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ABSTRACT

The interaction problem of flexural-gravity wave with multiple vertical cylinders frozen in an ice sheet on the surface of water with finite
water depth is considered. The linearized velocity potential theory is adopted for fluid flow, and the thin elastic plate model is applied for ice
sheet deflection. Each cylinder is bottom-mounted, and the shape of its cross section can be arbitrary while remaining constant in the vertical
direction. The velocity potential is expanded into an eigenfunction series in the vertical direction, which satisfies the boundary condition on
the ice sheet automatically. The horizontal modes, which satisfy the Helmholtz equations, are then transformed into a series of boundary
integral equations along the ice sheet edges or the intersection of the ice sheet with the cylinders. The problem is then solved numerically by
imposing the ice sheet edge condition together with the impermeable condition on the cylinders. The solution is exact in the sense that the error
is only due to numerical discretization and truncation. Computations are first carried out for single and multiple vertical circular cylinders, and
good agreements are obtained with the semi-analytical solution. To resolve the difficulty of excessive computation at a large number of cylin-
ders, the effect of the evanescent wave of a cylinder on those at large distance is ignored. This allows for the case of a large number of cylinders
in different arrangements to be simulated. Extensive results are provided. Their physics and practical relevance are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161848

I. INTRODUCTION

The interaction of flexural-gravity wave with single and multiple
structures has received great attention. In the cold environment, the
water surface may become frozen to form an ice sheet from time to
time. In this case, water wave motion may interact with the sheet.
When the wave encounters a structure in its path, the nature of wave
diffraction and the wave force on the structure will be different from
those in open water. Therefore, a better understanding of their features
is of practical importance for designing a safe and reliable structure as
well as for protecting the environment.

Extensive research works have been carried out on free surface
gravity wave/structure interactions. In general, the flow is governed by
the Navier–Stokes equations with the fully nonlinear boundary condi-
tions on deforming free surface. When flow is dominated by gravity
wave and the viscosity effect is small, the velocity potential theory may
be used. The nonlinear boundary conditions on the free surface may
be linearized when the amplitude of wave is relatively small compared
with its length and the characteristic length of the body. This theory

has been widely adopted in the body/wave interaction and made sig-
nificant impact to the engineering practices. A particular type of
structure is the vertical cylinder, for which extensive work has been
done because of its wide arrange of applications in offshore plat-
forms. For a cylinder with circular cross section, Havelock1 solved
the problem in infinite water depth. MacCamy and Fuchs2 consid-
ered the case of finite water depth, using the Fourier series in the cir-
cumferential direction, vertical mode expansion along the depth,
and Hankel function in the radial direction. Explicit equations for
wave force and moment on a single circular cylinder were derived.
Using the first order solution of the linearized theory and based on
the procedure of Lighthill3 and Molin,4 Taylor and Hung5 obtained
the second order force on the cylinder, which did not require the
solution of the second order potential itself. By adopting the eigen-
function expansions and boundary element method (BEM), Chau
and Taylor6 obtained full second order solution, which could pro-
vide many more other detailed results, such as pressure distribution
and free surface elevation.
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In some structures, the cross section of a cylindrical component
may not be always circular. The problem of an elliptic cylinder cross
section was considered by Chen and Mei.7 The expansion in the verti-
cal direction is the same as that for a circular cylinder. In the horizon-
tal plane, the elliptic cylindrical coordinate system was used, and the
velocity potential was expanded into a series of Mathieu functions
together with Fourier series. Later, for the same problem, Williams8

used two different methods. The first one expanded the Mathieu func-
tions into Bessel functions based on the elliptic eccentricity parameter,
and the other is the boundary element method using the Green func-
tion. Mansour et al.9 also used numerical method for wave diffraction
of waves by a vertical cylinder. Liu, Guo, and Li10 adopted a method
by expanding the radial functions of cylinder surface and Bessel func-
tions into Fourier series with unknown coefficients. The coefficients
were determined in terms of cylinder boundary condition using the
Galerkin method. Dişib€uy€uk, Korobkin, and Yilmaz11 adopted a
method by introducing a small parameter based on the variation of
the radius from a constant.

For multiple vertical cylinders, notable works include those by
Wu and Price,12 Taylor and Chau,13 and Evans and Porter.14 Most of
them are based on either boundary element method or semi-analytical
method. Different from a single cylinder, strong interactions may hap-
pen between cylinders. In particular, Maniar and Newman15 consid-
ered wave diffraction by a finite array of identical cylinders. As the
number of cylinders increases, near-resonant modes became more
obvious at some wavenumbers, around which large forces were
observed. “Near trapping” was also observed by Evans and Porter16 for
the cylinders being arranged in circular arrangements.

