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ABSTRACT: Enhanced sampling techniques have revolutionized
molecular dynamics (MD) simulations, enabling the study of rare
events and the calculation of free energy differences in complex
systems. One of the main families of enhanced sampling
techniques uses physical degrees of freedom called collective
variables (CVs) to accelerate a system’s dynamics and recover the
original system’s statistics. However, encoding all the relevant
degrees of freedom in a limited number of CVs is challenging,
particularly in large biophysical systems. Another category of
techniques, such as parallel tempering, simulates multiple replicas
of the system in parallel, without requiring CVs. However, these
methods may explore less relevant high-energy portions of the
phase space and become computationally expensive for large
systems. To overcome the limitations of both approaches, we propose a replica exchange method called OneOPES that combines
the power of multireplica simulations and CV-based enhanced sampling. This method efficiently accelerates the phase space
sampling without the need for ideal CVs, extensive parameters fine tuning nor the use of a large number of replicas, as demonstrated
by its successful applications to protein−ligand binding and protein folding benchmark systems. Our approach shows promise as a
new direction in the development of enhanced sampling techniques for molecular dynamics simulations, providing an efficient and
robust framework for the study of complex and unexplored problems.

■ INTRODUCTION
The development of enhanced sampling techniques has
allowed molecular dynamics (MD) simulations to explore
considerably longer time-scales, unlocking the possibility of
routinely studying rare events and calculating free energy
differences in a number of complex problems.1−4

One of the main families of enhanced sampling techniques
tackles the problem by accelerating a system’s dynamics along
selected physical degrees of freedom (DOFs) called collective
variables (CVs) and by recovering the original system’s
statistics by factoring out the deposited bias. In time, many
CV-based sampling methods have been developed that are
actively used by the community.4 Typically, the maximum
number of CVs that can be simultaneously biased is limited,
due to the exponentially increasing cost of exhaustively
exploring multidimensional free energy spaces. The precursor
of such methods is Umbrella Sampling,5 while Metadynamics6

is one of the most popular. In Well-Tempered Metadynamics
(WT-MetaD),7 one iteratively builds a bias potential that, for a
long enough time, is proven to converge and provide exact
statistical properties.8 However, the definition of “long enough
time” is determined by the CVs’ capability to capture all the
slow DOFs of a system that are relevant for the process
studied.

The quality of the CVs crucially determines the simulation
timescale needed to reach convergence,9 as the slowest ignored
DOFs dictate the speed at which transitions between
metastable states occur, making the standard MD timescale
problem reappear and translate into a search for better CVs.
Encoding all the relevant DOFs in a limited number of CVs is
no easy task and it is especially unfeasible in the large and
complex systems that characterize the biophysical world.
Common CVs such as distances and angles are quite
straightforward to figure out and do not require extensive
knowledge of the problem at hand, but they are hopeless to
capture complex many-body transitions. More sophisticated
techniques to build optimal CVs by combining simpler ones,
or by finding an optimal path between initial and final states, or
by using machine learning on large datasets have been
successful, but they still often require significant human effort
or large amounts of data.10−29
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Another category of techniques addresses the timescale
problem through parallelism by simulating multiple realizations
of the system, or replicas, at the same time.30−32 Typically,
these methods do not require the introduction of CVs to be
biased. Among them, replica exchange methods simulate
parallel replicas differing from each other through the variation
of internal system’s parameters30,33,34 and periodically attempt
exchanging their coordinates, given a physical acceptance
criterion. One prominent example of such methods is Parallel
tempering33,35 and its variants,36,37 where a progressive
temperature increase in the replicas leads to all kinetic barriers
being lowered and enthalpy-driven processes being accelerated.
Parallel tempering methods have the advantage of being able to
sample large phase space regions without the necessity to reach
very long timescales and without being limited by missing slow
DOFs in the CVs definition. However, high temperatures and
no CV-defined direction can lead the simulations to explore
less relevant high-energy portions of the phase space, reducing
overall efficiency and not improving their capability to
overcome entropic barriers.38,39 Furthermore, in large systems,
a considerable number of replicas must often be employed to
ensure effective exchanges, making Parallel Tempering
methods expensive.40 While solutions to some of these
limitations are arising,41,42 a possible way forward is to
combine the power of multi-replica simulations and CV-based
enhanced sampling.
A number of successful methods have attempted, to varying

degrees, to combine the power of both approaches, including
Multiple-Walkers Metadynamics (MW-MetaD),43 Parallel-
Tempering Metadynamics (PT-MetaD),44,45 Bias-Exchange
Metadynamics (BE-MetaD),46 and further evolutions.47−53

Many of these methods showed significant promise as the
combination of CV and replica-based algorithms is able to
efficiently accelerate the crossing of both enthalpic and
entropic barriers without the necessity of an optimal CV
development, as shown by their successful application to
complex biological systems.54,55 However, they also inherited
some of the intrinsic limitations of their predecessors, namely a
reduced but still present dependence of the free energy
convergence on the quality of the CVs, a problematic setup of
optimal parameters, and a significant computational cost. The
rise of novel enhanced sampling techniques such as On-the-fly
Probability Enhanced Sampling (OPES)56 and its variants57,58

has prompted us to formulate an OPES-based replica exchange
method. Its aim is to provide a framework that produces
converged results at a reasonable computational cost while
being less reliant on the setup parameters and the CV quality.
The overall strategy exploits the qualities of a combination of
existing OPES variants in a parallel strategy that we call
OneOPES.
In standard OPES,56 one estimates the unbiased probability

distribution by depositing weighted Gaussian kernels along
chosen CVs. In a thought-provoking paper,58 it was shown
that, when CVs are excellent, the rapidly converging bias
potential leads to a high transition frequency and very accurate
results in a short computational time. On the other hand, when
CVs are suboptimal, the OPES bias potential determines a
slow phase space exploration that in turn forces simulations to
extend for long times before reaching convergence. OPES
Explore58 addresses this point and builds a more rapidly
varying bias potential which leads to a faster phase space
exploration, at the price of a slower and noisier convergence.
Meanwhile, another conceptually different OPES variant called

