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Experimental validation of the free-energy
principle with in vitro neural networks

Takuya Isomura 1 , Kiyoshi Kotani2, Yasuhiko Jimbo3 & Karl J. Friston 4,5

Empirical applications of the free-energy principle are not straightforward
because they entail a commitment to a particular process theory, especially at
the cellular and synaptic levels. Using a recently established reverse engi-
neering technique, we confirm the quantitative predictions of the free-energy
principle using in vitro networks of rat cortical neurons that perform causal
inference. Upon receiving electrical stimuli—generated by mixing two hidden
sources—neurons self-organised to selectively encode the two sources. Phar-
macological up- and downregulation of network excitability disrupted the
ensuing inference, consistent with changes in prior beliefs about hidden
sources. As predicted, changes in effective synaptic connectivity reduced
variational free energy, where the connection strengths encoded parameters
of the generative model. In short, we show that variational free energy mini-
misation can quantitatively predict the self-organisation of neuronal networks,
in terms of their responses and plasticity. These results demonstrate the
applicability of the free-energy principle to in vitro neural networks and
establish its predictive validity in this setting.

Elucidating the self-organising principles of biological neural networks
is one of the most challenging questions in the natural sciences, and
should prove useful for characterising impaired brain function and
developing biologically inspired (i.e., biomimetic) artificial intelli-
gence. According to the free-energy principle, perception, learning,
and action—of all biological organisms—can be described as minimis-
ing variational free energy, as a tractable proxy for minimising the
surprise (i.e., improbability) of sensory inputs1,2. By doing so, neuronal
(and neural) networks are considered to perform variational Bayesian
inference3. (Table 1 provides a glossary of technical terms used com-
monly in the free-energy principle and active inference literature). This
inference follows from treating neuronal dynamics as a gradient flow
on variational free energy, which can be read as a form of belief
updating about the network’s external milieu. The free energy in
question is a function of a generative model that expresses a hypoth-
esis about how sensory data are generated from latent or hidden
states. However, to apply the free-energy principle at the cellular and

synaptic levels, it is necessary to identify the requisite generative
model that explains neuronal dynamics (i.e., inference) and changes in
synaptic efficacy (i.e., learning).

The activity of neurons has also been modelled with realistic
spiking neuron models4–6 or reduced rate coding models7. Moreover,
synaptic plasticity—that depends on the firing of pre- and postsynaptic
neurons8–12—has been modelled as Hebbian-type plasticity rules13–15.
Although a precise link between the equations that underwrite these
models—derived from physiological phenomena—and the corre-
sponding equations from the free-energy principle has not been fully
established, we recently identified a formal equivalence between
neural network dynamics and variational Bayesian inference16–18. Spe-
cifically, we reverse-engineered a class of biologically plausible cost
functions—for canonical neural networks—and showed that the cost
function can be cast as variational free energy, under a class of well-
knownpartially observableMarkovdecisionprocess (POMDP)models.
This suggests that any (canonical) neural network, whose activity and
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plasticity minimise a common cost function, implicitly performs var-
iational Bayesian inference and learning about external states. This
‘reverse engineering’ approach—guaranteed by formal equivalence—
allows us, for the first time, to identify the implicit generative model
from empirical neuronal activity. Further, it can precisely link quan-
tities in biological neuronal networkswith those in variational Bayesian
inference. This enables an experimental validation of the free-energy
principle, when applied to these kinds of canonical networks.

Having said this, the free-energy principle is sometimes con-
sidered to be experimentally irrefutable in the sense that it can
describe any observed biological data19. However, when applying the
free-energy principle to a particular system, one can examine its pre-
dictive validity by asking whether it can predict systemic responses18.
This offers a formal avenue for validation and application of the free-
energy principle. To establish predictive validity, one needs tomonitor
the long-term self-organisation of neuronal networks and compare
their dynamics and architecture with theoretical predictions.

To pursue this kind of validation, we used a previously established
microelectrode array (MEA) cell culture system for the long-term
monitoring of the self-organisation of in vitro neural networks20,21. We
have used this setup to investigate causal inference in cortical cells
obtained from rat embryos22,23. Causal inference is a simple form of
Bayesian inference; namely, inferring and disentangling multiple cau-
ses of sensory inputs in the sense of blind source separation24–26.
Although blind source separation is essential to explain the cocktail
party effect—the ability of partygoers to distinguish the speech of one
speaker from others in a noisy room27,28—its precise neuronal
mechanisms have yet to be elucidated. We previously demonstrated
that, upon receiving sensory stimuli, some populations of neurons in
in vitro neural networks self-organised (or learned) to infer hidden
sources by responding specifically to distinct causes22. Subsequently,
we showed that this sensory learning is consistent with variational free
energyminimisationunder a POMDPgenerativemodel23. These results
—and related in vitro work29–35—speak to the tractability and stability of
this neuronal system, making it an ideal tool for examining theoretical
predictions in a precise and quantitative fashion.