When the upper water surface is covered by an ice sheet, the
wave motion is affected by the properties of both fluid and ice sheet.
The coupling of gravity wave in fluid and flexural wave in ice sheet
results in the flexural-gravity wave in the icy water.17 For partially cov-
ered cases, the related two-dimensional work includes those on a sub-
merged body in water with ice floe or polynya,18 below an ice sheet
with cracks,19,20 a floating body confined between two ice sheets.21–24

The three dimensional work includes that on wave scattering in an ice
sheet covered harbor,25 a floating body near a semi-infinite ice sheet,26

a body in polynya.27 In some circumstances, the free surface may be
fully frozen. Then, the structures will be connected directly to the
edges of the ice sheets. For a circular cylinder, Brocklehurst, Korobkin,
and P�ar�au28 obtained a semi-analytical solution through Weber trans-
form, and later, the same problem was solved by Korobkin, Malenica,
and Khabakhpasheva29 with the vertical mode expansion method. In
the work, the velocity potential and ice deflection were represented by
Hankel functions in the radial direction. Based on the eigenfunction
expansion and the Green’s second identity, Ren, Wu, and Ji30 derived
semi-analytical solutions for diffraction of flexural-gravity wave by
multiple circular cylinders. Cases of various arrangements of circular
cylinders were considered. For non-circular one, Dişib€uy€uk, Korobkin,
and Yılmaz31 adopted a procedure similar to that used in free surface
and cylinder interaction.11

In this paper, we shall consider the problem of flexural-gravity
wave interaction with multi vertical cylinders of arbitrary shapes pierc-
ing through an ice sheet. The vertical mode expansion method is used
for potential. The three dimensional problem is reduced to an infinite
number of two-dimensional problems, which is truncated at a number
where convergence has been achieved. Each two-dimensional problem

is solved using the boundary element method (BEM). The method is
extended from that developed by the authors previously.27 In theory,
such a method can be used for any number of cylinders. However,
when the number of cylinders increases, the computation becomes
very inefficient. On the other hand, as the number of cylinders
increases, the distance between many of them will be much larger than
their typical dimension. Thus, the large spacing approximation is
adopted, which has been widely used in applications on problems such
as wave scattering in multiple wide polynya32 and problem of wave
energy devices in free surface.33 In this work, each cylinder will be first
considered on its own. Its effect on other cylinders will be taken into
account through the traveling wave only, while the effect of the evanes-
cent waves will be ignored or be included up to only a few modes, as
they decay exponentially. Through this method, the computational
requirement will not increase significantly, even when there is a very
large number of cylinders.

The main feature of this work is, therefore, that we use two-
dimensional BEM combined with vertical mode expansion to consider
multiple cylinders of arbitrary cross section, together with an accurate
approximation method for a large number of cylinders. The rest of
this paper is organized as follows. The mathematical model based on
the linear velocity potential theory for fluid flow and thin elastic plate
theory for ice sheet is provided in Sec. II. The numerical solution pro-
cedure is given in Sec. III, where the eigenfunction expansion is used
in the vertical direction, and the boundary integral equation is applied
in the horizontal plane. The convergence and accuracy of the method
are demonstrated through comparison with semi-analytical solution
for a single and multiple vertical circular cylinders in Sec. IV. In Sec.
V, numerical results for vertical cylinders of non-circular cross sections
and different arrangements are presented, and the characteristics of
the hydrodynamic force and ice deflection are discussed in detail. A
large number of cylinders are considered by adopting an approxima-
tion method. Finally, conclusions are drawn in Sec. VI.

II. MATHEMATICAL MODEL

The problem of flexure-gravity wave interaction with multi verti-
cal cylinders of arbitrary horizontal cross section is considered. As
sketched in Fig. 1, the upper water surface is covered by an ice sheet of
infinite extent. Each cylinder is bottom-mounted with its side surface
being vertical. The water depth H is finite and constant. To describe
the problem, a Cartesian coordinate system is introduced with its ori-
gin o being on the mean water surface. x axis and y axis of the system
are in the horizontal plane, and z axis is vertically upward.

The fluid with constant density qw is assumed to be inviscid and
homogeneous, and its flow to be irrotational. With the assumption
that the wave amplitude is much smaller than its length and the typical
body dimension, the linearized velocity potential theory can be used.
For sinusoidal wave motion in time with radian frequency x, the total
velocity potential can be written as

Uðx; y; z; tÞ ¼ Re ixg/ðx; y; zÞeixt
� �

¼ Refixg /Iðx; y; zÞ þ /Dðx; y; zÞ½ �eixtg; (1)

where g is the complex amplitude of incident flexural-gravity wave,
i ¼ ffiffiffiffiffiffi�1

p
, and /I and /D denote the incident velocity potential and

diffracted velocity potential, respectively.
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The conservation of mass requires that the velocity potential
should satisfy the Laplace equation throughout the fluid,

r2/þ @2/
@z2

¼ 0; (2)

where

r2 ¼ @2

@x2
þ @2

@y2
: (3)

The ice sheet extending to infinity is modeled as a thin elastic plate
with uniform properties. The governing equation of the ice sheet
deflection is

Lr4W þmI
@2W
@t2

¼ �qw
@U
@t

þ gW

� �
; ðz ¼ 0Þ; (4)

where L ¼ Eh3I =½12ð1� �2Þ� is the effective flexural rigidity with
Young’s modulus E, Poisson’s ratio �, and thickness hI , mI ¼ qIhI is
the mass per unit area with density qI , and g denotes the acceleration
due to gravity. The right hand side of Eq. (4) is, in fact, the hydrody-
namic pressure. The impermeable kinematic condition on the ice sheet
yields

@W
@t

¼ @U
@z

; ðz ¼ 0Þ: (5)

Similar to the velocity potential, the deflection of the ice sheet can be
written as

Wðx; y; tÞ ¼ Re gwðx; yÞeixt
� �

: (6)

Combing Eqs. (4) and (5) together with Eqs. (1) and (6), the boundary
condition on the ice sheet can be written as

