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A B S T R A C T 

The standard approach to inference from cosmic large-scale structure data employs summary statistics that are compared to 

analytic models in a Gaussian likelihood with pre-computed covariance. To overcome the idealizing assumptions about the form 

of the likelihood and the complexity of the data inherent to the standard approach, we investigate simulation-based inference 
(SBI), which learns the likelihood as a probability density parameterized by a neural network. We construct suites of simulated 

summary statistics, exactly Gaussian distributed for validation purposes, for the most recent Kilo-Degree Survey (KiDS) weak 

gravitational lensing analysis and demonstrate that SBI reco v ers the full 12-dimensional KiDS posterior distribution with just 
under 10 

4 simulations. We optimize the simulation strategy by initially co v ering the parameter space by a hypercube, followed 

by batches of actively learnt additional points. The data compression in our SBI implementation is robust to suboptimal choices 
of fiducial parameter values and of data covariance. Together with a fast simulator, SBI is therefore a competitive and more 
v ersatile alternativ e to standard inference. 

Key words: gravitational lensing: weak – methods: data analysis – cosmological parameters. 
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 I N T RO D U C T I O N  

osmological weak lensing in the era of modern high-precision cos- 
ology has pro v en itself to be an e xcellent probe of ke y parameters

f the standard Lambda Cold Dark Matter ( � CDM) Model. Most
otably, it is able to constrain a degenerate combination of σ 8 and 
m 

, or alternatively �m 

and S 8 , a combined parameter typically taken 
s S 8 = σ 8 ( �m 

/0.3) 0.5 . In recent years, two weak-lensing surv e ys, the
ilo-De gree Surv e y (KiDS, Asgari et al. 2021 ) and the Dark Energy
urv e y (DES, Secco et al. 2022 ; Amon et al. 2022b ), alongside other
hotometric galaxy surv e ys such as the Subaru Hyper Suprim-Cam
Sugiyama et al. 2022 ) have yielded results that are in agreement
ith each other despite very different methodologies (Asgari et al. 
021 ; Heymans et al. 2021 ; Busch et al. 2022 ; Secco et al. 2022 ;
mon et al. 2022b ). 
Interestingly, both KiDS and DES find values of S 8 of between 

 σ and 3 σ lower than the value inferred by Planck , a space-based
xperiment observing cosmic microwave background anisotropies 
Ade et al. 2016 ; Aghanim et al. 2020 ). The consistent results from
oth KiDS and DES alongside their re-analysis suggests that it is
nlikely for the tension to arise simply from some un-modelled 
ystematic error (Amon et al. 2022a ). If this S 8 tension cannot be
esolved through the discovery of systematic errors, then it moti v ates
he search of new physics. 

The analysis of cosmic weak-lensing surv e y data, ho we ver, is
raught with challenges from not only the modelling side but also 
he limitations of traditional inference methods. To elaborate, the 
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odelling must take into account many factors, such as baryon 
eedback and the intrinsic alignment of galaxies caused by matter- 
alaxy interactions (Kilbinger 2015 ; Mandelbaum 2018 ; Amon & 

fstathiou 2022 ). Therefore, we may find a complex statistical 
roblem to solve within the likelihood function, necessary for the 
ask of cosmological parameter inference involving these stochastic 
orward modelling processes. 

Traditional likelihood analysis requires a likelihood that can be 
 v aluated, but the complete set of these f actors mak es it impossible
o know the exact analytical model of the likelihood written in closed
orm. F or man y cases, an accurate likelihood model that takes into
ccount all of the statistical features is essentially too e xpensiv e and
hus intractable to e v aluate (Jef frey, Alsing & Lanusse 2021 ). To
his end, it is routine in cosmological surv e ys to assume a Gaussian
ikelihood as an approximation to the true likelihood. 

This Gaussian likelihood assumption is employed on summary 
wo-point statistics (Asgari et al. 2021 ), which are sensitive to the
nderlying cosmology. Ho we ver, in the use of two-point statistics
uch as the correlation function, we may find significant deviations 
rom a Gaussian likelihood when we consider the two-point statistics’ 
ensiti vity to lo w multipoles (Schneider & Hartlap 2009 ; Sellentin,
eymans & Harnois-D ́eraps 2018 ). This is true even when the
nderlying lensing fields are Gaussian (Sellentin & Heavens 2018 ; 
ellentin et al. 2018 ; Taylor et al. 2019 ; Upham, Brown & Whittaker
021 ). Systematic effects could also introduce non-Gaussianity, 
ith their relative importance increasing as surv e ys become more

tatistically powerful. 
As such, to tackle the statistical side of cosmological analysis, 

here has been a growing number of forward simulation-based 
ethods (Fluri et al. 2018 ; Gupta et al. 2018 ; Ribli et al. 2019 ;
aylor et al. 2019 ; Jeffrey et al. 2021 ; Fluri et al. 2022 ; Hahn et al.
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022 ). These seem attractive as they completely circumvent the need
f e v aluating or working with an explicit or computable form of
he likelihood function. This then allows these simulation-based
nference (SBI) methods to fully propagate all of the uncertainties
nd surv e y systematics from data to parameters through forward
imulation. It should be noted, ho we ver, that SBI methods are not
he only methods that circumvent the use of a Gaussian likelihood,
or example, Bayesian Hierarchical Models (Porqueres et al. 2021a ,
 ). 
Most tantalizing, ho we ver, is that combining likelihood-free, SBI
ethods with recent advances in machine learning provides an

nference methodology that is not only capable of freeing the anal-
sis pipeline from intractable likelihoods, but also computationally
heaper when paired with a similarly fast simulator. F or e xample,
n Alsing et al. ( 2019 ), only 1000 simulations were needed to
nfer a posterior with the same constraints as a long Markov chain

onte Carlo (MCMC) run that required at least 10 000 likelihood
 v aluations to converge. These techniques have been explored in
etail by others with high levels of success (Fluri et al. 2018 ; Gupta
t al. 2018 ; Ribli et al. 2019 ; Jeffrey et al. 2021 ; Fluri et al. 2022 ). 

Notably, Fluri et al. ( 2022 ) performed a full wCDM analysis of
iDS-1000 weak lensing using deep learning. Despite using the same
ata set as in this analysis, the Fluri et al. ( 2022 ) analysis is concerned
ith going beyond the standard weak-lensing framework by using
eld-level summary statistics in order to constrain cosmologies
eyond the standard � CDM. In that analysis, a graph convolutional
eural network is trained on the cosmology dependence of the
imulated weak lensing maps with respect to four parameters. Using
hat as a summary statistic, the parameters are then inferred from
he data using approximate Bayesian computation (ABC). In this
ork, the aim is instead to show the feasibility of applying density

stimation SBI to a standard � CDM weak-lensing analysis with its
ull complexity in parameter space; such an analysis has not been
onducted until now. We achieve this by demonstrating that this
ethodology allows us to infer all 12 of the standard KiDS-1000

arameters using mock data vectors that are Gaussian drawn to allow
or validation. 

