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Abstract—Sonomyography is an ultrasound-imaging-based
technique that measures muscle activity. Real-time imaging
of deep-seated muscle activity enables robust and intuitive
biomechatronic control. However, the form factor of clinical
ultrasound systems limits the practical utility of sonomyography.
Therefore, recent investigations aim towards developing wearable
ultrasound systems to utilize sonomyography for biomechatronic
interfacing. In this paper, a wearable, multiplexed sonomyog-
raphy transducer array for real-time sensing muscle activity
has been presented. The forearm-muscle activity was quantified
using a computationally inexpensive, correlation-based metric to
generate a sonomyography signal. The sonomyography signal was
then used to perform a human-computer interaction-based target
achievement task involving one degree of freedom control in real-
time. Results show that participants achieved the targets with
an average success rate of > 96% for a target width of 10%,
with minimal training. The results demonstrate the potential
of a multiplexed sonomyography system for intuitive control of
biomechatronic interfaces.

Index Terms—Sonomyography, Muscle activity sensing,
Human-machine interfaces

I. INTRODUCTION

Dexterous and intuitive control of upper extremity prosthe-
ses requires modalities that could robustly sense the volitional
movements from the residual muscles. Myoelectric prostheses
controlled by surface electromyography (EMG) signals pro-
vide control over limited degrees of freedom with conven-
tional two-site measurement [1]. Therefore, multi-channel and
high-density electromyography (HD-EMG) measurements are
employed for achieving sequential, simultaneous, proportional
control [2] over multiple degrees of freedom, and gesture
recognition using pattern recognition and machine learning
techniques [3]. The pattern recognition method assumes the
repeatability of patterns of muscle movements which could be
affected by electrode shifts, and limb positions [4], thereby
being ineffective in real-time control [5]. However, these
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systems still suffer from inherent limitations such as muscle
cross-talk, poor signal-to-noise ratio, and signal instabilities.
Additionally, EMG is incapable of measuring the activity
of the deep muscles and individual muscle groups lacking
spatial specificity. Therefore, there is a need for a wear-
able system for intuitive control of biomechatronic interfaces
such as prostheses and assistive devices. Sonomyography is
a non-invasive technique that uses ultrasound to measure
muscle activity. Brightness-mode (B-mode) ultrasound images
generated by clinical ultrasound systems allow visualization
of the activity of the deep and superficial muscle groups,
thereby providing excellent spatial specificity. The mechanical
deformation of the muscles caused due to neural activation
is an intuitive measure when quantified, as it indicates the
presence of volitional movement. B-mode ultrasound images
allow quantification of muscle deformation in real-time by
tracking muscle structures such as cross-sectional area [6],
muscle thickness [7], etc. Prior studies demonstrated gesture,
and motion classification [8], finger forces [9], joint angle [10]
estimation using B-mode systems corroborating the potential
of ultrasound to achieve biomechatronic control [11], [12].
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Fig. 1. a) Fabricated ultrasound transducer with backing layer b) CAD model
showing the arrangement of the individual components of a single transducer
c) Custom-developed 8-channel wearable sonomyography transducer array



Further, it has been shown that sonomyography-based pro-
portional control techniques may tap into the proprioceptive
feedback, thus enhancing the intuitiveness of control. To utilize
sonomyography for biomechatronic control, the form factor of
the clinical systems has to be significantly reduced. This can
be achieved by using amplitude mode (A-mode) ultrasound
signals which eliminates the need for the circuitry required to
form the B-mode images. Recently, studies reported sparse B-
mode images could achieve classification and force estimation
accuracies [13], [14] comparable to those achieved using
B-mode images. Recently, materials such as piezo-ceramic
discs and flexible Polyvinylidene Fluoride (PVDF) are being
explored to reduce the form factor of A-mode sonomyography
transducers [15], [16]. A-mode signals measured from these
transducers were mainly used to demonstrate real-time gesture
recognition. Yang et al. developed a wearable ultrasound
system [17] to demonstrate simultaneous proportional control
of hand and wrist motions offline [18] and online [19].