ðLr4 þ qwg �mIx
2Þ @/

@z
� qwx

2/ ¼ 0; ðz ¼ 0Þ: (7)

Without losing generality, the ice sheet edge is assumed to be clamped
to each cylinder, which means that the defection and slope of the ice
sheet at its edge are equal to zero, i.e.,

w ¼ 0;
@w
@n

¼ 0; ðx; yÞ 2 C; ðz ¼ 0Þ; (8)

or

@/
@z

¼ 0 and
@2/
@n@z

¼ 0; ðx; yÞ 2 C; ðz ¼ 0Þ; (9)

where n is the two-dimensional unit normal vector of the ice sheet
edge C. The impermeable boundary condition on the cylinders and
seabed z ¼ �H reads

@/
@z

¼ 0: (10)

The radiation condition requires the flexure-gravity wave propagating
outward

lim
rh!1

ffiffiffiffi
rh

p @/D

@rh
þ ij0/D

� �
¼ 0; (11)

in which r2h ¼ x2 þ y2, and j0 denotes the purely positive real root of
the dispersion equation

KIðx;jÞ � ðLj4 þ qwg �mIx
2ÞjtanhðjhÞ � qwx

2 ¼ 0: (12)

III. SOLUTION PROCEDURES

The aforementioned boundary value problem may be converted
into a boundary integral equation over the body surface with a vertical
orthogonal product.34 Here, it is solved through using the eigenfunc-
tion expansion in the vertical direction and a boundary integral equa-
tion in the horizontal plane. In the vertical direction, the diffracted
velocity potential is expanded into eigenfunction series, i.e.,

/DðpÞ ¼
X1
m¼�2

umðx; yÞwmðzÞ; (13)

where

wmðzÞ ¼
cosh jmðz þ hÞ½ �

coshðjmhÞ ; (14)

in which jm is the mth root of the dispersion equation for ice sheet in
Eq. (12). It should be noted that the two complex roots with negative
imaginary parts j�2 and j�1 are symmetric about the imaginary axis.
j0 is the purely positive real root, and jm (m ¼ 1;…;1) are an infi-
nite number of purely negative imaginary roots.

Substituting Eq. (13) into Eq. (2), we have

r2um þ j2mum ¼ 0: (15)

FIG. 1. Sketch of the problem. (a) Side view and (b) bird view.
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By applying Green’s identity over the boundary of the horizontal
plane, we can convert this two-dimensional Helmholtz equation into
an integral equation,

aðpÞumðpÞ ¼
ð
C

Gmðp; qÞ @umðqÞ
@N

� @Gmðp; qÞ
@N

umðqÞ
� �

dl; (16)

where aðpÞ is the solid angle at field point p. Gðp; qÞ in Eq. (16) is
Green’s function, which can be written in terms of the zeroth order
Hankel function of second kind

Gmðp; qÞ ¼ p
2i
Hð2Þ

0 ðjmRÞ; (17)

where R is the horizontal distance between the field point pðx; y; zÞ
and the source point qðn; g; fÞ. It should be noticed that Gmðp; qÞ in
Eq. (17) satisfies the radiation condition in Eq. (11). In fact, apart from
when m ¼ 0, Gmðp; qÞ decays exponentially at far field, while at
m ¼ 0, the term in the brackets becomes zero because of the radiation
condition. As a result, only the integral along the ice sheet edge C is
kept in Eq. (16).

To satisfy the ice sheet edge condition (9) and the impermeable
condition (10) on the cylinder, the orthogonal inner product for the
eigenfunction wm may be used,35

hwm;w~mi ¼
ð0
�H

wmw~mdz þ
L

qwx2

dwm

dz
d3w~m

dz3
þ d3wm

dz3
dw~m

dz

� �
z¼0

:

(18)

This gives hwm;w~mi ¼ 0 for m 6¼ ~m and hwm;w~mi ¼ =m for
m ¼ ~m, where

=m ¼ 2jmH þ sinhð2jmHÞ
4jmcosh

2ðjmHÞ þ 2Lj4m
qwx2

tanh2ðjmHÞ: (19)

Applying the inner product to @/=@n and w~m along the vertical sur-
face of a cylinder, we have	

@/m

@n
;w~m



¼

ð0
�H

@/m

@n
w~mdz

þ L
qwx2

@2/m

@z@n
d3w~m

dz3
þ @4/m

@z3@n
dw~m

dz

� �
z¼0

: (20)

According to Eqs. (10) and (9), both the first and second terms on the
right hand side of Eq. (20) equal to zero, which provides	

@/D

@n
;wm



þ
	
@/I

@n
;wm



¼ LjmtanhðjmHÞ

qwx2
!; (21)

where

! ¼ @4/
@z3@n

� �
z¼0

(22)

is an unknown function and is to be determined. Following Li, Shi,
andWu,27 the incident potential can be written as

/IðpÞ ¼ uIðx; yÞw0ðzÞ; (23)

where

uIðx; yÞ ¼
g
x2

e�ij0ðx cos bþy sin bÞ; (24)

and b is the incident wave angle. Substituting Eqs. (13) and (23) into
(21), we have

@um

@N
=m þ @uI

@N
=0 ¼ LjmtanhðjmHÞ

qwx2
!: (25)