In the present work, we attempted an experimental validation of
the free-energy principle by showing that it predicts the quantitative
self-organisation of in vitro neural networks using an established
in vitro causal inference paradigm. Henceforth, we will refer to in vitro

neural networks as neuronal networks and reserve the term neural
network for an in silico model. We reverse-engineered an implicit
generative model (including prior beliefs), under which a neuronal
network operates. We subsequently demonstrated that the free-
energy principle can predict the trajectory of synaptic strengths (i.e.,
learning curve) as well as neuronal responses after learning, based
exclusively on empirical neuronal responses at the beginning of
training.

Using pharmacological manipulations, we further examined
whether the change in baseline excitability of in vitro networks was
consistent with the change in prior beliefs about hidden states (i.e., the
state prior), confirming that priors over hidden states are encoded by
firing thresholds. These results demonstrate that the self-organisation
of neuronal networks can be cast as Bayesian belief updating. This
endorses the plausibility of the free-energy principle as an account of
self-organisation in neural and neuronal networks. We conclude by
discussing possible extensions of our reverse engineering approach to
in vivo data.

Results
Equivalence between canonical neural networks and varia-
tional Bayes
First, we summarise the mathematical (or natural) equivalence
between canonical neural networks and variational Bayesian inference,
which enables one to apply the free-energy principle to predict
empirical data. In this work, we adopted an experimental setup that
could be formulated as a simple POMDP generative process that does
not exhibit state transitions (Fig. 1a). Here, two binary hidden sources
s = s1,s2
� �T were sampled at random from a prior categorical dis-

tribution D = D1,D0

� �T in a mutually independent manner, where D1

and D0 are prior expectations that satisfy D1 +D0 = 1. Then, 32 sensory
inputs o = o1, . . . ,o32

� �T were generated from s with a categorical dis-
tribution characterised by a mixing matrix A. Each element of s and o
took either a 1 (ON) or a 0 (OFF) state. The left stimuli group
(o1, . . . ,o16) in Fig. 1a (left) took the value of source 1 with a 75% prob-
ability or the value of source 2 with a 25% probability. In contrast, the
right group (o17, . . . ,o32) took the value of source 1 or 2 with a 25% or
75% probability, respectively. Analogous to the cocktail party
effect27,28, this setup is formally homologous to the task of distin-
guishing the voices of speakers 1 (s1) and 2 (s2) based exclusively on

Table 1 | Glossary of terms

Expression Description

Free-energy principle (FEP) A principle that can be applied to perception, learning, and action in biological organisms. Technically, the FEP is a
variational principle of least action that describes action and perception as, effectively, minimising prediction errors.

Variational Bayesian inference An approximate Bayesian inference scheme that minimises variational free energy as a tractable proxy for—or bound
on—surprise. Minimising surprise is equivalent to maximising the evidence for a generative model. In machine
learning, variational free energy is known as an evidence bound.

Prior belief Probabilistic beliefs about unobservable variables or states prior to receiving observations, denoted as P ϑð Þ:
(Approximate) Posterior belief (Approximate) Bayesian belief about unobservable variables or states after receiving observations, denoted

as Q ϑð Þ ≈P ϑ∣oð Þ:
Likelihood The likelihood of an observation given unobservable states, denoted as P o∣ϑð Þ.
Generative model Probabilisticmodel that expresses how unobservable states generate observations, defined in terms of the likelihood

and prior beliefs P o, ϑð Þ=P o∣ϑð ÞP ϑð Þ:
Surprise The surprisal or self-information, which scores the improbability of an observation under a generativemodel: defined

as �lnP oð Þ= � ln
R
P o, ϑð Þdϑ� �

: Here, P oð Þ is known as the marginal likelihood or model evidence. It is called the
marginal likelihood because it marginalises over the unknown causes an observation.