Arguably the idea of SBI began with the seminal work of Rubin
 1984 ) when describing the process of inferring a posterior in
ayesian analysis from a frequentist perspective. The core idea
eing that if the parameter values to a typically stochastic forward
odelling process generates a data vector identical to the observed

ata vector, then those parameter values must make up part of the
nferred posterior. This in turn means that the y hav e a high probability
f being the ‘true’ parameter values. In essence, a rejection sampling
chema for the posterior. 

This idea led to the birth of a class of SBI more commonly known
oday as ABC. Ho we ver, one might immediately notice that for any
ealistic stochastic process, getting an exact match in the data vector
s highly improbable, leading to Pritchard et al. ( 1999 ) introducing
 notion of closeness to allow for imperfect matching, an idea that
s also fraught with problems requiring ever increasingly complex
otions of closeness. 
Furthermore, with the low probability of obtaining a data vector

hat passes any such closeness criteria, one can imagine that the ABC
ethodology is computationally inefficient, requiring many forward

imulations to find just one posterior parameter point. In light of this,
an y hav e tried to develop better sampling schemas to increase the

fficiency of ABC, but even after many such improvements, Leclercq
 2018 ) estimates that computational efficiency remains low. This
BC method, ho we ver, has met high levels of success (Pritchard

t al. 1999 ; Marin et al. 2012 ; Akeret et al. 2015 ; Ishida et al. 2015 ;
NRAS 524, 6167–6180 (2023) 
ennings & Madigan 2017 ; Prangle 2017 ; Fluri et al. 2018 ; Leclercq
018 ; Fluri et al. 2022 ). 
There is a desire to make use of all of the information available

rom forward simulation, giving rise to an alternative SBI method-
logy in the form of density estimation likelihood-free inference
DELFI). In this schema, the probability density of the sampling
istribution is learnt through the use of neural networks. After
 v aluating this probability density at a given mock or observed data
ector, a likelihood and thus posterior can be recovered. This method
as the advantage of not requiring an explicit and often simplified
orm of a likelihood, and also does not throw away the information
rom forward simulations that do not produce a data vector that
asses any ‘closeness’ criteria. 
In recent years, DELFI has shown itself to be capable of inferring

ight constraints on the final posterior surface with an almost order
f magnitude fewer forward simulations than traditional Bayesian
ethods (Papamakarios & Murray 2016 ; Alsing et al. 2019 ; Jeffrey

t al. 2021 ; Hahn et al. 2022 ). In this paper, we apply this method
f statistical inference to mock KiDS-1000 cosmic shear data. We
alidate the method using simplified simulations but with the full
et of inferred parameters. We also optimize the method to explore
ow many simulations are needed in comparison to the number of
arameters being varied and inferred. The setup involves a mixture
f both data-sensitive parameters but also prior-driven parameters. 
This paper is structured as follows: Section 2 details the specifics of

he software used to perform DELFI SBI as well as the compression
cheme that is applied on to the cosmological summary statistics.
ection 3 provides an overview of the cosmological setup as well as

he test simulations used to generate mock data vectors. In Section
 , we outline the process of validating our SBI methodology, testing
or robustness as well as optimizing the method for the number of
imulations and the learning process. Importantly, in this section, we
emonstrate that the method can be easily made robust towards both
oor choices of fiducial cosmology as well as being robust to sub-
ptimal compression. 

 SIMULATION-BA SED  I N F E R E N C E  

.1 DELFI 

he methodology of DELFI SBI is depicted in Fig. 1 . First, both
he observed data and simulated data are compressed into a set of
nformative summaries. The compressed simulated data are used to
rain a neural network, which after applying the compressed observed
ata yields an empirical likelihood. After multiplying this learned
ikelihood with the priors, one obtains posterior parameter constrains.

Alsing et al. ( 2019 ) outlined a variety of ways of performing
ELFI. The methodology we use involves learning the sampling
istribution of data vectors conditional on the input cosmology,
 ( d | θ ) where d denotes data vector and θ cosmological parameters.
y e v aluating this learned sampling distribution at the observed
ata vector, one obtains the likelihood, which, after multiplication
ith a prior, yields the posterior through the use of Bayes’ theorem

Lueckmann et al. 2019 ; Papamakarios, Sterratt & Murray 2019 ). 
The biggest advantage of learning the sampling distribution of

ata as a function of parameters versus learning the joint distribution
s that the networks do not have the prior embedded within them.
his means that one can acquire forward simulations in regions of
osterior interest without worrying about importance re-weighting
ssues (Alsing et al. 2019 ; Papamakarios et al. 2019 ). This method-
logy also means that different priors can be explored and changed
 posteriori without similar re-weighting issues. 
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Figure 1. An o v erview of DELFI SBI using PyDELFI . First, both the observed data and simulated data are compressed into a set of informative summaries. 
The compressed simulated data are used to train PyDELFI ’s neural networks. Applying the compressed observed data yields an empirical likelihood, which 
after application of the priors produces posterior parameter constraints. 
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The specific implementation of density estimation SBI used is that 
f the PyDELFI software package. 1 (Alsing et al. 2019 ). To account
or any numerical anomalies or learning problems in the density 
earning process, a committee of neural density estimators (NDEs) is 
mployed. This means that multiple NDEs are trained independently 
nd later combined, weighted by how well they learned the target 
ensity. PyDELFI supports natively two different classes of NDEs, 
ixture Density Networks (MDNs) and Masked Autore gressiv e 

lows (MAFs). 
We found that MDNs performed poorly for our problem, especially 

hen considering high-dimensional parameter spaces, so we will 
ot discuss them further (see Alsing et al. ( 2019 ) for details on the
ethod). We make use of MAFs, which are NDEs constructed out 

f a chain of Masked Autore gressiv e Density Estimators (MADEs).
s any probability distribution can be written as a chain of one-
imensional conditional probabilities, a MADE ef fecti vely learns 
 target distribution through a series of conditional probability 
istribution transformations, p( t i | t 1: i−1 , θ ), back to the unit normal,
here t is the data vector of interest. The means and variances are
arameterised by a neural network with weights, w (Germain et al. 
015 ; Uria et al. 2016 ; Alsing et al. 2019 ). A MADE therefore has a
unctional form of 

( t | θ ; w ) = 

dim ( t ) ∏ 

i= 1 

p( t i | t 1: i−1 , θ ; w ) . (1) 

here each conditional p( t i | t 1: i−1 , θ ; w ) is conditioned on having
bserved the previous t 1: i−1 data vector values. Alsing et al. ( 2019 )
rite that any single MADE has two key limitations. One limitation 

s that a single MADE is sensitive to the order of the factorization
hilst the other is that simple conditionals may not be flexible enough 

o learn complex target distributions. The information pertaining 
o suitability of conditionals or factorization order, ho we ver, is not
vailable a priori. 