Invoking Eq. (24), Eq. (16) can be rewritten as

aðpÞumðpÞ ¼
ð
C

Gðp; qÞ
=m

LjmtanhðjmHÞ
qwx2

!ðqÞ � @uI

@N
=0

� ��

� @Gðp; qÞ
@N

umðqÞ
�
dl: (26)

Here, C includes the ice edge of all cylinders C ¼ P
Ck, k ¼ 1;…; },

where } is the number of cylinders. To obtain numerical solution, Ck

of cylinder k is discretized into Nk straight line segments, and all
together, there will be Ntot ¼

P
Nk (k ¼ 1; 2;…}) segments. The

variables on each segment are assumed to be constant. Then, the
boundary integral Eq. (26) can be discretized into

aðpiÞumðpiÞ ¼
XNtot

j¼1

ð
Dlj

Gðpi; qjÞ
=m

LjmtanhðjmHÞ
qwx2

!ðqjÞ
�(

� @uIðqjÞ
@N

=0ðqjÞ
�
� @Gðpi; qjÞ

@N
umðqjÞ

�
dl ; (27)

in which the field point pi is the center of element i, and the source
point qj of the Green function varies with l within element j. Equation
(27) can be also written in the matrix form or

@G
@N

� �
um½ � ¼ ~G½ � !½ � � Ĝ½ � @uI

@N

� �
; (28)

where

@G
@N

� �
ij
¼ di;jaðpiÞ þ

ð
Dlj

@Gðpi; qjÞ
@N

dl; ði; j ¼ 1;…;NtotÞ; (29)

ð~GÞij ¼
LjmtanhðjmHÞ

qwx2=m

ð
Dlj

Gðpi; qjÞdl; ði; j ¼ 1;…;NtotÞ; (30)

ðĜÞij ¼
1
=m

ð
Dlj

Gðpi; qjÞdl; ði; j ¼ 1;…;NtotÞ; (31)

@uI

@N

� �
j
¼ @uIðqjÞ

@N
=0ðqjÞ; ðj ¼ 1;…;NtotÞ: (32)

Through Eq. (28), we have

um½ � ¼ ~=½ � !½ � � =̂½ � @uI

@N

� �
; (33)

where

~=½ � ¼ @G
@N

� ��1

~G½ �; =̂½ � ¼ @G
@N

� ��1

Ĝ½ �: (34)

Substituting Eq. (33) into (13), truncating the series at m ¼ M � 3, or
keeping only the firstM terms, and invoking the clamped edge condi-
tion in Eq. (9), we have

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 087126 (2023); doi: 10.1063/5.0161848 35, 087126-4

Published under an exclusive license by AIP Publishing

 23 August 2023 15:52:57

pubs.aip.org/aip/phf


XM�3

m¼�2

umðpiÞ
dwmðzÞ

dz
¼ 0; ðz ¼ 0; i ¼ 1; 2;…NtotÞ; (35)

or

XM�3

m¼�2

jmtanhðjmHÞ ~=i

� �
!½ � þ =̂ i

� �
½uI �

n o
¼ 0: (36)

After ½!� is obtained through the solution of Eq. (36), Eq. (25)
provides

@um

@N
=m ¼ LjmtanhðjmHÞ

qwx2
!½ � � @uI

@N
=0: (37)

Equations (28), (36), and (37) provide 2M � Ntot þ Ntot equations.
Noticing there are M � Ntot unknowns um, M � Ntot unknown
@um=@n, andNtot unknown! at the centers of the segments, the total
number of the unknown is the same as that of the equations.

After the diffraction potential is found, the horizontal force FðkÞ

on the kth cylinder can be obtained through

FðkÞ
x ¼ qwx

2g
ð
Ck

/Iðx; y; zÞ þ /Dðx; y; zÞ½ �nxdl; (38)

FðkÞ
y ¼ qwx

2g
ð
Ck

/Iðx; y; zÞ þ /Dðx; y; zÞ½ �nydl: (39)

Based on the kinematic condition (5), the deflection of ice sheet can be
written as

w x; yð Þ ¼ @/ðx; y; zÞ
@z

� �
z¼0

: (40)

Together with Eqs. (2), (22), and (40), the vertical shear stress Qk can
be derived as

Qk ¼ �L
@

@n
ðr2wÞz¼0 ¼ L

@4/
@z3@n

� �
z¼0

¼ L!: (41)

In such way, the shear force QðkÞ
t along the cylinder edge can be easily

obtained by

Q kð Þ
t ¼

ð
Ck

Qkdl ¼ L
ð
Ck

!dl: (42)

IV. VALIDATION OF THE METHODOLOGY

We first consider the case of a single circular cylinder with
radius a. The semi-analytical solution of this case has been obtained
by Brocklehurst, Korobkin, and P�ar�au28 through the Weber trans-
form and by Ren, Wu, and Ji30 through the matched eigenfunction
expansion. To verify the methodology, the same parameters as those
in Ren, Wu, and Ji30 are adopted. Radius of the circular cylinder is
chosen as a ¼ 2m, together with the ice density qI ¼ 917 kgm�3,
Young’s modulus E ¼ 4:2GPa, ice thickness hI ¼ 1:6m, Poisson’s
ratio v ¼ 0:33, water depth H ¼ 350m, and water density
qw ¼ 1026 kgm�3. Two sets of discretization for the case are taken,
namely, (1) N ¼ 47 and M ¼ 20, (2) N ¼ 94 and M ¼ 30. In Fig. 2,
the dimensional horizontal force Fx on a single circular cylinder is
shown against the j0H, where the semi-analytical solutions in Ren,

Wu, and Ji30 are also provided for comparison. It can be observed
from Fig. 2(a) that there is no visible difference between the results
from two sets of discretization, and the present results are in good
agreement with the semi-analytical solutions of Ren, Wu, and Ji.30

Furthermore, comparison for the dimensional vertical shear force on a
circular cylinder in an ice sheet with a ¼ 3:5m and hI ¼ 1:6m is
made with that Ren, Wu, and Ji.30 The result is shown in Fig. 2(b), and
a good agreement can be seen.