OPES MultiThermal57 has been developed, where a system
simultaneously visits a range of temperature distributions
without changing the thermostat or having to run multiple
replicas.
In OneOPES, inspired by the approach of ref 48, we set up a

mixture of replicas including OPES variants of different
exploratory intensities and combine them with explicit replica
exchange. All replicas include one OPES Explore bias that sets
a common baseline by building a bias potential over a set of
leading CVs. The first replica is the most convergence-focused
replica and only includes this standard OPES Explore bias
potential. As such, it will be used to calculate equilibrium
properties through reweighting. Higher-order replicas are more
exploratory and may include OPES Explore biases applied on a
number of other CVs. These extra biases are weaker and
updated more infrequently than the leading bias. Their
purpose is to complement the leading bias by accelerating
the sampling of transversal DOFs that are not included in the
leading CVs, as done in refs 46, 48. The most exploratory
replicas also include OPES MultiThermal so that the effect of
suboptimal CVs is further mitigated and all kinetic barriers are
lowered. In a nutshell, exchanges between exploratory and
convergence-dedicated replicas ensure that the former
simulations bring variety into the latter ones, as convergence-
dedicated ones moderate the exuberance of the exploratory
ones.
We use OneOPES in combination with standard but

suboptimal CVs that would undermine the convergence of
the reconstructed free energy when used in combination with
standard CV-based approaches and test it on a set of case
studies that presents a diverse set of difficulties and
requirements. As a stringent convergence criterion, for each
system we perform a set of five completely independent
simulations and evaluate their average outcome. At first, we
simulate a system that is commonly used in enhanced sampling
algorithm testing, Alanine Dipeptide, which still represents a
challenge when one biases a very sub-optimal CV. Then, we
test one of the standard protein-ligand binding systems,
Trypsin-Benzamidine, where the difficulty for a sampling
method lies in achieving a subtle balance between being
aggressive enough to overcome the many hidden kinetic
barriers, and delicate enough not to end up in unwanted
conformational states or even unfold the protein. Lastly, we
simulate the protein folding system Chignolin, where an
aggressive biasing method is better suited to trigger global
folding-unfolding events. Furthermore, we show that our new
algorithm is able to provide at no additional cost significant
features of the process such as entropy, enthalpy, and the
melting temperature of the protein. All examples are compared
to analogous PT-MetaD simulations in the Well-Tempered
ensemble (PT-WTE-MetaD).44,45,54

Our results compare very favourably with existing state-of-
the-art simulations.23,59,60 The examples provide a scenario for
the intended use that we envision for OneOPES: to efficiently
exploit the available resources in the study of real-world
applications, striking a balance between the human effort
needed to design optimal CVs and the computational effort to
run long simulations.

■ METHODS
OneOPES is an explicit replica-exchange technique, whose
framework is designed as a progressive stratification of three
different external bias potentials (see Figure 1), which are
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gradually layered in a sequence of replicas. Here, we present
the optimal strategy that we have devised to study the
examples that we propose. This approach simply requires the
system-dependent optimization of three key parameters: the
leading bias deposition frequency PACE, the estimated energy
range to be explored BARRIER and the maximum temper-
ature to be reached TEMP_MAX. We include a total of 8
replicas per system, but the method can be trivially modified
and tuned to include a different number of replicas. OneOPES
includes two distinct enhanced sampling techniques, i.e., OPES
Explore and OPES MultiThermal, and is entirely implemented
in the popular open-source plug-in PLUMED2.61 Below, we
give an overview of the main features of each of the techniques
and then further discuss their combined use in OneOPES.
The first layer of OneOPES is represented by OPES

Explore58 that is the main simulation bias to drive transitions
and reweight trajectories. In each example, all replicas use the
same input parameters but, at variance with implementations
such as MW,43 each replica builds its own local bias potential.
OPES Explore is a recent evolution of MetaD aimed at making
the system sample a broadened target probability distribution

[ ]p P(s) (s)tg 1/ called the well-tempered distribution, where
P(s) is the unbiased marginal distribution, s are the chosen
CVs and γ is the bias factor that controls the broadening. To
achieve this, Gaussian Kernels are used to reconstruct ptg(s),
which in turn determines the bias potential V (s) through a
recursive strategy that at step n reads
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where kB is the Boltzmann constant, T the temperature set by
the thermostat, Z a normalization factor, and Gk(s, sk) is the
Gaussian kernel deposited at step k. The initial Gaussian kernel
width SIGMA is typically the standard deviation of s in the
initial basin. The bias factor is set by default through γ = ΔE/
(kBT). The regularization term ϵ is a function of ΔE through
the relation ϵ = e− ΔE/ (kBT (1−1/γ)).
The BARRIER ΔE sets a limit on the maximum amount of

bias energy that OPES can inject in the system. It should be
larger than the expected maximum free energy barrier of the
process under investigation so that the bias potential is able to
drive transitions away from and back towards the initial basin,

while it should not be too large, so that the system does not
trigger transitions to high energy states that are irrelevant to
the process of interest and may be difficult to reverse. While
setting a correct BARRIER is important, we have observed
that the performance of OneOPES is not too sensitive to this
parameter and the choice of a reasonable BARRIER value
leads to well-converged results in the diverse set of systems
studied here. As a rule of thumb for unknown systems, we
would recommend starting simulations with a low BARRIER
(e.g., 30 kJ/mol) and checking if the replicas undergo
transitions within a short simulation time (e.g., a few
nanoseconds). If they do, the chosen BARRIER is reasonable,
otherwise one can gradually increase it and repeat the process.
The frequency at which one deposits Gaussian kernels to