Variational free energy An upper bound on surprise—or the negative of an evidence lower bound (ELBO)—defined as
F = EQ ϑð Þ �lnP o, ϑð Þ+ lnQ ϑð Þ½ �, where EQ ϑð Þ �½ � denotes the expectation over Q ϑð Þ:

Bayesian belief updating The process of using observations to update a prior belief to a posterior belief. Usually, in biomimetic schemes, belief
updating uses variational Bayesian inference, where neuronal dynamicsperformagradient descent on variational free
energy.

Partially observable Markov decision pro-
cess (POMDP)

A generic generative model that expresses unknown causes of observations in terms of discrete state spaces and
categorical distributions.
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mixed auditory inputs (o), and in the absence of supervision. Here, the
mixing (a.k.a., likelihood) matrix (A) determines the mixing of the two
voices, and the prior (D) corresponds to the frequency or probability
of each speaker generating speech. Hence, neurons must unmix sen-
sory inputs into hidden sources to perceive the underlying causes.
Please refer to theMethods section ‘Generative process’ for the formal
expression in terms of probability distributions.

In this work, we considered that in vitro neurons can bemodelled
as a canonical neural network comprising a single feed-forward layer of
rate coding models (Fig. 1b, top left)16. We considered two distinct
ensembles of neurons. Upon receiving sensory inputs o, these neurons

computed the weighted sum of sensory inputs weighted by a synaptic
strengthmatrixW to generate a response (firing intensity) x = x1,x2

� �T.
This canonical neural network has a certain biological plausibility
because it derives from realistic neuron models4–6 through some
approximations17; further, itsfixedpoint equips the rate codingmodel7

with the widely used sigmoid activation function, also known as a
neurometric function36. We will show below that this canonical neural
network is a plausible computational architecture for neuronal net-
works that receive sensory stimuli.

Previous work has identified a class of biologically plausible cost
functions for canonical neural networks that underlie both neuronal

Fig. 1 | Reverse engineering of the generative model from empirical data. In
a–c, panels on the left-hand side depict neural (and neuronal) network formation,
while panels on the right-hand side depict variational Bayes formation.
a Schematics of the experimental setup (left) and corresponding POMDP gen-
erative model (right). Two sequences of independent binary hidden sources gen-
erate 32 sensory stimuli through a mixing matrix A, which were applied into
cultured neurons on an MEA as electrical pulses. Waveforms at the bottom repre-
sent the spiking responses to a sensory stimulus (red line). The diagram on the
right-hand side depicts the POMDP scheme expressed as a Forney factor graph67–69.
The variables in bold (e.g., st ) denote the posterior beliefs about the corresponding
variables in non-bold italics (e.g., st ). b Equivalence between canonical neural
networks and variational Bayesian inference. See the main text and Methods for

details. c Procedure for reverse engineering the implicit generative model and
predicting subsequent data. (1) The neuronal responses are recorded, and (2) the
canonical neural network (rate coding model) is used to explain the empirical
responses. (3) The dynamics of the canonical neural network can be cast as the
gradient descent on a cost function. Thus, the original cost function L can be
reconstructed by taking the integral of the network’s neural activity equation. Free
parameters ϕ are estimated from the mean response to characterise L. (4) Identi-
fication of an implicit generative model and the ensuing variational free energy F
using the equivalence of functional forms in Table 2. (5) The synaptic plasticity rule
is derived as a gradient descent on variational free energy. (6) The obtained plas-
ticity scheme is used to predict self-organisation of neuronal networks. The details
are provided in Methods and have been described previously16–18.
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responses and synaptic plasticity16,17. This cost function can be
obtained by simply calculating the integral of the neural activity
equation (Fig. 1b, middle left; see the Methods section ‘Canonical
neural networks’ for details). The reconstructed neural network cost
function L is biologically plausible because both neuronal responses
and synaptic plasticity equations can be derived as a gradient descent
on L. The ensuing synaptic plasticity rule has a biologically plausible
form, comprising Hebbian plasticity13, accompanied by an activity-
dependent homeostatic plasticity37 (Fig. 1b, bottom left).

Variational Bayesian inference casts belief updating as revising a
prior belief to the corresponding (approximate) posterior belief based
on a sequence of observations. The experimental setup considered
here is expressed as a POMDP generative model38,39. The inversion of
this model—via a gradient descent on variational free energy—corre-
sponds to inference. In other words, the generative model generates
sensory consequences from hidden causes (i.e., two sources), while
model inversion (i.e., inference) maps from sensory consequences to
hidden causes (Fig. 1a, right). Variational free energy F is specified by
the sensory input and probabilistic beliefs about hidden states under a
generativemodel.Minimisation of variational free energy,with respect
to these beliefs, yields the posterior over hidden states st (Fig. 1b, top
right) and parameters A (Fig. 1b, bottom right), realising Bayesian
inference and learning, respectively. The explicit forms of posterior
beliefs are described in the Methods section ‘Variational Bayesian
inference’.