To o v ercome these limitations, MAFs are employed. A MAF
ddresses these limitations by creating a stack of individual MADEs, 
here the output u of each MADE is used as the input distribution

or the next MADE in the stack (P apamakarios, P avlakou & Murray
017 ). By creating an ensemble of MADEs with random re-ordering 
f the factorization order between each MADE, the limitation and 
ensitivity of factorization order is o v ercome. P apamakarios et al.
 2019 ) write that these MAFs are very flexible NDEs and well suited
 https:// github.com/justinalsing/ pydelfi 

a  

a  

i
o  
o the task of likelihood-free inference. A MAF as a NDE can thus
e expressed as 

( t | θ ; w ) = N [ u ( t , θ ; w ) | 0 , I ] ×
N mades ∏ 

n = 1 

dim( t ) ∏ 

i= 1 

p 

n 
i ( t , θ ; w ) , (2) 

here u is the output from the final MADE. N [ u ( t , θ ; w ) | 0 , I ]
enotes the aforementioned unit normal and 

∏ dim( t ) 
i= 1 p 

n 
i ( t , θ ; w )

epresents the chain of conditional probabilities factorized via the 
hain rule. The reason this expression picks up the N [ u ( t , θ ; w ) | 0 , I ]
erm is because we can think of a MADE, or a stack of MADEs in a

AF as learning the transformation of t back to the unit normal as
inted in Alsing et al. ( 2019 ). 
To train these NDEs, PyDELFI minimizes the Kullback–Leibler 

ivergence between the parametric density estimator and the target 
ensity. Ho we ver, for the purposes of SBI, the target probability
ensity is not known. As such, a Monte Carlo estimate of the
 ullback–Leibler div ergence is used instead for the target density.
ore details can be found in Alsing et al. ( 2019 ). 
Ho we v er, an y application of machine-learning trained on a small

raining set by minimization of the loss function easily runs into the
roblem of potentially optimizing said density estimators for local 
inima that do not well represent the larger data set as a whole.
s such PyDELFI employs the technique of training an ensemble 
f NDEs with a range of network architectures. By doing so, one
onstructs a stack of NDEs, with stacking weights (contribution 
eighting) of each NDE given by the relative likelihoods for each
DE. A stack of NDEs combined this way is reported to perform
etter than any single NDE (Smyth & Wolpert 1998 , 1999 ). This
ive 

( t | θ ; w ) = 

N NDEs ∏ 

α= 1 

βαp α( t | θ ; w ) , (3) 

here βα represents the stacking weight of each NDE with index α
nd 

∑ 

βα = 1. 
It is possible to run PyDELFI in two different modes which we

ill refer to as batch run mode and active learning mode. In the
atch run mode, simulations are run beforehand before being fed 
s one batch to PyDELFI . This means that to use the batch run
ode setting, it is typically prudent to select parameter points at
hich to run forward simulations by sampling from the prior with

n appropriate method, such as by using an equally spaced grid or
 latin hypercube. The main drawback of this mode is that with any
ndividual standalone run, it is hard to tell whether a sufficient number 
f forward simulations have been run without some ground truth to
MNRAS 524, 6167–6180 (2023) 
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hich the results can be compared. This is because the absolute value
f the loss is dependent on the number of parameters being inferred,
nd there is not one target loss to aim for across all models and runs.

In the active learning mode, PyDELFI proposes new parameter
alues at which to run simulations after obtaining data vectors from
 small initial set of simulations. This means that for the initial set of
imulations one can choose to either randomly sample from the prior
r make use of a latin hypercube that maximally co v ers the prior
olume efficiently. We choose the latter. After training on this initial
et of simulations, PyDELFI then acquires further sets of parameter-
ata pairs by sampling from a weighted mixture of the intermediate
osterior and the prior, ho we ver, other parameter acquisition schemes
ay be used. 
The performance of neural networks is typically also sensitive

o their initialization. For our work, given that we know that the
ikelihood will be approximately Gaussian around its peak from the
ublished results of the KiDS-1000 team (Asgari et al. 2021 ), we
an make use of a Fisher matrix, F , multiplied by a factor of safety
o initialize our ensemble of NDEs. We express the Fisher matrix as 

 = ∇ μT C 

−1 ∇ 

T μ, (4) 

here ∇ μ is the deri v ati ve of the data vector at the fiducial cosmology
nd C is the data covariance assuming a Gaussian likelihood (See
lsing & Wandelt ( 2018 ) for more details). We have made use of the

act that the covariance is cosmology independent here. 
The factor of safety is introduced to ensure that the NDEs are not

nitialized with too restrictive a volume. In practice, this means we
nitialize our NDEs with a Gaussian target distribution with their
eans equal to the chosen fiducial cosmology parameter values

nd a covariance equal to the inverse Fisher matrix multiplied by
 constant acting as a factor of safety. To elaborate, the NDEs are
nitialized before training to p( t | θ) = N ( t | θ , k F 

−1 ), where k denotes
he aforementioned factor of safety constant. 

.2 Parameter sampling 

he process of SBI means that ideally the forward simulations that
enerate the data vectors are drawn from a set of parameters that max-
mally co v er the prior volume. As such a latin hypercube co v ering the
rior volume would be ideal as it is a method of maximally co v ering
he volume of parameters of interest with minimal computational
aste by not sampling any particular parameter values twice (Stein
987 ; Park 1994 ; Loh 1996 ). As the KiDS prior contains a mix of top
at and Gaussian components, the hypercube generating algorithms
rovided by the PyDOE 2 package could be employed alongside
ciPy 3 with only minor modifications. 
Step one of the algorithm is to divide the prior volume into a

attice of equally spaced hypercuboids. Step two is to then randomly
hoose hypercuboids such that along each dimension no parameter
nterval is sampled twice. From here, either a parameter point can
e picked randomly within the chosen intervals, or the centre of
ach interval can be chosen. Running the inference pipeline on either
hoice appears to make little difference, so for simplicity’s sake
he middle of each interval is chosen as the sampled value for our
ork. This random choosing of hypercuboids can be run multiple

imes. A measure of minimum Euclidean distance between any two
oints is used as a measure of how spread out the points are within
he hypercube, and any random sampling that produces a larger
NRAS 524, 6167–6180 (2023) 
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a  

c  

f  

b

inimum Euclidean distance is deemed to be a better sample. This
rocess can be repeated an arbitrary number of times with the only
aveat being an increase in computational cost. 

The process ends here for parameters that have a flat prior, but for
arameters that have a Gaussian prior there is an additional step. For
he parameters that have a Gaussian prior, SCIPY is used to map the
at spread of parameter points on to a Gaussian target distribution

hrough its inverse cumulative distribution function. 

.3 Scor e compr ession 

he data vector we have chosen for this work is that of weak-lensing
wo-point correlation functions, which in the KiDS-1000 setup has
ength 270 (see Section 3 ). Using data vectors of such length directly
ithin PyDELFI would be prohibitiv ely e xpensiv e and difficult to
t due to its high dimensionality. Hence, massive data compression

s necessary to compress the data vectors into highly informative
ummary statistics with minimal loss in information. 