update the ptg(s) estimate is another significant parameter
called PACE. The OPES Explore bias potential is by
construction more coarse and changeable in time than the
one built in standard OPES.56 It was shown to guarantee a
quick and intensive phase space exploration.26,58,62 We have
found that a sensible choice is to set a PACE slower than
values typically used in other CV-based enhanced sampling
schemes (i.e., a larger PACE), of the order of thousands of
timesteps, and to attempt coordinate exchanges between
replicas on a quicker basis, in our case tenfold faster. This way,
the system is encouraged to relax in between bias deposition
updates and exchange between replicas, gaining access to new
conformations through temperature-triggered transitions.
Because of this setting, we recommend against using OPES’s
default adaptive SIGMA scheme that changes in time the
Gaussian kernels width according to the CVs’ dynamics. The
sudden appearance of different configurations can make in
some cases the sigma too large.
The second layer of OneOPES is embedded in replicas 1−7

and is represented by auxiliary OPES Explore bias potentials
applied on a number of different extra CVs. The role of these
OPES MultiCV biases is to promote transitions along
transversal DOFs. For these complementary bias potentials,
we have found that a low BARRIER and a slow PACE lead to
the best performance. As discussed in ref 48, converging a bias
potential on individual independent CV is equivalent to
converging a fully multidimensional bias, but much faster. To
maximize the effectiveness of OPES MultiCV, we recommend
choosing a diverse set auxiliary CVs that is largely decoupled
from the main CVs. In the examples, we introduce three extra
CVs, with the bias on the first one appearing in replicas 1−7,
the second one in replicas 2−7 and the third one in in replicas

Figure 1. Schematic representation of the OneOPES replica exchange method. Replica 0 only includes one OPES Explore bias potential and is the
most convergence-focused replica, while replica 7 is the most exploration-focused one as it may include both extra OPES Explore potentials on
additional CVs and OPES MultiThermal with the highest thermal excursion.
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3−7. This progressive introduction of the extra bias potentials
is not fundamental but is beneficial to the exchange rate
between replicas.
The third layer is represented by OPES MultiThermal57 that

is aimed at further improving the convergence capabilities of
the strategy in the presence of suboptimal CVs. In the
examples, it is included in replicas 4−7. By enhancing the
fluctuations of the potential energy U, OPES MultiThermal
allows the system to sample the multicanonical ensemble
corresponding to temperatures Tj with j = 1, ..., NT in the range
[Tmin, Tmax]. The free energy difference between each
temperature ΔF(Tj) is iteratively updated while the bias
potential is built. At step n, the bias potential is as follows

=
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By effectively heating and cooling the system, OPES
MultiThermal helps to overcome free energy barriers in a
similar fashion to Parallel-Tempering techniques. It is
particularly useful to accelerate the sampling along unknown
DOFs that are not taken into consideration by the CVs s. In
the examples, we update the OPES MultiThermal 100 times
faster than the main OPES Explore PACE so that the OPES
MultiThermal goes to convergence faster and grants temper-
ature-triggered transitions. An optimal temperature range must
strike a balance between being broad enough to significantly
enhance configuration sampling and not too broad to driving
the system towards unwanted high energy states.
All in all, at any given step, each replica i presents a potential

energy Ui(xi) and a total bias potential V i
TOT(xi) given by the

sum of the biases that are applied to it. If we define U̅(xi) =
U(xi) + V i

TOT(xi), swaps of coordinates between neighbouring
replicas i and j are attempted and regulated by the
Metropolis−Hastings algorithm with an acceptance of

= + +min(1, e )k T U x U x U x U x1/ ( ( ) ( ) ( ) ( ))i j i i j i j jB (3)

Large temperature intervals [Tmin, Tmax] applied directly on
replica 4 can hamper exchanges with replica 3 and act as an
exchange bottleneck. To alleviate this problem, one can use a
gradual increase in the temperature range between replicas as
we will show in some of the examples. The exchange frequency
between replicas must be typically higher than a threshold of
about 20%63 to ensure the diffusion of explorative replicas
down to convergence ones and prevent the appearance of
exchange bottlenecks. Furthermore, continuous trajectories in
which coordinate exchanges are reverted should still display a
complete sampling of the phase space. In the Supporting
Information (SI), we look into these two aspects and do not
see the appearance of exchange bottlenecks in the examples
and observe that continuous trajectories sample well the phase
space.
The combination of the OneOPES bias potentials facilitates

the creation of a double gradient along our replicas framework,
i.e., an “exploration gradient” (from 0 to 7) and a “convergence
gradient” (from 7 to 0); see Figure 1. The most explorative
replicas act as a generator of transitions between different
states, that are distilled toward the convergent replica 0. If
relevant slow DOFs are not included in the main CVs, relevant
transitions can still occur thanks to the exploratory power of
OPES MultiCV or the energy fluctuations of OPES Multi-
Thermal. These transitions allow to visit a system’s free energy
minima possibly bypassing the correct transition state region.
Therefore, the resulting free energy surface (FES) from these
calculations would reproduce well the minima, but would not
be able to reliably describe the transition state region.
Nevertheless, as we will see in the examples, the better the
CV used, the better reconstruction of the FES in all regions,
including the transition state.
Computational details. All calculations are run using the

GROMACS 2022.5 engine64 patched with the PLUMED 2.9
plugin61 with the exchange algorithm implemented in ref 47.
Further simulation details and the simulations’ computational
cost are provided in the SI. We study three standard
biophysical examples (see Figure 2): conformational changes
in Alanine dipeptide, protein-ligand binding in Trypsin-
Benzamidine, and protein folding in the Chignolin mini-
protein. To highlight the impact of using extra CVs we perform