In this paper, real-time measurement of muscle activity
using a wearable multiplexed sonomyography system has been
presented. The wearable sonomyography system consists of
custom-developed single-element ultrasound transducers with
a form factor suitable for integration with biomechatronic
systems. The muscle activity was quantified using Pearson’s
correlation metrics to generate the sonomyography signal. This
technique utilizes an unsupervised, model-free approach, thus
obviating the need for model training. The sonomyography
signal was used to perform a target achievement task in real-
time involving proportional control over one degree of freedom
by opening and closing the hand. The following sections
detail the fabrication of a wearable sonomyography system and
experiment design to demonstrate real-time control of target
achievement task.

II. METHODS

A. Wearable sonomyography system

The wearable sonomyography system consists of the
custom-developed sonomyography transducer array and the
commercial ultrasound pulser-receiver. The wearable 8-
channel sonomyography transducer array has been developed
for sensing muscle activity. The single-element ultrasound
transducers of the array were fabricated using piezo-ceramic
discs made of Lead Zirconate Titanate (PZT) having a resonant
frequency of 3 MHz (SMD063T07R111, Steiner & Martins
Inc, USA). The backing layer was prepared by mixing 2 g of
tungsten metal powder (325 Mesh, Central Drug House (P)
Ltd., India) and 0.5 g of resin-hardener mixture (4:1 weight
ratio, Araldite-Fevitite, Pidilite Industries, India) and was
allowed to bind to the PZT. The backing layer was 3.5 mm
thick. A purely inductive matching network was connected in
parallel to the PZT to provide electrical matching. A 5µH
inductor was used to match the resonant frequency of the
PZT which has a static capacitance of 511 pF. The fabricated
ultrasound transducer with a backing layer and matching
network is shown in Fig. 1 a). The transducers were then
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Fig. 2. Experimental setup showing the participant instrumented with the
wearable sonomyography transducer array on the forearm. All the transducers
were connected to the 8-channel pulser-receiver system. The sonomyography
signal generated from the A-mode signals was mapped to the on-screen user
cursor. The participants opened and closed their hands proportionately to reach
and hold the positions of the target displayed on the computer screen

characterized using a pulse-echo setup consisting of a water-
filled container in which a 2.5 cm thick acrylic reflector was
immersed. The ultrasound transducers were placed on top of
the setup such that the front face of the PZT was parallel to the
water surface and coupled with the water using an ultrasound
gel. A commercial 8-channel ultrasound pulser-receiver system
(Leceour 8-channel US-MUX, Leceour Electronique, France)
was used to acquire A-mode signals from the ultrasound
transducers. It can acquire the A-mode signals at a sampling
rate of 80 MHz. The pulser was operated in pulse-echo mode.
For time and frequency domain characterization, the ultra-
sound transducers were excited with 90 V, 22.5 ns pulses at
a pulse repetition frequency (PRF) of 1 kHz. The bandwidth
of the transducers was approximately 470±88 kHz (n = 8).
The transducers were then arranged within the enclosures
shown in Fig. 1 b) and were sewn to the velcro band with
an inter-transducer distance of 2 cm to form the wearable
sonomyography transducer array shown in Fig. 1 c).

B. Experiment setup and A-mode signal pre-processing

The subjects were seated comfortably in a chair with their
hand placed on the handrest. The hand was restrained at
the wrist using a cuff. The wearable sonomyography trans-
ducer array was placed around the forearm of the subjects
approximately 5 cm away from the elbow in order to capture
ultrasound signals from the muscle belly. All the transducers
were connected to the 8-channel pulser-receiver system. The
pulser was set to emit pulses with an amplitude of 90 V and
pulse width of 22.5 ns. The pulse repetition frequency (PRF)
was set to 15 kHz to detect the muscle activity from up to a
depth of 5 cm. This resulted in a received A-mode signal length
of 4000 points. The A-mode signals from all the channels
were streamed into a custom-developed MATLAB (Version
2022b, Mathworks Inc., Natick MA, USA)) interface. Time-
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Fig. 3. Block diagram showing the steps involved in the generation of
sonomyography signal

gain compensation (TGC) was provided to the received A-
mode signals by setting a linearly varying gain from 25 dB to
50 dB. After TGC, the A-mode signal envelope was extracted
using the Hilbert transform and the envelope was smoothed
using a moving average filter having a window length of
25 samples. The pre-processed A-mode signals from all the
channels were concatenated to form an 8 × 4000 sparse
ultrasound image frame. Three consecutive sparse ultrasound
frames were averaged to smooth the frames over time. The
resulting time-averaged sparse ultrasound images were used
to generate the sonomyography signal required to perform the
online target-achievement task displayed to the subjects on a
computer screen. The experiment setup is shown in Fig. 2.