F or this massiv e data compression task, there are a few methods
o choose from. One option would be to use a neural network to try
nd maximize the information content automatically. For example,
his can be done through the use of the software package IMNN
Charnock, Lavaux & Wandelt 2018 ), which uses a neural network to
onstruct summaries that maximize the Fisher information. Another
ata compression method is MOPED (Heavens, Jimenez & Lahav
000 ), a linear compression method built upon the more classic
ethod of Karhunen–Lo ́eve eigenvalue decomposition (Tegmark,
aylor & Heavens 1997 ). Ho we ver, since we know from previous
nalyses that the parameter likelihood from cosmic shear two-point
tatistics will be approximately Gaussian close to the peak of the
ikelihood (Schneider & Hartlap 2009 ; Sellentin & Heavens 2018 ;
ellentin et al. 2018 ; Taylor et al. 2019 ; Upham et al. 2021 ), we make
se of linear score compression as outlined in Alsing & Wandelt
 2018 ). 

Given a log-likelihood, L , its Taylor expansion around a set of
ducial parameters, θ∗ with respect to δθ can be written as 

 = L ∗ + δθT ∇L ∗ − 1 

2 
δθT J ∗δθ , (5) 

here a ∗ denotes e v aluation at the fiducial parameter values, J ∗ is
he observed information matrix, J ∗ ≡ −∇ ∇ 

T L ∗. To linear order in
he parameters, the data vector only couples to the parameters via
he ∇L ∗ term, commonly referred to as the score, with s ≡ ∇L . By
onstruction, this score function is a vector of length n , where n is
he number of parameters. This is as deri v ati ves of the log-likelihood
re taken with respect to θ . As such, this provides a natural method
or compressing any data vector of length N to a massively smaller
ector of length n , sensitive to changes in the parameters to the first
rder. Alsing & Wandelt ( 2018 ) remark that this linear compression
ethod generalizes the linear Karhunen–Lo ́eve compression and
OPED schemas considered in Heavens et al. ( 2000 ) and Tegmark

t al. ( 1997 ). 
Ho we ver, as already alluded to above, this method of compression

oes require some form of an approximate likelihood with respect to
he parameters of interest: the more accurate the likelihood, the more
ptimal the compression. It should be emphasized that an inaccurate
ik elihood approximation w ould only result in lossy compression,
nd would not bias the inference, simply producing wider posterior
ontours. For our work, we choose a Gaussian form for the likelihood
or which this method of compression saturates the Cram ́er–Rao
ound (Alsing & Wandelt 2018 ). 

https://github.com/tisimst/pyDOE
https://github.com/scipy/scipy
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Moreo v er, we assume that the covariance is parameter- 
ndependent, which allows us to drop any partial derivatives with 
espect to the covariance. The contribution to the Fisher matrix 
y the parameter dependence of the covariance is suppressed for 
arger surv e y area (REF Te gmark, Taylor, Heavens). We note that
he SBI analysis does fully account for the parameter dependence of
tatistical errors, as opposed to the standard Gaussian likelihood 
nalysis. This leaves us with a greatly simplified linear score 
ompression function, defined as 

t = ∇ μT C 

−1 ( d − μ) , (6) 

here t now denotes the compressed data that will be used as the
nformation-sufficient summary statistics to be fed into PyDELFI . 

Ho we v er, with the e xpression of score compression as giv en in
quation ( 6 ), the numerical values of the compressed summary 
tatistics are not directly informative. Through equation ( 5 ), Alsing 
 Wandelt ( 2018 ) show that by maximizing the Taylor-expanded 

og-likelihood, the score compression numbers can be mapped on to 
 quasi maximum-likelihood estimator through 

ˆ = θ∗ + F 

−1 
∗ ∇L ∗ = θ∗ + F 

−1 
∗ t ∗, (7) 

here F ∗ denotes the Fisher matrix e v aluated at the fiducial cos-
ology and θ∗, the fiducial cosmology parameter values. We use 

hese quasi maximum-likelihood estimators as the summary statistics 
ithin PyDELFI to be able to make use of the Fisher initialization

chema mentioned in Section 2.1 . 
Furthermore, it is in this compression step that we may choose to
arginalize o v er certain parameters such as an y nuisance parameters.
 or e xample, if we know that our data are only sensitive to a
ubset of the parameters varied through forward simulation, those 
arameters can be marginalized out of the analysis through the score. 
lsing & Wandelt ( 2019 ) proposed a method of doing this whilst
aximizing the information within the data vector’s sensitivity to 

hose parameters through use of the Fisher matrix, a method they 
all ‘nuisance hardened score compression’. 

For our cosmological setup, the parameters that we might choose 
o marginalize out contain little information, meaning that the Fisher 

atrix yielded little to no information pertaining to the marginalized 
arameters. This meant that for our work, we could marginalize our 
ompressed summaries by simply truncating the score, removing the 
erms that corresponded to the parameters we wished to marginalize 
 v er. To mirror the analysis done by the KiDS-1000 team, ho we ver,
o marginalization of the score is done throughout this work. It should 
e noted that if the covariance depended on parameters, then such 
 clean separation between statistic and parameter is impossible, 
nd instead more mixing would be observed between compressed 
tatistics and parameter values. This would also result in a more 
omplex marginalization process beyond simply truncating the score. 

 SIMULATIONS  O F  COSMIC  SHEAR  DATA  

RO M  K I D S - 1 0 0 0  

or the generation of mock data from initial parameters, forward 
imulation is done using the KCAP 4 and CosmoSIS 5 packages 
Zuntz et al. 2015 ). For this analysis, the output of the simulations
re the shear 2PCFs, ξ±( θ ). To calculate the 2PCFs, first the
osmological pipeline assumes a spatially flat � CDM model. The 
inear matter power spectrum is calculated using CAMB (Lewis, 
 ht tps://github.com/K iDS-WL/kcap 
 https:// bitbucket.org/ joezuntz/cosmosis/ wiki/Home 

a
�  

i  

p  
hallinor & Lasenby 2000 ; Howlett et al. 2012 ) with its non-linear
volution calculated using HMCode (Mead et al. 2015 ). HMCode
akes use of a halo model with baryonic feedback. The amplitude of

he halo mass-concentration, a bary , is allowed to vary freely, whilst
he halo model bloating parameter η0 is fixed in relation to a bary (see
oachimi et al. 2021, for more details). 