Figure 2. Graphical depiction of the systems that we investigate with OneOPES. In (a), we show Alanine dipeptide with the ϕ and ψ dihedrals
coloured in orange and green, respectively. In (b), we present the Trypsin-Benzamidine complex, with the height z and the radius r of the funnel
that we employ as CVs coloured in blue and red, respectively. In (c), we show the Chignolin miniprotein. We superimpose the Wild-Type structure
in orange with the double mutant CLN025 that we simulate in green. The residues and the intraprotein contacts included in the HLDA CV are
displayed in the panel insets and highlighted through grey dashed lines.
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both simulations where we bias them and simulations where
we do not include them. We will call the former strategy
OneOPES MultiCV and the latter one OneOPES. Furthermore,
to compare our strategy with one of the standard enhanced
sampling techniques in the field, we include PT-WTE-MetaD
simulations tuned to replicate as closely as possible the
OneOPES ones.
In each case, we perform 5 independent simulations and

calculate the corresponding free energy difference as a function
of simulation time through reweighting, by using as a weight in
OneOPES the OPES Explore instantaneous bias or the value
of the bias normalized by the reweighting factor65 c(t) in PT-
WTE-MetaD. In the reweighting procedure, we use the most
convergence-focused replica 0, from which we discard the
initial 10% of the trajectory.
We compare the average and standard deviation of the

independent simulations free energy difference and FES with
highly converged results. In Alanine dipeptide the reference
free energy difference 8.9 ± 0.1 kJ/mol is calculated from a 100
ns OPES simulation where both the ϕ and ψ dihedral angles
are biased and a 10-block analysis is performed. In Trypsin-
Benzamidine the reference ΔF = 26.6 ± 0.3 kJ/mol is taken
from the extensive calculations presented in ref 59. In
Chignolin the reference ΔF = 3.6 ± 0.4 kJ/mol is calculated
with a 10-block analysis from the 100 μs trajectory from ref 66.
In Alanine Dipeptide, the main CV that we bias is the

suboptimal ψ angle, in Trypsin-Benzamidine we bias the
funnel67 axis z and radius r, in Chignolin we bias a harmonic
linear discriminant analysis (HLDA) CV based on six
interatomic contacts within the protein.18,68 The extra CVs

that we choose to bias are: three distances between heavy
atoms in Alanine dipeptide; three water coordination sites in
Trypsin-Benzamidine; a water coordination site, the gyration
radius and a contact between the termini in Chignolin.
Additional details about the extra CVs are provided in the SI.
The OPES Explore BARRIER parameter is 50 kJ/mol in

Alanine dipeptide and Chignolin, while it is 30 kJ/mol in
Trypsin-Benzamidine. The deposition PACE is 5000 simu-
lation steps in Alanine dipeptide, 10,000 steps in Trypsin-
Benzamidine and 100,000 steps in Chignolin. The OPES
Explore PACE determines other parameters such as the OPES
MultiThermal PACE that is set to be 100 times faster, the
replica exchange frequency that is 10 times faster and, when
present, the OPES Explore MultiCV PACE that is 2 times
slower. The BARRIER parameter on the MultiCV biases is
always 3 kJ/mol. In OPES MultiThermal, the TEMP_MAX
reached in replicas 4−7 in Alanine dipeptide is 600K, in
Trypsin-Benzamidine it is respectively [310, 330, 350, 370 K]
and in Chignolin [350, 365, 380, 400 K].
In PT-WTE-MetaD, as customary, we initially perform short

simulations to bring the WTE bias to equilibrium (see SI).
Then, we add a MetaD bias potential to all replicas on the
same CVs as OneOPES and slow down the bias deposition of
the WTE MetaD. In all simulations, a WT-MetaD is performed
on the same sub-optimal CVs as above with a Gaussian Kernels
HEIGHT of 1.5 kJ/mol, a PACE of 500 steps and a replica
exchange frequency of 10,000 steps. In Alanine dipeptide the
BIASFACTOR of the WT-MetaD on the sub-optimal CV is
20 and the thermostat in the explorative replicas is set to [357,
425, 506, 600 K]. In Trypsin-Benzamidine the BIASFACTOR

Figure 3. Alanine Dipeptide set of 5 independent simulations where we bias the suboptimal CV ψ with PT-WTE-MetaD (panels (a) and (d)),
OneOPES (panels (b) and (e)) and OneOPES MultiCV (panels (c) and (f)). In (a−c), we show the average ΔF in time between the two basins
with a dark blue, dark red and dark purple solid line and their standard deviation in semitransparent regions in light blue, light red and light purple,
respectively. ΔF values corresponding to individual simulations are shown with solid thinner lines. The expected ΔF is indicated by a dashed black
line with a tolerance error of 0.5 kBT in shaded gray. In (d−f), we show the one-dimensional FES reweighted over ϕ after 50 ns. The same colour
scheme applies as in panels (a−c).
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on the CV is 15 and the thermostat in the explorative replicas
is set to [305, 319, 334, 350 K]. In Chignolin the
BIASFACTOR on the CV is 20 and the thermostat in the
explorative replicas is set to [352, 364, 377, 390 K].

■ RESULTS
Alanine Dipeptide. Alanine dipeptide in vacuum is a

prototypical system, routinely used in the early phase of
method development.1 The system presents two conforma-
tional states that depend upon dihedral angles ϕ and ψ. In this
regard, ϕ is a nearly-ideal CV to capture the conformational
change as it distinguishes well the two states and the
corresponding transition state. Conversely, ψ is far from ideal
as it barely distinguishes the states and it is almost orthogonal
to the transition state.
At first, we perform calculations biasing ϕ to verify the

strategies’ convergence in combination with optimal CVs. All
simulations converge to the exact result within a few
nanoseconds (see Figure S1). Moreover, we notice that the
FES is well described in all regions, including the transition
state. This is not surprising and confirms that using optimal
CVs in enhanced sampling simulations, OneOPES included, is
the best route to obtain high quality well-converged results in
short simulation times.
Regrettably, optimal CVs are hard to come by in realistic

systems. To replicate the effect of using bad-quality CVs, we
perform a more demanding test on Alanine Dipeptide by
biasing the suboptimal CV ψ. In a recent paper,23 it was shown
that a 5 μs enhanced sampling simulation where the authors
biased ψ is capable of triggering just a handful of transitions

and does not reach convergence. In the same paper, a 50 ns
OPES MultiThermal simulation represents an improvement, as
it produces a converged but fairly noisy ΔF from its still
limited number of transitions.
In Figure 3 we show the free energy difference between the

two basins and the FES from five independent simulations
performed with different replica exchange methods. In panels
(a) and (d) we show the PT-WTE-MetaD results where, after
an initial phase in which the average ΔF between simulations
displays a rather large standard deviation, for a longer
simulation time it tends to roughly agree with the expected
value, albeit being slightly down-shifted. In panels (b) and (e),
we use OneOPES and observe an improved match between
mean values and exact results, with a variance between
independent simulations that shrinks in time and a mean ΔF
that gets closer to the ideal one.
Finally, in panels (c) and (f) we present the results of