We then consider the case of four identical circular cylinders of equal
radius arranged in square of length 2d. The centers of cylinders marked
1–4 are located at � ffiffiffi

2
p

d; 0
 �

, 0;
ffiffiffi
2

p
d

 �
,

ffiffiffi
2

p
d; 0

 �
, and 0;� ffiffiffi

2
p

d
 �

.
The radius a is taken as the characteristic length. The ice sheet thickness
hI ¼ 0:1, the length of the square d ¼ 2, water depthH ¼ 10, fluid den-
sity qw ¼ 1025 kg=m3, Young’s modulus E ¼ 5:0GPa, Poisson’s ratio
v ¼ 0:3, and ice density qI ¼ 922:5 kg=m3, which gives L ¼ 4:5582 and
mI ¼ 0:09. Figure 3 depicts the horizontal force FðkÞ

x , nondimensionalized
by qwga

3 � ðg=aÞ on the k-th cylinder against j0a. From the figure, a good
agreement with the semi-analytical solution of Ren, Wu, and Ji30 can be
seen, which further confirms the accuracy of the present numerical meth-
odology for multiple cylinders in frozen sea.

V. NON-CIRCULAR CYLINDERS

After verification, the flexural-gravity wave interaction with verti-
cal cylinders of more general shape is considered. Similar to previous
works, the parameters of ice sheet and fluid are taken as

E ¼ 5GPa; � ¼ 0:3; qI ¼ 922:5 kgm�3;

qw ¼ 1025 kgm�3; g ¼ 9:80ms�2:
(43)

Unless it is specified, the following numerical results are given in the
nondimensional form based on three basic parameters, the character-
istic length of the cylinder, density of water qw, and the acceleration
due to gravity g.

FIG. 2. Forces on a single circular cylinder against the nondimensional wavenum-
ber j0H. (a) Horizontal force Fx (a ¼ 2m); (b) shear force Qt (a ¼ 3:5m)
(L ¼ 1:6088� 109 Nm, mI ¼ 1467:2 kgm�2, and hI ¼ 1:6 m).
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A. Single cylinder

We first consider the case of a single cylinder. The geometry of
the cylinder we taken is sketched in Fig. 4, which is a rectangle
rounded at each corner by a quarter of a circle. 2a and 2b denote the
length and the width of the rectangle, respectively, and four quarter
circles at the four corners have the same radius r. a is taken to be the

characteristic length scale l. The other parameters are set to be b ¼ 1,
hI ¼ 0:1,H ¼ 10, and b ¼ 0.

Figure 5(a) provides the horizontal force Fx nondimensionalized
by qwga

3 � ðg=aÞ on the single cylinder against j0a, and the corre-
sponding results in open water are plotted in Fig. 5(b) as comparisons.
It may be noticed that for open water with hI ¼ 0, j0 represents the
wavenumber for free surface gravity wave. Five sets of the corner radi-
uses are taken, i.e., r ¼ 0, 0.2, 0:4, 0:8, and 1:0. It is noted that r ¼ 0
refers to cylinder with rectangular cross section. Since the cylinder is
symmetric with respect to the o� xz plane, the horizontal force Fy
equals zero when the incident wave angle b ¼ 0.

In Fig. 5, when j0a ! 0, the wavelength tends to infinity, and
the variation of the wave over the cylinder is negligible and Fx ! 0.
As j0a increases, the dynamic effect becomes more obvious as can be
seen in Fig. 5(b). For smaller r, or when the shape is closer to a rectan-
gle, the force is larger. It is smallest for a circular shape or when r ¼ 1.
The results at different r all reach a peak around a similar k0a, or
j0a ¼ 0:18, and then decay at a similar rate within the range of j0a
calculated. For the free surface in Fig. 5(b), at smaller j0a, smaller r
gives the larger force. However, the curves cross each other around
j0a ¼ 1:6, from where the curves are also close to each other within
the range calculated. The results with ice cover and in the open water

FIG. 3. Horizontal force FðkÞx on the k-th circular cylinder against the nondimensional wavenumber j0a (d ¼ 2, v ¼ 0:3, H ¼ 10, L ¼ 4:5582, mI ¼ 0:09, hI ¼ 0:1, and
b ¼ 0).

FIG. 4. Sketch of a non-circular cylinder in bird view.
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of course cannot be expected to be the same. In particular, it should be
noted at same j0, and the frequencies in these two cases are different.