The effects of the intrinsic alignment of galaxies is factored in
hrough the non-linear alignment model of Bridle & King ( 2007 ).
ollowing the pipeline as set out by KiDS (Asgari et al. 2021 ), the
imber approximation is used to project the matter power spectrum 

long the line of sight to obtain C εε(  ), which are the observed cosmic
hear angular power spectrum that are dependent on multipole  . The
otal shear angular power spectrum is the sum of contributions from
ravitational lensing (G) and intrinsic alignments (I), giving, 

 εε(  ) = C GG (  ) + C GI (  ) + C II (  ) . (8) 

he C εε(  ) are subsequently transformed into 2PCFs, ξ ±, 

±( θ ) = 

∫ ∞ 

0 

d   

2 π
J 0 / 4 ( θ ) C εε(  ) , (9) 

ith J 0/4 denoting Bessel functions of the first kind and θ the
ngular separation on the sk y. F ollowing KiDS-1000, we assume
ero contribution from the B-modes to the 2PCFs. 

The source galaxies are split up into five redshift bins with bin
oundaries [0.1, 0.3, 0.5, 0.7, 0.9]. All of the cross-correlation and
utocorrelation pairs between respective redshift bins were taken 
nto account, resulting in 15 redshift bin pairs. Following KiDS- 
000, scale cuts are performed on the 2PCFs, only keeping angular
eparations of between 0.5 and 300 arcmin with a total of nine angular
ins. This resulted in a data vector of length 270. 
As the goal is to test the performance of the PyDELFI SBI

ipeline, we generate our own mock data vectors by sampling the
PCFs using the KiDS analytic covariance as derived in Joachimi 
t al. ( 2021 ). We do this to have full control o v er the results
nd to perform valid testing of the SBI methodology by way of
omparison to that of traditional likelihood analysis. Furthermore, 
or the purposes of testing we generated a mock data vector that
as used as the observed data vector for both traditional likelihood

nalysis and SBI. 
In the future, we plan to apply this pipeline to a no v el suite of

hysically informed forward-simulations of weak-lensing observ- 
bles (von Wietersheim-Kramsta M, Lin K, Tessore N, Joachimi B, 
oureiro A, Reichke R, Wright A, in preparation). For this full SBI
nalysis of KiDS-1000 data, the simulations will include all rele v ant
ystematics and physical effects which might induce non-Gaussianity 
nto the likelihood. 

Following the methodology of KiDS, we vary five cosmological 
arameters and two astrophysical nuisance parameters with flat priors 
dentical to the ones used by KiDS (see section 3.3 of Joachimi
t al. 2021 ). The cosmological parameters varied include σ 8 , the
resent-day root-mean-square matter fluctuation averaged over a 
phere of radius 8 h −1 Mpc; the density parameter for cold dark matter,
 c = �c h 

2 
0 and baryonic matter, ω b = �b h 

2 
0 multiplied by h 0 , the

imensionless Hubble constant. The spectral index of the primordial 
ower spectrum, n s , is likewise varied. 
The two astrophysical nuisance parameters are A IA , the intrinsic 

lignment amplitude of galaxies and a bary , the baryonic feedback 
mplitude. Furthermore, we define matter density as �m 

= �c + 

b + �ν , where �ν is the neutrino density . Finally , the shifts
n the means of the redshift distribution bins follow a Gaussian
rior with covariance that can be found in the latest KiDS data
MNRAS 524, 6167–6180 (2023) 
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M

Table 1. The prior ranges for the parameters to be inferred alongside the 
parameter values used to generate the mock data vector and the fiducial 
cosmology for compression. The prior ranges for σ 8 , ω b , ω c , n s , h 0 , a bary , 
and A IA are all top hats, whilst the prior for δz follows a correlated Gaussian 
distribution characterized by a covariance matrix C with mean of μ. The δz 

parameters encapsulate freedom in the mean of the redshift distribution bins 
whilst the other parameters are: σ 8 , the root-mean-square matter fluctuation; 
ω b , baryonic matter density; ω c , cold dark matter density; n s , scalar spectral 
index; h 0 , Hubble constant; a bary , baryonic feedback parameter; A IA , galaxy 
intrinsic alignment amplitude. We set the equation of state parameter as w 

= −1, pick a flat curvature, ω k = 0, and fix a neutrino mass sum of �m ν = 

0.06eV/ c 2 . 

Parameter Prior range Mock data Fiducial 

σ 8 [0.6, 1.0] 0 .8 0 .811 
ω b [0.019, 0.026] 0 .0230 0 .0224 
ω c [0.07, 0.18] 0 .120 0 .120 
n s [0.8, 1.15] 0 .960 0 .965 
h 0 [0.6, 0.9] 0 .674 0 .674 
a bary [2.0, 4.0] 3 .10 3 .13 
A IA [ −6.0, 6.0] 0 .960 0 .974 
δz [5] N ( μ, C) 0 .0 0 .0 
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elease repository. 6 For our analysis, the mean shift in the redshift
istribution is set to zero. See Table 1 for a summary of the parameters
aried and their prior ranges. 

It should be noted that the 2PCFs are only strongly sensitive to the
arameters σ 8 , ω c and A IA . This means that we expect the prior to
ominate the posterior for all of the other parameters that are varied.

 VA LIDATION  A N D  OPTIMIZATION  

.1 SBI methodology validation 

o validate the methodology, using the setup described in Section 3 ,
oth a mock observed data vector and fiducial cosmology data vector
ere generated. We choose Planck 2018 cosmology values (Aghanim

t al. 2020 ) as our fiducial cosmology but pick a slightly different set
f cosmology values to generate the mock observed data vector. We
est robustness and sensitivity to the choice of fiducial cosmology
ater in Section 4.2 . 

The generated data vectors are compressed following the schema
utlined in Section 2.3 . The compressed summary statistics are then
ed into a PyDELFI pipeline that initializes the NDEs with the
nverse Fisher matrix, as mentioned in Section 2.1, before training
he ensemble of NDEs on forward simulated data-parameter pairs. 

Importantly, as our data are only sensitive to a subset of the
arameters, with the other parameters being highly prior-driven, we
dd this prior information to the inverse Fisher matrix used for NDE
nitialization via the method set out in Coe ( 2009 ). This will have no
ffect on the final inferred parameter posterior, but it helps regularise
he NDE initialization making it perform more consistently. 

In the end, the chosen ensemble of NDEs used included six MAFs
omprised of three to eight MADEs, respectively. This choice was
ade after trying a variety of different combinations of NDEs, with

his combination providing good performance without being too
estrictive as would be the case if MAFs with fewer components
ere chosen. 
NRAS 524, 6167–6180 (2023) 

 ht tps://github.com/K iDS-WL/Cat t o Obs K1000 P1/

t  

7

The results of the SBI pipeline were compared each time to a
tandard likelihood inference pipeline using emcee 7 (Foreman-
ackey et al. 2013 ) that made use of 48 000 model e v aluations,
ith convergence tested using the integrated correlation time as

ecommended by F oreman-Macke y et al. ( 2013 ). As mentioned
reviously, the results of the standard likelihood inference pipeline
ere treated as the ground truth for testing purposes. Fig. 2 shows

he comparison between the traditional likelihood analysis versus
he output of the SBI pipeline after running forward simulations
ith all 12 parameters varied. It is clear that the SBI pipeline is

ble to reproduce the ground truth posterior with all 12 cosmological
arameters varied. 
This particular posterior was obtained after 11 000 forward sim-

lations with PyDELFI set to run in its active learning mode. The
ne-dimensional marginal posteriors differ slightly for h 0 and ω b ,
hich is due to the posterior being prior driven with a low sensitivity

o the data. This means that we expect the posterior to be flat for
hese parameters. 