OneOPES MultiCV. While the convergence in the long term is
similar to that of OneOPES, in the short term (≈10 ns) the
presence of the additional bias from the extra CVs helps all the
independent simulations to reach a mean ΔF value closer to
the expected one and that converged value is kept until the end
of the simulation. In this example, the OneOPES scheme is
able to drive the system back and forth between states and
obtain a converged FES even when coupled with ineffective
CVs. Example trajectories are provided in Figures S4−S6 in
the SI. We wish to point out that, at variance with PT-WTE-
MetaD, the instantaneous value of the bias in OneOPES tends
to reach a correct quasi-static value earlier, which in turn
guarantees a faster and more robust convergence.

Figure 4. Set of 5 independent Trypsin-Benzamidine simulations where we bias the funnel coordinates z and r67 with PT-WTE-MetaD (panels (a)
and (d)), OneOPES (panels (b) and (e)) and OneOPES MultiCV (panels (c) and (f)). In (a−c), we show the average binding ΔF in time with a
dark blue, dark red and dark purple solid line and their standard deviation in semitransparent regions in light blue, light red and light purple,
respectively. ΔF values corresponding to individual simulations are shown with solid thinner lines. The expected ΔF is taken from ref 59 and is
indicated by a dashed black line with a tolerance error of 0.5 kBT in shaded grey. In (d−f), we show the one-dimensional FES reweighted over z
after 250 ns. The same colour scheme applies as in panels (a−c).
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In all simulations we notice that, while the free energy in the
main basins closely matches the exact ones, the same is not
true for the barriers associated to the transition regions. Like in
Parallel Tempering schemes, this occurs because the transition
regions are less effectively sampled and are often skipped over
through the exchanges with the the explorative replicas. In
Figures S4−S6 in the SI, we compare the 2-dimensional FES of
replica 0 and 7 and, as expected, we notice that, when biasing
the suboptimal CV ψ, the most explorative replica 7 better
samples the transition state region.
Trypsin-Benzamidine. A more arduous test is the ligand-

binding benchmark Trypsin-Benzamidine. While this system
has been routinely used for years as a benchmark for ligand-
binding methods,67,69−81 it is far from trivial and still offers a
significant challenge. High-resolution crystallographic experi-
ments have recently demonstrated that individual water
molecules play a crucial role in the system’s binding/unbinding
process,82 so the introduction of specialized water-focused CVs
proved decisive in bringing simulations to convergence in our
recent work.59 While the information provided by such CVs is
invaluable, it is nevertheless an unfeasible task to replicate its
development and optimization in a high-throughput context.
In this paper, we pursue a different approach and we

simulate the system in combination with standard CVs that
only capture the motion of the ligand with respect to the
binding pocket and neglect the water dynamics (see SI). These
CVs are clearly not optimal for the problem at hand but
represent a more suitable option for future applications where
one wants to extract binding free energies of sufficient quality
from a number of systems, without focusing on a case-by-case
CV optimization.

The binding free energy difference and the FES from PT-
WTE-MetaD (panels (a) and (d)) show a marked shift
compared to the expected result from ref 59. In SI Figure S8b
we show the normalized bias dynamics in an example
trajectory and notice that it displays large fluctuations until it
stabilizes itself toward the end of the simulation. To investigate
if discarding more of the initial portion of the data would
improve the binding free energy estimate, we repeat the
reweighting procedure by discarding respectively 20, 40, and
60% of the trajectory and show the results in Figure S11. It is
apparent that the closest agreement with the expected free
energy is reached by discarding at least 60% of the data,
indicating that PT-WTE-MetaD simulations would eventually
provide accurate free energy estimates for this system, but, to
achieve so, they would require a rather long sampling time.
In Figure 4b,d we show the corresponding results of

OneOPES and observe a notable improvement in both the
agreement with the expected result and the speed at which it is
achieved. Figure S9b reveals that the bias here reaches a quasi-
static condition earlier in the simulation with respect to PT-
WTE-MetaD. Furthermore, the gentle phase space exploration
granted by OneOPES is crucial in systems such as Trypsin-
Benzamidine, where, on the other hand, an aggressive bias may
lead to irreversible local conformational changes and ultimately
produce incorrect free energy profiles.
A critical DOF in the Trypsin-Benzamidine binding process

is represented by the long-lived water molecules directly
affecting the binding free energy. In OneOPES such water
molecules are accelerated by OPES MultiThermal. In
OneOPES MultiCV we choose to explicitly bias the water
coordination around three relevant hydration spots among the

Figure 5. Set of 5 independent Chignolin simulations where we bias the HLDA CV18,68 with PT-WTE-MetaD (panels (a) and (d)), OneOPES
(panels (b) and (e)) and OneOPES MultiCV (panels (c) and (f)). In (a−c), we show the average folding ΔF in time with a dark blue, dark red and
dark purple solid line and their standard deviation in semitransparent regions in light blue, light red and light purple, respectively. ΔF values
corresponding to individual simulations are shown with solid thinner lines. The expected ΔF is taken from ref 66 and is indicated by a dashed black
line with a tolerance error of 0.5 kBT in shaded grey. In (d−f), we show the one-dimensional FES reweighted over the RMSD Cα after 400 ns. The
same colour scheme applies as in panels (a−c).
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ones pointed out in ref 59, i.e., one around the ligand, one
around the binding site, and one at the entrance of the water
reservoir cavity (see SI). The resulting free energies presented
in Figure 4c,e are even more accurate than the ones from
OneOPES and, remarkably, all the simulations independently
reach a converged and stable ΔF after about 100 ns.
Corresponding trajectories are shown in the SI and in Figure
S10.
Chignolin. Protein folding are complex examples to study

with CV-based enhanced sampling methods due to the
difficulty for CVs to capture processes characterised by a
sequence of intermediate metastable states.83 A further source
of complications is the fact that a protein’s folded and unfolded
states are intrinsically different, as the former is enthalpy
dominated while the latter is entropy dominated. Developing
CVs that are optimal in capturing the whole folding/unfolding
transition is a very complex task that today can be
accomplished only in the simplest cases.23