The shear force may sometimes be strong enough, which may
pose a risk to integrity of the cylinder. Figure 6 displays the shear force
Qt nondimensionalized by qwga

3 � ðg=aÞ, against the j0a. As in Fig. 5,
five different r are considered. The ice sheet thickness is taken as
hI ¼ 0:1. From the figure, we may find that when j0a tends to zero,
the shearing force tends to a non-zero value. For each cylinder with
different r, the value is not the same. In fact at j0 ! 0, the ice sheet
deflection due to the incident potential is wI ¼ @/I=@z ! 1. For
deflection due to the diffraction potential wd ¼ @/d=@z, Eq. (7) gives

r4wd þ k�4wd ¼ 0; (44)

where k�4 ¼ qwg=L. The boundary conditions of wd give wd ¼ 0 at
infinity, and @wd=@n ¼ 0 andwd ¼ �1 on the cylinder. We may con-
sider a single circular cylinder in the polar system (q; h). wd is then a
function of r only. This gives a solution in the form36

wd ¼ k��1 A1kei0ðk�qÞ þ A2ker0ðk�qÞ þ A3bei0ðk�qÞ þ A4ber0ðk�qÞ½ �;
(45)

where kei0, ker0, bei0, and ber0 are the Kelvin functions of the zeroth
order.37 Because of the condition at infinity, only the first two terms
are kept. From the edge conditions at q ¼ a, we have

A1 ¼ � k�
v
kei1ðk�aÞ þ ker1ðk�aÞ½ �; A2 ¼ k�

v
kei1ðk�aÞ � ker1ðk�aÞ½ �;

(46)

where

v ¼ kei1ðk�aÞ þ ker1ðk�aÞ½ �kei0ðk�aÞ
þ ker1ðk�aÞ � kei1ðk�aÞ½ �ker0ðk�aÞ: (47)

The nondimensionalized shear force due to diffraction can be obtained
through

Qt;d¼2pa�1k��4g�1 w000
d þ

1
a
w00
d

� �
jr¼a

¼� p

2k�2a2v

kei1ðk�aÞ
2kei0ðk�aÞþ3

ffiffiffi
2

p
k�akei1ðk�aÞ

�2kei2ðk�aÞ�
ffiffiffi
2

p
k�akei3ðk�aÞ

þ2ker0ðk�aÞ�2ker2ðk�aÞ

2
664

3
775

þker1ðk�aÞ
�2kei0ðk�aÞþ2kei2ðk�aÞ
þ2ker0ðk�aÞþ3

ffiffiffi
2

p
k�aker1ðk�aÞ

�2ker2ðk�aÞ�
ffiffiffi
2

p
k�aker3ðk�aÞ

2
64

3
75

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
;

(48)

where the derivatives of Kevin functions have been obtained from
Abramowitz and Stegun.37 For the case r ¼ 1:0 in Fig. 6, Eq. (48) gives
jQt;dj ¼ 27:7793, which agrees well with the result in the figure. In
Fig. 6, the shear forces on cylinders with different r are very close to
each other. When wavenumber increases from zero, Qt first decreases
until it reaches a local trough at about j0a ¼ 0:36. It then increases
mildly before it continues to decrease.

B. Cylinders arranged in square

Then, we shall consider flexural-gravity wave interactions with
multiple cylinders. Four identical cylinders of the shape in Fig. 4 with

FIG. 5. Horizontal force Fx on a single cylinder against the nondimensional wave-
number j0a. (a) Water surface covered with ice hI ¼ 0:1; (b) open water with
hI ¼ 0 (L ¼ 4:5582, mI ¼ 0:09, hI ¼ 0:1, and b ¼ 0).

FIG. 6. Shear force Qt on a single cylinder against the nondimensional wavenum-
ber j0a with b ¼ 0 (hI ¼ 0:1, L ¼ 4:5582, and mI ¼ 0:09). FIG. 7. Four non-circular cylinders in square form in bird view.
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a ¼ b, arranged in square shown in Fig. 7, are investigated in this sec-
tion. The distances between the centers of cylinders 1 and 2 and
between cylinders 2 and 3 are both 2d. a is taken as the characteristic
length scale.

Figure 8 provides the horizontal force FðkÞ
x and FðkÞ

y on the k-th

cylinder against j0a, with r ¼ 0, r ¼ 0:2, r ¼ 0:4, r ¼ 0:8, and
r ¼ 1:0, nondimensionalized by qwga

3=ðg=aÞ. As a comparison, the
results with r ¼ 0:2 in open water are also provided. The incident

FIG. 8. Horizontal forces FðkÞx and FðkÞy on the k-th cylinder against j0a with different r (hI ¼ 0:1, H ¼ 10, L ¼ 4:5582, mI ¼ 0:09, and b ¼ 0).

FIG. 9. Horizontal force FðkÞx and FðkÞy on the k-th cylinder against the nondimensional wavenumber j0a with b ¼ 0:25p (hI ¼ 0:1, H ¼ 10, L ¼ 4:5582, mI ¼ 0:09, and
b ¼ 0:25p).
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wave angle is chosen as b ¼ 0. Because of symmetry, we have

jFð3Þ
x j ¼ jFð2Þ

x j, jFð4Þ
x j ¼ jFð1Þ

x j and jFð3Þ
y j ¼ jFð2Þ

y j, jFð4Þ
y j ¼ jFð1Þ

y j. Thus,
the forces with k ¼ 3 and k ¼ 4 are omitted in figure. When j0a is
small, the forces on four cylinder are very close to each other and to
those on the cylinder in open water, which is similar to the ice channel
problem solved by Li, Wu, and Ren.24 Overall, the curves show an
oscillatory behavior, and the reason for which has been extensively dis-
cussed by Li, Shi, and Wu23 through detailed mathematical analysis.
Principally, this is caused by the wave created by one cylinder, reached
other cylinders, and reflected back. Peaks of the hydrodynamic force
can be observed at j0a ¼ 1:573, 1.562, 1.498, 1.384, and 1.339 for
r ¼ 0, 0.2, 0.4, 0.8, and 1.0, respectively. Away from the peaks, the
hydrodynamic forces at different r follow the same trend. The result

corresponding to the ice sheet can be seen very much different from
that in open water. It should be noted that as j0 increases,x2 increases
linearly at large j0 in open water, while it increases at a rate j50 in the
case of ice sheet.