In particular for ω b , we can see that the posterior from SBI reflects
he expected flat distribution better than the standard MCMC analysis
hat assumed a Gaussian likelihood. This shows us that the SBI

ethodology accurately reflects any deficiency in information within
he data vector concerning parameter constraints. 

Classifier two-sample tests (C2ST) are often used to determine
ow well a posterior has been learned, whereby a classifier is trained
o see if it can distinguish between samples from the ground-truth
istribution and samples from the learned distribution (Friedman
003 ; Lopez-Paz & Oquab 2016 ). A value of 0.5 in the test
ould indicate the classifier cannot distinguish between the two
istributions whilst a value of 1.0 would indicate the classifier can
erfectly distinguish between the two distributions. We found that
ur methodology when tested with C2ST was competitive with what
iller et al. ( 2021 ) found the performance of PyDELFI to be, giving

 value of 0.65 with O(10 4 ) simulations when only considering three-
imensional marginalized posteriors in σ 8 , �m 

, A IA and a value of
.6 when only a two-dimensional posterior is considered. 

.2 SBI sensitivity to choice of fiducial cosmology 

ur SBI methodology requires a choice of fiducial cosmology both
o initialize the NDEs as well as to do score compression. There is,
o we ver, no way to know what a good choice of fiducial cosmology
s a priori, and importantly we w ould not w ant the choice of fiducial
osmology to bias the results. Instead, a poor choice of fiducial
osmology should only result in sub-optimal compression. Thus, it
as important to test this methodology for robustness against choice
f fiducial cosmology. 
To test for this, we generated a set of 100 mock observed data

ectors using varying cosmologies that spanned the prior in σ 8 and
m 

. For this set of mock observed data vectors, the other parameter
alues were kept fixed to the values depicted in Table 1 . For the sake
f simplicity, instead of running the SBI pipeline in its active learning
ode, a batch of 24 000 forward simulations were pre-run with their

ata vectors compressed using the schema outlined in Section 2.3 and
ll 12 parameters varied drawn from a latin hypercube. Separate runs
f the SBI pipeline were then performed using each of the individual
ock observed data vectors. 
We first found that the inferred posterior is al w ays consistent with

he cosmology used to generate the mock observed data v ectors, ev en
 https://github.com/dfm/emcee 

https://github.com/KiDS-WL/Cat_to_Obs_K1000_P1/
https://github.com/dfm/emcee
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Figure 2. Posterior distributions of the full parameter set of KiDS-1000 obtained through a standard MCMC analysis (orange) versus the SBI pipeline (blue). 
Choices for the fiducial cosmology and the cosmology parameter values for the mock observed data are outlined in Table 1 . The dashed grey lines depict the 
cosmology used to generate the mock observed data. The SBI contours were obtained with PyDELFI in its active learning mode that made use of 11 000 
forward simulations. In comparison, the MCMC analysis made use of 48 000 model e v aluations. 
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hen the fiducial cosmology lay outside of the posterior. We then 
ished to see how the standard deviation in S 8 is affected by the

hoice in fiducial cosmology. Fig. 3 depicts the percentage change 
n standard deviation in the S 8 marginal posterior. We find that when
he true S 8 and corresponding σ 8 value is larger than the fiducial 
 8 and σ 8 value, the posterior in S 8 is artificially widened, whilst
or the rest of parameter space in �m 

and σ 8 , there is no clear
rend. For the majority of cases, the change in standard deviation is
nder 5 per cent; a small percentage for an inherently noisy process
ue to both cosmic variance changing with S 8 and the stochastic 
ature of NDE training. This indicates to us that after running an
nitial analysis with a fiducial cosmology that will yield parameter 
onstraints consistent with the data cosmology, it would be prudent to
e-compress the data vector with the newly inferred data cosmology. 

In practice, this first involves performing inference with a fiducial 
osmology. The maximum a posteriori (MAP) of this inference can 
e found with an optimizer such as Nelder–Mead (Nelder & Mead
965 ), and we use the MAP parameter values to re-compress our
ata. We then re-perform PyDELFI inference with this once-iterated 
AP cosmology to yield more accurate constraints. 
MNRAS 524, 6167–6180 (2023) 



6174 K. Lin et al. 

M

Figure 3. The relative size of the S 8 marginal posterior standard deviation 
compared to a fiducial analysis where the mock data vector was the same 
as the mock data vector. The �m 

and σ 8 axes depict the cosmology used 
to generate the mock data vector, whilst the colour maps the percentage 
difference in the standard deviation of the S 8 marginal posterior. The black- 
dashed lines depict the fiducial cosmology values, whilst the dotted grey 
lines that span the figure diagonally depict lines of constant S 8 . The standard 
deviation of the S 8 marginal posterior is up to 20 per cent different to the case 
where the data cosmology aligned with the fiducial cosmology. 

Figure 4. SBI analysis where the mock observed data were generated from a 
cosmology (blue star) that deviated far from the choice of fiducial cosmology 
(black cross). The MAP was found from this initial fiducial inference (fuschia 
triangle) with corresponding posterior contours (fuchsia dashed line), and 
used to re-compress the data vectors which resulted in new posterior contours 
(yellow dash–dotted line). The MAP from this once iterated inference is 
depicted by the yellow diamond. Inference performed with summaries that 
were compressed with the cosmology used to generate the mock observed 
data are shown by the solid blue line. 
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Fig. 4 depicts this process using the cosmology depicted by the
op right-hand corner in Fig. 3 , where the difference in S 8 standard
eviation between inference performed with compression on the
ducial cosmology and inference performed with compression on

he mock data cosmology was 19 per cent. This was the worst-case
cenario that we encountered in our testing. After compressing the
NRAS 524, 6167–6180 (2023) 
ata on the fiducial cosmology, we infer the MAP and re-perform the
ompression to obtain new posterior contours with an S 8 standard
eviation that is now only 5 per cent different to that of inference
erformed with compression on the mock data cosmology. This
rocess can be iterated several times if required. Furthermore, all
f the MAP values hav e v ery similar S 8 , but the MAP from the once-
terated inference is also very close to the true σ 8 and �m 

values. 
It should be noted that re-performing the PyDELFI inference

ith a new cosmology is computationally ine xpensiv e as we can
ake use of all of the previously run simulations to perform the
ducial inference. There is only a small amount of computational
ost associated with calculating data vector deri v ati ves with respect
o cosmology at the first iteration MAP, and also to re-calculate the
core compression followed by training a new set of NDEs. As such,
e w ould al w ays recommend to perform at least one iteration and see

f the MAP or standard deviation varies significantly, and to continue
terating until neither the MAP nor the standard de viation v ary by
uch depending on the amount of noise present. This result shows

hat the SBI methodology can easily be made robust towards the
hoice of fiducial cosmology after just one inference iteration. 