We focus on such a relatively simple case and use OneOPES
to study the folding of CLN025, a double mutant (G1Y,
G10Y) of the Chignolin miniprotein,84,85 a system largely
employed in the last decade as a benchmark to study fast-
folding proteins through both long unbiased molecular
dynamics simulations66 and more recently enhanced sampling
simulations.23,29,50,57,68,86−88 We will employ a rather simple
CV that is based on the linear combination of six interprotein
contacts whose weights are obtained through harmonic linear
discriminant analysis (HLDA)18,68 (see SI for additional
details). Following the scheme used in the previous examples,
we perform 5 PT-WTE-MetaD, OneOPES and OneOPES
MultiCV simulations, and compare their resulting free energies
with the reference one from ref 66.
As visible in Figure 5a,d, PT-WTE-MetaD simulations

converge within 0.5 kBT from the expected result in about 150
ns, but the estimated error does not shrink for a longer
simulation time and the mean folding ΔF tends to marginally
drift away from the expected value. The corresponding
OneOPES results in Figure 5b,e show analogous behaviour.
In OneOPES MultiCV, we add extra bias potentials on a

diverse set of CVs, i.e., a water coordination site, the protein
gyration radius and the contact between the termini. In Figure
5c,e, we see that the mean ΔF converges faster than PT-WTE-
MetaD and OneOPES, but it is still slightly shifted. In Figures
S12−S14 in the SI, we show typical trajectories and we point
out that the bias dynamics in all the simulations hardly reaches
a quasi-static condition and displays especially large fluctua-
tions in the PT-WTE-MetaD case (Figure S12b).
We then decide to investigate two further scenarios. In one,

we replace the HLDA CV in OneOPES with two well-known
highly suboptimal CVs for driving protein folding, i.e., the
RMSD on the Cα and the radius of gyration. The resulting free
energy results shown in Figure S15a,d in the SI display a much
noisier and less converged behaviour than those performed on
the HLDA CV. The mean ΔF between simulations has a rather
large standard deviation but it still is in qualitative agreement.
Corresponding trajectories in Figure S16 displays less unfolded
to folded events, in line with what is expected from a less
efficient CV.
The second scenario that we investigate is one where we

increase the aggressivity of OneOPES by doubling the
BARRIER parameter in OPES Explore (see SI). The resulting
folding ΔF in Figure S15b,e in the SI is in good agreement
with the expected result and does not display a shift anymore.

As expected, this setting makes the bias dynamics even more
noisy, as shown in Figure S17b. In this more aggressive case,
the use of extra CVs in OPES MultiCV does not seem to bring
any benefit (Figure S15c,f). We believe that this perhaps
counter intuitive behaviour is largely due to the shortcomings
of the HLDA CV to comprehensively capture the complexity
of protein folding and the safest route to follow would be to
craft an improved CV that includes more information about
the process.
One of the advantages of using OPES MultiThermal is

possibility to evaluate physical properties in a range of
temperatures away from the temperature set by the thermostat
through a reweighting procedure.57 Therefore, we exploit this
feature and use replica 6 from the OneOPES MultiCV
simulations on the HLDA CV to estimate the system’s folding
ΔF between 340 and 360 K (see Figure S19 in the SI).
Through this procedure, we estimate the melting temperature
of Chignolin to be 405 K ± 9 K, which is in reasonable
proximity with the value of 381 K with a 68% confidence
interval of 361−393 K from ref 66. Moreover, by performing a
linear fit of the Van’t Hoff equation ΔF = ΔH − TΔS we can
also estimate the enthalpy ΔH and entropy − TΔS of folding,
which are − 32.2 ± 3.1 kJ/mol and 27.0 ± 2.5 kJ/mol
respectively (see Table S4 for more information).

■ CONCLUSIONS
Collective variable-based enhanced sampling MD simulations
rely on optimal CVs that approximate the reaction coordinate
and encapsulate all the relevant slow DOFs so that they can
accelerate their sampling. A serious drawback of these
approaches is the effort required to define optimal CVs that
capture complex processes such as folding, the flexibility of a
receptor89,90 or the role of water at a ligand/protein’s
interface.91−101 Methods based on machine learning are
increasingly successful in providing optimal CVs, but they
need significant amount of data that is not always
available.10,12,14−29

As a result, the use of suboptimal CVs is often unavoidable.
To address this problem, we propose a novel replica-exchange
framework named OneOPES, based on the combination of the
recently developed OPES Explore and OPES MultiThermal
methods. OneOPES is able to compensate some of the CVs’
shortcomings by setting up a hierarchy of replicas in
convergence and explorative power, making out-of-equilibrium
barrier crossings occur mostly on explorative replicas and
letting configurations exchange towards convergence-focused
replicas. We have shown that OneOPES can consistently
recover the free energy of the increasingly complex examples
that we benchmarked (i.e., Alanine dipeptide, Trypsin-
Benzamidine, and Chignolin) within an error of 0.5 kBT at a
reasonable computational cost, even in combination with
suboptimal CVs. At the same time, it unlocks the possibility to
infer thermodynamical properties of the system under
investigation such as the enthalpy, the entropy, and the
melting temperature.
We emphasise that although OneOPES is very effective and

represents a significant advance over other OPES and
Metadynamics variants, we do not expect it to be miraculous
in combination with very poor quality CVs. If the CVs are not
relevant or inadequate for the problem at hand, OneOPES
would still fail to converge. Still, in combination with
reasonable CVs that distinguish the important states of the
system but are not fine-tuned (since crucial but hard-to-
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capture DOFs are missing from the chosen set of CVs) the
correct free energy landscape can be still recovered with a
reasonable amount of sampling. Furthermore, the inclusion of
a handful of extra CVs in additional perturbative biases shows a
further promising route for improvement in the speed at which
converge is reached.
We expect that the OneOPES approach will fit especially

well the study of complex biophysical phenomena, ranging
from conformational changes to ligand binding. In particular,
we believe that our results endorse OneOPES as a valuable
tool that can be safely used beyond benchmark systems in the
study of complex and so far unexplored systems whose optimal
CVs are still unknown. In venturing in this direction,
OneOPES can be easily combined with state-of-the-art
machine-learning CV design techniques, stretching to the
limit the boundary of the systems that can be studied by
modern computational techniques.