FIG. 10. Horizontal force FðkÞx and FðkÞy on the k-th cylinder against j0a with different d=a (hI ¼ 0:1, H ¼ 10, L ¼ 4:5582, mI ¼ 0:09, and b ¼ 0).

TABLE I. The wavenumber of the main peak of horizontal forces for cylinders with
different distances.

2d=2a Fð1Þ
x Fð1Þ

y Fð2Þ
x Fð2Þ

y

1.5 j0a ¼ 2:904 j0a ¼ 2:904 j0a ¼ 2:904 j0a ¼ 2:904
2.0 j0a ¼ 1:562 j0a ¼ 1:528 j0a ¼ 1:528 j0a ¼ 1:528
3.0 j0a ¼ 0:778 j0a ¼ 0:753 j0a ¼ 0:778 j0a ¼ 0:778 FIG. 11. Horizontal force Fð1Þx against j0d with different 2d=2a (hI ¼ 0:1, H ¼ 10,

L ¼ 4:5582, m ¼ 0:09, and b ¼ 0).
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It can be seen in Fig. 8 that the wave force on each cylinder in icy
water becomes more oscillatory, compared with that in open water.
Further than that magnitude of the force peak in icy water is generally
higher than that in open water.

Figure 9 provides the horizontal force FðkÞ
x and FðkÞ

y on the k-th

(j ¼ 1;…; 4) cylinder against j0a, at quarter sea of b ¼ 0:25p. The
radius of the cylinder corner is taken as r ¼ 0:2, and the ice sheet
thickness is set to be hI ¼ 0:1 and 2d=2a ¼ 2. Due to the arrangement

FIG. 12. Sketch of the arrangement of non-circular cylinders in bird view. (a) An array; (b) two arrays.

FIG. 13. Cylinders arranged in an array: Horizontal force FðkÞx on the k-th cylinder against j0d=p (} ¼ 1� 4, hI ¼ 0:1, H ¼ 10, L ¼ 4:5582, mI ¼ 0:09, b ¼ 0, and
2d=2a ¼ 10).
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of the cylinders, we have jFð1Þ
x j ¼ jFð3Þ

y j, jFð1Þ
y j ¼ jFð3Þ

x j and

jFð2Þ
x j ¼ jFð2Þ

y j, jFð4Þ
x j ¼ jFð4Þ

y j. Moreover, as shown in Fig. 9, the posi-

tions of main peak of the forces FðkÞ
x and FðkÞ

y occur around
j0a ¼ 1:53, which is close to that in Fig. 8. However, the amplitudes
of peaks are different in the two figures.

The effect of the distance between cylinders is then considered,

with r ¼ 0:2 and b ¼ 0. Figure 10 provides the horizontal force FðkÞ
x

and FðkÞ
y on the k-th cylinder against j0a, with three different distances

to dimension ratio, namely, 2d=2a ¼ 1:5, 2d=2a ¼ 2, and

2d=2a ¼ 3. In Fig. 10(a), jFð1Þ
x j for a single cylinder in icy water is also

shown, as a comparison. It can be observed from the figure that when
the distance 2d between cylinders becomes larger, the hydrodynamic
force becomes more oscillatory, and the position of main peak
changes, as given in Table I. As the oscillation is very much due to the
reflection by other cylinders, its period can be expected to be very
much related to j0d, which is similar to the problem of a body in a
polynya.23 In fact, as can be seen in Fig. 11, the gaps between local
peaks are similar, although the peaks happen at different
wavenumbers.

C. An approximate solution method for a large
number of cylinders

For multiple cylinders, with the number increases, direct solution
based on the aforementioned procedure will become very time-
consuming or impractical. Here, procedure based on an approximation
is proposed. For } cylinders, k ¼ 1;…; }, in Eq. (28), when both the
field point p and the source point q in the Green function are located on
the same cylinder k, we keep all the modesm ¼ �2;�1;…. We notice
that m ¼ 0 corresponds to a traveling wave, while other modes corre-
spond to evanescent waves. Thus, when the source point q is located on
the other cylinders, especially when the distance between cylinders is
large, we can keep only the mode ofm ¼ 0 or a few more modes, which
have not substantially decayed. These are moved to the right hand of
equations for each cylinder. The solution of Eqs. (28), (36), and (37) can
be obtained through iteration. In such a case, the whole solution of
multiple cylinders in Sec. III can be simplified as the solutions of indi-
vidual cylinders. In the previous solution procedure without approxi-
mation, the size of coefficient matrix of Eqs. (28), (36), and (37) is
½2M � Ntot þ Ntot � � ½2M � Ntot þ Ntot �, where Ntot ¼

P}
k¼1 Nk.