C. Experimental protocol

1) Subjects: Five able-bodied subjects with no neuromus-
cular disorders participated in the study. The study protocols
were approved by the Institute Ethics Committee (IEC) at
the Indian Institute of Technology Delhi (IITD IEC no:
P021/P050). All the subjects provided informed consent to
participate in the study. The subjects were informed of the
experiment protocol and performed at least one session to get
familiarized with the task.

2) Experiment: The experiment session consisted of three
stages as described below:

• User training: The subjects were prompted to rest for 30 s
and to close their hand for 30 s via on-screen text. The
pre-processed sparse ultrasound signals corresponding to
the resting and closed states were stored as reference
signals and were used for the rest of the session.

• User calibration: The sonomyography signal was gen-
erated by calculating the correlation coefficient between
incoming sparse A-mode signals and the reference signals
described in section II-D. The subjects were prompted to
rest and close their hand thrice for a duration of 10 s and
the sonomyography signal was plotted on the screen for

visualization. The final levels of the sonomyography sig-
nal corresponding to the rest and open states were saved
as the lower and upper normalization bounds respectively.
The range of the sonomyography signal obtained in the
calibration was derated by 10 % in order to minimize
fatigue due to repeated maximal contractions.

• Online target achievement task: The user interface con-
sists of a target and a user-controllable cursor. The targets
are presented randomly at five levels from 0 to 1 in steps
of 0.2 for 15 s with a 10 s rest duration after every target.
The sonomyography signal was again calculated in real-
time during the task and the normalized sonomyography
signal was directly mapped to the position of the user
cursor. The user cursor was mapped to 0 when the subject
was at rest and was mapped to 1 when the subject com-
pletely closed their hand. The subjects proportionately
closed their hand to reach the target levels between [0,1].
The subject had to reach the target levels and stay within
the target as long the target remained on the screen. The
thickness of the target (target width, W ) was set to 5 %,
10 %, and 15 % of the normalized range to modulate
the difficulty of the tasks. To compensate for the effects
of fatigue and transducer shift the normalization bounds
of the sonomyography signal were dynamically updated
using the dynamic bound update algorithm detailed in the
section II-D.

D. Generation of sonomyography signal

The A-mode signals received from all the transducers were
pre-processed and were concatenated to form an 8 × 4000
sparse ultrasound frame. Pearson’s correlation coefficients
between the incoming frame and the rest, the hand-closed
reference frames acquired during user training, were calculated
(see Section II-C2). The sonomyography signal is calculated
as in equation 1,

S =
(1− Cr)

(1− Cr) + (1− Cm)
(1)

Here, Cr is the computed correlation coefficient of the in-
coming frame with the rest reference frame and Cm is the
computed correlation coefficient of the incoming frame with
the motion reference frame. The sonomyography signal, S, is
normalized using the lower and upper bounds l, u obtained
during user calibration. The bounds l, u were dynamically
updated using the algorithm 1. The upper and lower bounds
were initialized to the bounds obtained during calibration and
were continuously updated for every incoming sample. The
coefficient α was set to 0.01 and 0.002 for user calibration
and for the online task, respectively. The choice of α was
experimentally determined to eliminate the effects of drift in
the baseline references.

E. Online performance metrics

The task performance of the subjects was evaluated based
on the following metrics:
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Fig. 4. Trajectories of one representative subject during all three trials of five target positions with a target width of 10%

Algorithm 1: Dynamic bound update

Input: Upper bound u, lower bound l, current
sonomyography value c

Output: Upper bound u, lower bound l

if c < l then
l = (c+ l)/2.

else if c > u then
u = (c+ u)/2

else
if |l − c| < |u− c| then

l = (1− α)l + αc
else

u = (1− α)u+ αc
end

end
return u, l

• Success rate: It is the percentage of the number of
successful trials to the total number of trials. A trial
was considered successful only if the subject reached the
target position and stayed within the target bounds (W )
for a continuous period of at least 2 seconds.