■ ASSOCIATED CONTENT
Data Availability Statement
OneOPES is implemented in PLUMED,61 from version 2.8
onward, in combination with GROMACS.47,64,102−106 The
input files to replicate all the simulations and the
corresponding analysis scripts can be found on the PLUMED
NEST repository107 https://www.plumed-nest.org/eggs/23/
011/ and on https://github.com/valeriorizzi/OneOPES.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00254.

Additional computational details on the simulations
input parameters and the free energy estimation, further
simulations with different parameters or different CVs,
analysis of the enthalpy and the entropy of folding,
discussion on the computational performance, additional
figures showing the CVs’ and the bias dynamics, and
additional tables with the replica exchange probabilities
(PDF)
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(78) Hüfner-Wulsdorf, T.; Klebe, G. Role of Water Molecules in
Protein−Ligand Dissociation and Selectivity Discrimination: Analysis
of the Mechanisms and Kinetics of Biomolecular Solvation Using
Molecular Dynamics. J. Chem. Inf. Model. 2020, 60, 1818−1832.
(79) Votapka, L. W.; Stokely, A. M.; Ojha, A. A.; Amaro, R. E.
SEEKR2: Versatile Multiscale Milestoning Utilizing the OpenMM
Molecular Dynamics Engine. J. Chem. Inf. Model. 2022, 62, 3253−
3262.
(80) Raniolo, S.; Limongelli, V. Improving Small-Molecule Force
Field Parameters in Ligand Binding Studies. Front. Mol. Biosci. 2021,
8, No. 760283.

(81) Ray, D.; Stone, S. E.; Andricioaei, I. Markovian Weighted
Ensemble Milestoning (M-WEM): Long-Time Kinetics from Short
Trajectories. J. Chem. Theory Comput. 2022, 18, 79−95.
(82) Schiebel, J.; Gaspari, R.; Wulsdorf, T.; Ngo, K.; Sohn, C.;
Schrader, T. E.; Cavalli, A.; Ostermann, A.; Heine, A.; Klebe, G.
Intriguing role of water in protein-ligand binding studied by neutron
crystallography on trypsin complexes. Nat. Commun. 2018, 9, 3559.
(83) Noé, F.; De Fabritiis, G.; Clementi, C. Machine learning for
protein folding and dynamics. Curr. Opin. Struct. Biol. 2020, 60, 77−
84.
(84) Honda, S.; Yamasaki, K.; Sawada, Y.; Morii, H. 10 Residue
Folded Peptide Designed by Segment Statistics. Structure 2004, 12,
1507−1518.
(85) Honda, S.; Akiba, T.; Kato, Y. S.; Sawada, Y.; Sekijima, M.;
Ishimura, M.; Ooishi, A.; Watanabe, H.; Odahara, T.; Harata, K.
Crystal Structure of a Ten-Amino Acid Protein. J. Am. Chem. Soc.
2008, 130, 15327−15331.
(86) Sultan, M. M.; Pande, V. S. Automated design of collective
variables using supervised machine learning. J. Chem. Phys. 2018, 149,
No. 094106.
(87) Belkacemi, Z.; Gkeka, P.; Leliev̀re, T.; Stoltz, G. Chasing
Collective Variables Using Autoencoders and Biased Trajectories. J.
Chem. Theory Comput. 2022, 18, 59−78.
(88) Paissoni, C.; Camilloni, C. How to Determine Accurate
Conformational Ensembles by Metadynamics Metainference: A
Chignolin Study Case. Front. Mol. Biosci. 2021, 8, No. 694130.
(89) D’Annessa, I.; Raniolo, S.; Limongelli, V.; Di Marino, D.;
Colombo, G. Ligand Binding, Unbinding, and Allosteric Effects:
Deciphering Small-Molecule Modulation of HSP90. J. Chem. Theory
Comput. 2019, 15, 6368−6381.
(90) Lukauskis, D.; Samways, M. L.; Aureli, S.; Cossins, B. P.;
Taylor, R. D.; Gervasio, F. L. Open Binding Pose Metadynamics: An
Effective Approach for the Ranking of Protein−Ligand Binding Poses.
J. Chem. Inf. Model. 2022, 6209.
(91) Ladbury, J. E. Just add water! The effect of water on the
specificity of protein-ligand binding sites and its potential application
to drug design. Chem. Biol. 1996, 3, 973−980.
(92) Rhee, Y. M.; Sorin, E. J.; Jayachandran, G.; Lindahl, E.; Pande,
V. S. Simulations of the role of water in the protein-folding
mechanism. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 6456−6461.
(93) Homans, S. Water, water everywhere � except where it
matters? Drug Discovery Today 2007, 12, 534−539.
(94) Juraszek, J.; Bolhuis, P. G. Rate constant and reaction
coordinate of Trp-cage folding in explicit water. Biophys. J. 2008,
95, 4246−4257.
(95) Pietrucci, F.; Marinelli, F.; Carloni, P.; Laio, A. Substrate
Binding Mechanism of HIV-1 Protease from Explicit-Solvent
Atomistic Simulations. J. Am. Chem. Soc. 2009, 131, 11811−11818.
(96) Hummer, G. Under water’s influence. Nat. Chem. 2010, 2,
906−907.
(97) Limongelli, V.; Marinelli, L.; Cosconati, S.; La Motta, C.;
Sartini, S.; Mugnaini, L.; Da Settimo, F.; Novellino, E.; Parrinello, M.
Sampling protein motion and solvent effect during ligand binding.
Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 1467−1472.
(98) Mahmoud, A. H.; Masters, M. R.; Yang, Y.; Lill, M. A.
Elucidating the multiple roles of hydration for accurate protein-ligand
binding prediction via deep learning. Commun. Chem. 2020, 3, 19.
(99) Rizzi, V.; Bonati, L.; Ansari, N.; Parrinello, M. The role of water
in host-guest interaction. Nat. Commun. 2021, 12, 93.
(100) Ansari, N.; Rizzi, V.; Carloni, P.; Parrinello, M. Water-
Triggered, Irreversible Conformational Change of SARS-CoV-2 Main
Protease on Passing from the Solid State to Aqueous Solution. J. Am.
Chem. Soc. 2021, 143, 12930−12934.
(101) Samways, M. L.; Bruce Macdonald, H. E.; Taylor, R. D.;
Essex, J. W. Water Networks in Complexes between Proteins and
FDA-Approved Drugs. J. Chem. Inf. Model. 2023, 63, 387−396.
(102) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling
through velocity rescaling. J. Chem. Phys. 2007, 126, No. 014101.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00254
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