With the approximate solution method, the matrix size is reduced into

FIG. 14. Cylinders arranged in two arrays: Horizontal force FðkÞx and FðkÞy on the k-th cylinder against j0d=p (} ¼ 2� 2, hI ¼ 0:1, H ¼ 10, L ¼ 4:5582, mI ¼ 0:09, b ¼ 0,
and 2d=2a ¼ 10) (see Fig. 13 done).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 35, 087126 (2023); doi: 10.1063/5.0161848 35, 087126-11

Published under an exclusive license by AIP Publishing

 23 August 2023 15:52:57

pubs.aip.org/aip/phf


½2M � Nk þ Nk� � ½2M �Nk þ Nk� for each cylinder, k ¼ 1; 2;…; }.
For identical cylinders, all the matrixes will be the same. The computing
time will be dramatically reduced.

We first consider cylinders arranged in an array and two arrays,
sketched in Fig. 12. For convenience, all the cylinders are identical,
2ak ¼ 2a and r ¼ 0:2. The distances between two adjacent cylinders
are 2dk�1 ¼ 2d. The ice sheet thickness is taken as hI ¼ 0:1, and the
incident wave angle as b ¼ 0. Figures 13 and 14, respectively,

FIG. 15. Cylinders arranged in two arrays: Horizontal force FðkÞx and FðkÞy against j0d=p
(} ¼ 2� 25, hI ¼ 0:1, H ¼ 10, L ¼ 4:5582, mI ¼ 0:09, b ¼ 0, and 2d=2a ¼ 10).

FIG. 16. Cylinders arranged in two arrays: Shear force QðkÞ
t against j0d=p

(} ¼ 2� 25, hI ¼ 0:1, H ¼ 10, L ¼ 4:5582, mI ¼ 0:09, b ¼ 0, and
2d=2a ¼ 10).

FIG. 17. Cylinders arranged in two arrays: Horizontal force FðkÞx acting on each cylinder. (a), (c), and (e): } ¼ 2� 25; (b), (d), and (f): } ¼ 2� 26 (hI ¼ 0:1, H ¼ 10,
L ¼ 4:5582, mI ¼ 0:09, b ¼ 0, and 2d=2a ¼ 10).
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present the horizontal force on the four cylinders in an array and
two arrays against nondimensional wavenumber j0d=p with
2d=2a ¼ 10. In the figures, both approximate solution with only
m ¼ 0 kept and exact numerical solution based on Eqs. (27), (36),
and (37) are given. It can be seen that there are no distinguishable
discrepancies between the results from these two solutions, which
indicates the accuracy and effectiveness of the approximate method
when 2d=2a becomes larger.

The approximate solution method is then applied to two arrays
of cylinders arranged in Fig. 12(b), with large number } ¼ 2� 25.
Due to symmetry at b ¼ 0, the forces on the corresponding cylinders
in the two arrays are the same. Figure 15 provides the horizontal forces
on the kth cylinders against j0d=p, where k ¼ 1, 7, 13, 19, and 25. The
corresponding shear forces are exhibited in Fig. 16. It can be seen in
Fig. 15(a) that there are some local peaks occurred around
j0d=p ¼ n=2, n ¼ 1; 2; 3;…. The distribution of the force on each
cylinder at three of these frequencies j0d=p ¼ n=2 (n ¼ 1; 2; 4) is
shown in Fig. 17 for } ¼ 2� 25 and } ¼ 2� 26. It can be seen from
Figs. 15–17 that the forces acting on the first cylinder are much larger
than those on other cylinders, in general. However, around j0d=p
¼ 1:53 where a sharp peak exists, the variation of the force on the
middle cylinder, or k ¼ 13, is largest. The behavior of the forces on a
large array of cylinders in the free surface wave has been extensively
discussed by Newman,15 and large force can be observed at certain fre-
quencies related to resonance and trapped modes. The result here
exhibits some similar behavior.

VI. CONCLUSIONS

A method has been proposed for the problem of flexural-gravity
wave interaction with vertical cylinders of arbitrary shape frozen in an
ice sheet. It combines the eigenfunction expansions in the vertical
direction and the boundary element method in the horizontal plane.
The verification of the method is conducted through single and multi-
ple circular cylinders, and results are an excellent agreement with the
semi-analytical solution. Extensive calculations are then made for mul-
tiple non-circular cylinders. When the number of the cylinder
increases, an approximation is introduced, which is efficient and accu-
rate. Based on these, the following conclusions can be drawn:

(1) For cylinder in non-circular shape with a rectangle rounded at
each corner r by a quarter of a circle, the forces are larger with
smaller r. It is smallest for r ¼ 1, i.e., a circular shape. The hori-
zontal forces at different r all reach a peak around a similar k0a
and then decrease. On the other hand, the shear forces on cylin-
ders with different r are very close to each other. When r ¼ 1,
an analytical solution can be obtained and shows that the shear
force tends to a non-zero value when k0a ! 0.

(2) When the four non-circular cylinders arranged in square, wave
force on each cylinder in icy water becomes more oscillatory,
compared to that in open water. Peaks of the forces can be
observed to decay when r increases. Away from the peaks, the
hydrodynamic forces at different r follow the same trend.

(3) When the number of the body becomes large, an approximate
solution method introduced is found accurate and efficient.
From the obtained results, large force variations with frequency
and with the location of the cylinder have been observed, simi-
lar to those observed in the free surface problem.
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