• Movement time: It is the time (in seconds) taken to reach
the target successfully measured from the presentation of
the target to the time to settle within the target bounds
(W ).

• Fitt’s law analysis: The combination of the different target
widths and target positions can be assigned different
levels of difficulty given by the Index of difficulty (ID).
Fitt’s assessment provides the relationship between the
index of difficulty and movement time. The index of
difficulty is calculated as

ID = log2

(∣∣∣∣DW
∣∣∣∣+ 1

)
(2)

Here D is the target position and W is the target width.

III. RESULTS

Fig. 4. shows all the successful trajectories achieved by
one representative subject. The figure shows the three trials

of targets presented at five different positions. The trajectories
demonstrate the ability of the subject to achieve the target
irrespective of the target position accurately. The subjects
reached the minimum and maximum targets positions in less
time compared to the intermediate positions. The targets at
the intermediate positions required fine control from the sub-
jects while adapting to the responsiveness of the user cursor.
Therefore, several overshoots and undershoots were seen in
the trajectory.

A. Online performance assessment

The success rate with three different target widths (W ) was
calculated for all subjects. Fig. 5 shows the average success
rate achieved by all the subjects. An average success rate of
62±18% was obtained with a target width of 5 % , 96±6,%
with target width of 10 % , and 98 ± 3% with a target width
of 15 %. was achieved.
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Fig. 5. Average success rate achieved by all subjects with three different
target widths

The index of difficulty was calculated for all the com-
binations of target positions and target widths. The ID and
movement time from successful trials of all subjects is plotted
in Fig. 6. The mean movement time increases with increasing
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Fig. 6. Plot showing the relationship between the index of difficulty and
movement time. Movement time increased as the difficulty of the task
increased.

task difficulty as predicted by Fitt’s law for human-computer
interaction tasks [20]. A regression analysis was performed
of the mean movement times versus the index of difficulty
(R2= 0.595). Fitt’s throughput was found to be 0.75 bits/s.
The movement time intercept (y-axis intercept) was found to
be 2.17 s.

IV. DISCUSSION

Real-time measurement of muscle activity using A-mode
signals from the wearable, multiplexed sonomyography ar-
ray has been presented. The method presented in this work
uses correlation coefficients to quantify muscle activity. The
resulting sonomyography signal was used to control an online
human-computer target achievement task involving one degree
of freedom by opening and closing the hand. The difficulty
of the task was modulated by varying the target position as
well as the width of the target. The index of difficulty of the
targets with a width of 5 % is higher and needs fine control
from the subjects to stay within the allowable error bounds.
Hence, the success rate for 5 % target width is lower than
10 % , 15 % which have comparatively larger allowable error
bounds. Therefore, It was noticed that the success rate in target
achievement improved with an increase in target width, with
success rates higher than 90% for target widths of 10 % and
15 %.

The responsiveness of the subjects with respect to the
difficulty of the task can be seen in Fig. 6. The nearer targets
with higher widths (low ID) resulted in small movement
times, while targets with higher indices of difficulty resulted
in higher movement times. The inherent system response time
given by the y-intercept was 2.17 s, which indicates a higher
reaction time compared to previously reported sonomyography
systems [11]. A throughput of 0.75 bits/s was achieved, which
is lower than that reported by Dhawan et. al. [11]. The higher
reaction time and lower throughput can be attributed to the

limited signal-to-noise ratio of A-mode signals compared to
B-mode ultrasound images. To mitigate these issues, post-
processing filtering may have introduced delays which resulted
in increased movement times.

The proposed method has a few limitations. Though the
correlation-based method is computationally inexpensive com-
pared to model-based approaches, the computed sonomyogra-
phy signal could be affected by limb movements. This method
requires re-training and calibration every time the wearable
system is donned. Therefore, machine-learning techniques will
be employed in future work to improve the control ability and
robustness of the wearable system.

V. CONCLUSION

A wearable sonomyography system with a multiplexed
pulser-receiver system is presented in this work. The wearable
transducer array was placed on the forearm of able-bodied
individuals in order to detect muscle activity. Results show that
the system is capable of fine, dexterous control of a human-
computer interface.
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