 
Highest value on the right side of 
pH-DSig for E1 activity. 

0 5 - 0 

KLS,pH,act,E1,P2 
Left slope of pH-DSig for E1 activ-
ity. 

0 10 - 2.5 

KRS,pH,act,E1,P2 
Right slope of pH-DSig for E1 activ-
ity. 

0 10 - 2 

rmax,pHlow,act,E1,P2 
Low pH at which 50% of rmax,SIP,E1,P2 
are achieved. 

0 14 - 5.8 

rmax,pHhigh,act,E1,P2 
High pH at which 50% of rmax,SIP,E1,P2 
are achieved. 

0 14 - 8.6 

YLS,pH,act,E2,P2 
Lowest value on the left side of  
pH-DSig for E2 activity. 

0 5 - 0 

Ymid,pH,act,E2,P2 
Upper/lower limit between the left 
and the right inflexion points of 
pH-DSig for E2 activity. 

0 5 - 1.8 

YRS,pH,act,E2,P2 
Highest value on the right side of 
pH-DSig for E2 activity. 

0 5 - 0 

KLS,pH,act,E2,P2 
Left slope of pH-DSig for E2 activ-
ity. 

0 10 - 1.2 

KRS,pH,act,E2,P2 
Right slope of pH-DSig for E2 activ-
ity. 

0 10 - 1 

rmax,pHlow,act,E2,P2 
Low pH at which 50% of rmax,IPP,E2,P2 
are achieved. 

0 14 - 6.4 

rmax,pHhigh,act,E2,P2 
High pH at which 50% of rmax,IPP,E2,P2 
are achieved. 

0 14 - 8.4 

YLS,pH,sta,E1,P2 
Lowest value on the left side of  
pH-DSig for E1 stability. 

0 5 - 1 

Ymid,pH,sta,E1,P2 
Upper/lower limit between the left 
and the right inflexion points of 
pH-DSig for E1 stability. 

0 5 - 0.1 

YRS,pH,sta,E1,P2 
Highest value on the right side of 
pH-DSig for E1 stability. 

0 5 - 1 

KLS,pH,sta,E1,P2 
Left slope of pH-DSig for E1 stabil-
ity. 

0 10 - 3 

KRS,pH,sta,E1,P2 
Right slope of pH-DSig for E1 stabil-
ity. 

0 10 - 3 

rmax,pHlow,sta,E1,P2 
Low pH, at which the denaturation 
rate is already 50% of rmax,den,E1,P2. 

0 14 - 3 

rmax,pHhigh,sta,E1,P2 
High pH, at which the denaturation 
rate is already 50% of rmax,den,E1,P2. 

0 14 - 11 

YLS,pH,sta,E2,P2 
Lowest value on the left side of  
pH-DSig for E2 stability. 

0 5 - 1 
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Ymid,pH,sta,E2,P2 
Upper/lower limit between the left 
and the right inflexion points of 
pH-DSig for E2 stability. 

0 5 - 0.1 

YRS,pH,sta,E2,P2 
Highest value on the right side of 
pH-DSig for E2 stability. 

0 5 - 1 

KLS,pH,sta,E2,P2 
Left slope of pH-DSig for E2 stabil-
ity. 

0 10 - 3 

KRS,pH,sta,E2,P2 
Right slope of pH-DSig for E2 stabil-
ity. 

0 10 - 3 

rmax,pHlow,sta,E2,P2 
Low pH, at which the denaturation 
rate is already 50% of rmax,den,E2,P2. 

0 14 - 2 

rmax,pHlow,sta,E2,P2 
High pH, at which the denaturation 
rate is already 50% of rmax,den,E2,P2. 

0 14 - 12 

 