K

https://doi.org/10.1021/acs.jctc.9b00251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00251?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1021/jacs.2c04419?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.1831273
https://doi.org/10.1063/1.1831273
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1021/jp504920s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp504920s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.1208351
https://doi.org/10.1126/science.1208351
https://doi.org/10.1073/pnas.1303186110
https://doi.org/10.1073/pnas.1303186110
https://doi.org/10.1063/1.5053566
https://doi.org/10.1063/1.5053566
https://doi.org/10.1021/ja0445950?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja0445950?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1073/pnas.1103547108
https://doi.org/10.1073/pnas.1103547108
https://doi.org/10.1073/pnas.1103547108
https://doi.org/10.1073/pnas.1424461112
https://doi.org/10.1073/pnas.1424461112
https://doi.org/10.1038/ncomms8653
https://doi.org/10.1038/ncomms8653
https://doi.org/10.1038/ncomms8653
https://doi.org/10.1016/j.bpj.2017.01.006
https://doi.org/10.1016/j.bpj.2017.01.006
https://doi.org/10.1021/acs.jctc.8b00934?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00934?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00934?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41596-020-0342-4
https://doi.org/10.1038/s41596-020-0342-4
https://doi.org/10.1038/s41467-020-16655-1
https://doi.org/10.1038/s41467-020-16655-1
https://doi.org/10.1021/acs.jctc.0c00395?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00395?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00395?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.0c00156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c00501?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/fmolb.2021.760283
https://doi.org/10.3389/fmolb.2021.760283
https://doi.org/10.1021/acs.jctc.1c00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00803?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-018-05769-2
https://doi.org/10.1038/s41467-018-05769-2
https://doi.org/10.1016/j.sbi.2019.12.005
https://doi.org/10.1016/j.sbi.2019.12.005
https://doi.org/10.1016/j.str.2004.05.022
https://doi.org/10.1016/j.str.2004.05.022
https://doi.org/10.1021/ja8030533?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5029972
https://doi.org/10.1063/1.5029972
https://doi.org/10.1021/acs.jctc.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00415?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/fmolb.2021.694130
https://doi.org/10.3389/fmolb.2021.694130
https://doi.org/10.3389/fmolb.2021.694130
https://doi.org/10.1021/acs.jctc.9b00319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b00319?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01142?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01142?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/S1074-5521(96)90164-7
https://doi.org/10.1016/S1074-5521(96)90164-7
https://doi.org/10.1016/S1074-5521(96)90164-7
https://doi.org/10.1073/pnas.0307898101
https://doi.org/10.1073/pnas.0307898101
https://doi.org/10.1016/j.drudis.2007.05.004
https://doi.org/10.1016/j.drudis.2007.05.004
https://doi.org/10.1529/biophysj.108.136267
https://doi.org/10.1529/biophysj.108.136267
https://doi.org/10.1021/ja903045y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja903045y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ja903045y?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nchem.885
https://doi.org/10.1073/pnas.1112181108
https://doi.org/10.1038/s42004-020-0261-x
https://doi.org/10.1038/s42004-020-0261-x
https://doi.org/10.1038/s41467-020-20310-0
https://doi.org/10.1038/s41467-020-20310-0
https://doi.org/10.1021/jacs.1c05301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c05301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.1c05301?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01225?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.2c01225?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.2408420
https://doi.org/10.1063/1.2408420
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00254?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(103) Parrinello, M.; Rahman, A. Polymorphic transitions in single
crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52,
7182−7190.
(104) Petersen, H. G. Accuracy and efficiency of the particle mesh
Ewald method. J. Chem. Phys. 1995, 103, 3668−3679.
(105) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.;
Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved side-chain torsion
potentials for the Amber ff99SB protein force field. Proteins: Struct.,
Funct., Bioinf. 2010, 78, 1950−1958.
(106) Sousa da Silva, A. W.; Vranken, W. F. ACPYPE -
AnteChamber PYthon Parser interfacE. BMC Res. Notes 2012, 5, 367.
(107) Bonomi, M.; Bussi, G.; Camilloni, C.; Tribello, G. A.
Promoting transparency and reproducibility in enhanced molecular
simulations. Nat. Methods 2019, 16, 670−673.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00254
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

L

https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.328693
https://doi.org/10.1063/1.470043
https://doi.org/10.1063/1.470043
https://doi.org/10.1002/prot.22711
https://doi.org/10.1002/prot.22711
https://doi.org/10.1186/1756-0500-5-367
https://doi.org/10.1186/1756-0500-5-367
https://doi.org/10.1038/s41592-019-0506-8
https://doi.org/10.1038/s41592-019-0506-8
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00254?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