.3 SBI sensitivity to quality of compression 

s discussed in Section 2.3 , a crucial step in the SBI pipeline is the
ompression. Whilst for our testing we were able to make use of
ptimal compression by using the same covariance to both draw data
ector values and in the compression, this will not generally be the
ase. This is as an analytical covariance may not al w ays be available
nd a covariance matrix would also be unable to completely capture
he non-Gaussian features of forward simulated data. Therefore,
here is a need to test the methodology in lieu of lossy compression,
hich we do by tampering with the covariance used in compression,

rtificially worsening it. 
We tamper with the covariance in two ways. In the first method,

s our analytic sample data covariance matrix follows a Wishart
istribution (W ishart 1928 ; Taylor , Joachimi & Kitching 2013 ), we
raw random samples of the covariance from a Wishart distribution
onstructed from our data covariance whilst varying the degrees of
reedom. By reducing the degrees of freedom, we increase the amount
f noise in the covariance like if we were estimating the covariance
umerically from data samples, with lower degrees of freedom
orresponding to fewer data samples. In the second method of
ampering with the covariance, we suppress the off-diagonal elements
f the covariance by a factor of 10 −l , where l denotes the diagonal
istance from the diagonal element. This has the effect of destroying
ll of the cross-correlation information within the compression. This
pproach of tampering the covariance was chosen to ensure that
he covariance structure would be significantly compromised but
etaining its positive definiteness; it does not mimic any physical
ffect in the covariance modelling. 

Fig. 5 depicts the posterior contours obtained through the SBI
ipeline using these artificially worsened compression methods. We
an see from this figure that in all but the worst Wishart tampered case
here the degrees of freedom was set to 312, just above the degrees
f freedom limit of 270 to keep the covariance matrix invertible,
he posteriors obtained through SBI do not differ greatly from the
ase with good compression. In the realistic Wishart tampered case,
he degrees of freedom was set to 1000, a reasonable number of
orward simulations one might perform to estimate a data covariance.
o we ver, e ven in the worst-case scenario, we can see that the effect

s almost entirely posterior widening and mostly only on the A IA 

arameter. 
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Figure 5. Posterior contours obtained through the SBI pipeline using three artificially worsened compression covariances plotted on top of the posterior obtained 
from using a good compression covariance (solid blue). In the realistic Wishart tampered case (purple dash–dotted), a covariance for use in compression was 
resampled from a Wishart distribution with the degrees of freedom set to 1000, a reasonable number of forward simulations one might perform to estimate a data 
covariance. In the worst-case Wishart tampered case (pink dashed), the Wishart degrees of freedom was set to 312, just abo v e the limit of the degrees of freedom 

for our data covariance that is 270 to keep the matrix invertible (Taylor et al. 2013 ). In the suppressed off-diagonals case (orange dashed), the covariance had its 
off-diagonal elements suppressed by a factor of 10 −l , where l denotes the diagonal distance from the diagonal element. This strongly suppresses all of the cross- 
correlation information within the compression. The dashed grey lines depict the cosmology used to generate the mock observed data. It should be noted that in all 
but the worst Wishart-tampered case where only the A IA contours widen, the SBI method is able to obtain a posterior almost identical to the good compression case. 
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It is clear that this SBI pipeline is robust towards lossy compression
nd can infer good posteriors under such circumstances. This sensi- 
ivity test also indicates that making use of a numerically estimated, 
nd thus noisy covariance would suffice for purposes of re-analysing 
iDS-1000. 
.4 Optimization 

e wish to know how many potentially expensive forward simula- 
ions are required to successfully make use of this SBI methodology.

e find that the active learning approach requires fewer simulations 
MNRAS 524, 6167–6180 (2023) 



6176 K. Lin et al. 

M

t  

d  

a  

I  

f  

o  

r  

1  

i  

t  

a  

o  

s
 

p  

h  

i  

j  

l  

a  

a  

i  

t  

w  

a  

s
 

o  

O  

e  

b
p  

o  

t  

A  

n  

t  

b  

l  

a  

b
 

l  

W  

n  

s  

1  

p  

fi  

s  

i  

p  

m
 

l  

c  

t  

t  

p  

c  

p  

Y  

Figure 6. The plot depicts validation loss against the number of simulations 
for the two modes that PyDELFI can be run in. The orange points are the 
validation loss from active learning whilst the blue points depict the batch 
run mode, both modes are outlined in Section 2.1 . For all simulations, all 
12 parameters were varied. In the top panel, PyDELFI also inferred all 
12 parameters, whilst in the middle panel PyDELFI only inferred seven 
parameters, which were { σ 8 , ω c , A IA , a bary , n s , h 0 , ω b } . The bottom panel 
depicts a scenario where PyDELFI inferred five parameters, which were { σ 8 , 
ω c , A IA , a bary , n s } . For more than O(10 4 ) simulations, the gain in information 
becomes minimal, with the exact number of simulations dependent on the 
number of parameters inferred. 
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o produce a well learned and stable posterior. Ho we ver, there are
ownsides: the networks go through more rounds of training o v erall,
s they are retrained each time a new set of simulations is acquired.
n terms of training speed, ho we ver, retraining PyDELFI NDEs is
aster than even the simplified simulations that we are making use
f here. This indicates that they will be much faster than the more
ealistic simulations we will make use of in the re-analysis of KiDS-
000 data. To elaborate, the simulations we are running as outlined
n Section 3 take place on the order of a minute per realization whilst
raining an entire PyDELFI model on a modern CPU with no GPU
cceleration takes around 10 to 15 min. This shows us that the speed
f analysis is dominated by the time it takes to run the forward
imulations. 

As we have mentioned previously in Section 2.2 , we draw initial
arameter points at which to run the forward simulations using a latin
ypercube. We found that the key benefit of using a latin hypercube
s that the tails of the parameter space are well explored. Ho we ver,
ust relying on a latin hypercube led to the peaks of the posterior
acking the number of simulations required to converge. As such, the
ctive learning mode of PyDELFI draws further parameter points
t which to run forward simulations from a weighted mix of the
ntermediate posterior and prior. We wished to see the impact on
he training by drawing parameter points in this manner, hence
e compared the results of running the active learning approach

gainst a single large latin hypercube with the same number of total
imulations. 

There are several metrics that we can use to determine the number
f forward simulations we need to obtain good posterior contours.
ne method is to look at the spread in the learned S 8 posterior across

ach of the individual NDEs in the ensemble that was employed
y PyDELFI . Another method is to check if the marginal S 8 
osterior’s standard deviation has converged. We found that both
f these metrics were not strongly conclusive, and regardless of
he number of simulations, neither metric appreciably deteriorated.
s an alternative, we turned to the validation loss of the neural
etworks to see when the loss stopped decreasing when increasing
he number of simulations. Fig. 6 depicts such loss curves, comparing
oth the validation loss from the active learning mode as well as a
atin hypercube with the same number of samples. We find that the
ctive learning approach al w ays outperforms the latin hypercube
atch run mode. 
To test for the number of simulations required, ho we ver, we can

ook at where the steepness of the log loss curves starts to plateau.
hen the log loss plateaus, we can deduce that the networks are

o longer able to glean much information from adding on further
imulations. We can see that for the 12-parameter case, it is around
0 000 simulations that the loss curve starts to plateau. For the seven-
arameter case, this takes place around 8000 simulations whilst for
ve parameters closer to 7000. This shows us that the number of
imulations required scales with the number of parameters being
nferred. Ho we ver, as the scaling of simulations required versus
arameters inferred is not polynomial, it is relatively cheap to infer
ore parameters. 
Furthermore, it is of note that after the initial hypercube, the active

earning method rapidly impro v es its quality of training. To graphi-
ally depict this, Fig. 7 plots the intermediate posteriors o v erlaid on
op of each other. The δz parameters have been marginalized out just
o make the plot more visually clear, but they were still learned in this
articular run. We can see from this plot that the posterior quickly
onverges with small increases in simulation number, starting from a
oor posterior constraints with the 2000 parameter points hypercube.
et, the 9000 simulations intermediate posterior is almost identical
NRAS 524, 6167–6180 (2023) 
o the one obtained after 17 000 forward simulations. This serves to
urther reinforce what we see in the loss curves depicted in Fig. 6 . 

Within the setup of PyDELFI itself, ho we ver, we also tried tuning
ther hyperparameters, such as the number of epochs, i.e. the number
f training rounds the NDEs undergo; the learning rate, a parameter
hat determines the amount the NDEs changes after each training
poch; the early stopping threshold, a parameter that determines
hen to stop training to guard from o v erfitting. We found the settings

hat PyDELFI uses by default to be good, with tweaks providing little
o no impro v ement. The only hyperparameter we changed was the
umber of epochs. For high dimensionality inference, the number
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Figure 7. Intermediate posteriors from the active learning mode in PyDELFI for 2000 hypercube samples (orange), 4000 samples (fuchsia), 9000 samples 
(purple), and 17 000 samples (blue). The dashed grey lines depict the cosmology used to generate the mock observed data. The posterior is poorly approximated 
after the initial 2000 simulations, yet impro v es rapidly with just a doubling of simulation number, and after 9000 simulations are almost identical to the posterior 
obtained after 17 000 simulations. 
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f epochs needed to be set high enough to give the NDEs enough
raining rounds to learn the features of the data fully. 

Throughout this optimization testing, the full set of KiDS-1000 
arameters was v aried; ho we ver, we also tried marginalizing out
he other parameters in the compression step to see if that made
he learning task easier. This is prudent to try as it both lowers the
imensionality of the problem and also guided by our knowledge of
he cosmological setup, we know that many of the parameters are 
lmost purely prior-driv en. F or our setup, howev er, giv en that there
as little sensitivity to the data in the parameters that we wished to
arginalize, performing nuisance-hardened compression as outlined 

n Alsing & Wandelt ( 2019 ) made no difference. 
If the MOPED compression schema was used in its original Gram–

chmidt orthogonalization form Heavens et al. (2000 ), then the 
ampling distribution of summary statistics would have a covariance 
tructure of that of a unitary matrix. This, in principle, should be
MNRAS 524, 6167–6180 (2023) 
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M

Figur e 8. Mar ginal posteriors from the active learning mode in PyDELFI for varying numbers of parameters inferred. All 12 parameters were varied in the 
forward simulations, and also PyDELFI inferred all 12 parameters in the solid blue contour. The dashed grey lines depict the cosmology used to generate 
the mock observ ed data. F or the sev en-parameter inference (dash–dotted purple), the δz [5] parameters were not inferred, the six-parameter inference (fuchsia 
dashed) also dropped ω b and the five-parameter inference further dropped h 0 . 
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ore straightforward for the NDEs to learn, but would require
odifications to the current initialization schema that makes use

f a Fisher matrix requiring the summary statistics to be cast into
uasi maximum-likelihood estimators. 
We also wished to test if reducing the number of parameters

nferred would artificially narrow or widen the constraints on the
arameters being inferred. We found that there was no such effect
n the final parameter posteriors, meaning it is safe to reduce the
NRAS 524, 6167–6180 (2023) 
umber of parameters inferred but keep them varied in the forward
imulations. The marginal posteriors for this testing are depicted in
ig. 8 . 

 C O N C L U S I O N S  

s we enter an era of high-precision cosmology, it will become
ncreasingly difficult to reliably extract information from complex
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ata via analytic models and likelihoods. Therefore, we explored 
imulation-based inference (SBI) as a methodology that would 
nable forward-modelling and a v oidance of a Gaussian likelihood 
ssumption as is common in most cosmological analyses. We tested 
BI on the full 12-dimensional parameter space of the most recent 
iDS cosmological analysis of tomographic weak gravitational lens- 

ng data (KiDS-1000), assuming a Gaussian data vector to validate 
he SBI methodology, employing density estimation likelihood-free 
nference (DELFI) using the PyDELFI software package. 

We demonstrated that our SBI method accurately reco v ers the full
osmological posterior of the KiDS-1000 analysis when applied to 
 mock data v ector dra wn from a Gaussian likelihood. This was
chieved with under 10 4 forward simulations. Moreo v er, we showed 
hat the necessary maximal data compression step in our method is
obust to employing an inaccurate data covariance, and readily made 
obust towards the choice of fiducial parameter values. This suggests 
hat our approach will still perform well when using approximate 
nalytic covariances or noisy numerical covariance estimates. 

Furthermore, we found the most computationally efficient mode in 
hich to run PyDELFI to be an initial latin hypercube of parameter
 alues follo wed by additional batches determined by active learning .
arginalizing parameters that are varied in the forward simulations 

n the score compression also does not bias the parameter constraints
n the remaining parameters. This allows the number of forward 
imulations required to be further reduced if certain parameters are 
ot of interest for the posterior. 
The tests for robustness we have performed for our SBI method 

how that it is competitive for performing accurate parameter 
nference all whilst dropping the Gaussian likelihood assumption or 
eing restricted to analytic models of the data. If paired with fast yet
omprehensive simulations, SBI inference will also not dramatically 
ncrease computational requirements. In forthcoming work, we will 
ack-end our SBI pipeline with realistic forward simulations of 
eak lensing and apply this inference pipeline to KiDS-1000 (von 
ietersheim-Kramsta, Lin, et al., in preparation). While we have 

estricted our analysis to two-point statistics to be able to validate 
gainst the standard inference approach, SBI is readily applicable to 
ny combination of summary statistics that are accurately represented 
n the simulations, which makes it a powerful tool to extract maximal
mounts of information from next-generation cosmological surv e ys 
hat contain more non-Gaussian information. 
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