Crucially, previous work has shown that the neural network cost
function L can be read as variational free energy F16,17. This equivalence
allows us to identify the physiological implementation of variational
Bayesian inference by establishing a one-to-one mapping between
neural network quantities and the quantities in Bayesian inference, as
summarised in Table 2. Namely, neural activity (x) of the canonical
neural networks corresponds to the posterior expectation about the
hidden states (s), synaptic strengths (W ) correspond to the posterior
expectation about the parameters (A), and firing threshold factors (ϕ)
correspond to the initial state prior (D). These mappings establish a
formal relationshipbetween aneural network formulation (Fig. 1b, left)
and a variational Bayesian formulation (Fig. 1b, right). In summary, the
neural activity and plasticity of canonical networks that minimise a
common cost function perform variational Bayesian inference and
learning, respectively.

This notion is essential because, by observing neuronal responses,
we can reverse engineer the implicit generative model—under which
theneuronal network operates—fromempirical neuronal responses, to
characterise the neuronal network in terms of Bayesian inference
(Fig. 1c)18. Perhaps surprisingly, using the reverse engineering techni-
que, if one can derive the neural activity equation from experimental
data (Fig. 1c, steps 1,2), it is possible to identify the generative model
that the biological system effectively employs (steps 3,4). This allows
one to link empirical data to quantities in variational Bayesian

inference. Subsequently, by computing the derivative of variational
free energy under the generative model, one can derive the synaptic
plasticity predicted theoretically (step 5). In short, if one has initial
neuronal response data, one can predict how synaptic plasticity will
unfoldover time. Thismeans that if the free-energyprinciple applies, it
will predict the self-organisation of neuronal networks (step 6).

The virtue of the free-energy principle is that it lends an explain-
ability to neuronal network dynamics and architectures, in terms of
variational Bayesian inference. Given this generative model, the free-
energy principle provides qualitative predictions of the dynamics and
self-organisation of neuronal networks, under the given experimental
environment. In other words, because neuronal responses and
synaptic plasticity are expected to minimise variational free energy by
exploiting the shortest path (i.e., a geodesic or path of least action) on
the free energy landscape, this property in turn enables us to theore-
tically predict a plausible synaptic trajectory (i.e., activity-dependent
plasticity).

In the remainder of this paper, we examine the plausibility of
variational free energy minimisation as the mechanism underlying the
self-organisation of neuronal networks. We will compare the empirical
encoding of the sources of sensory inputs with a synthetic simulation
of ideal Bayesian encoding, and investigate whether variational free
energyminimisation can predict the neuronal responses and plasticity
of in vitro networks.

Consistency between in vitro neural networks and varia-
tional Bayes
In this section, we verify some qualitative predictions of the free-
energy principle when applied to our in vitro neural networks in terms
of response selectivity (i.e., inference), plasticity (i.e., learning), and
effects of pharmacological manipulations on inference and sub-
sequent learning. Using our in vitro experimental setup20,21, cortical
cells obtained from rat embryos were cultured on anMEA dish with 64
microelectrodes on its floor (Fig. 1a, left). Each electrode was used to
deliver electrical stimuli and record the spiking response. After
approximately 10 days in culture, the neurons self-organised into a
network and exhibited spontaneous activity, with clear evoked
responses to electrical stimuli. Neurons were stimulated with the
above-constructed patterns of sensory inputs (see the preceding sec-
tion), comprising 32 binary sensory inputs (o) that were generated
from two sequences of independent binary hidden sources (s) in the
manner of the POMDP generative model above (Fig. 1a, right). When a
sensory input took the value of 1, an electrical pulse was delivered to
the cultured neurons. The 32 stimulation electrodes were randomly
distributed over 8 × 8MEAs in advance and fixed over training. Evoked
extracellular activity (i.e., the early neuronal response) was recorded
from64MEAelectrodes. Each session lasted 256 s, inwhich a 256-time-
step sequence of random stimulations was delivered every second,
followed by a 244-s resting period. The training comprised

Table 2 | Correspondence of variables and functions

Neural network formation Variational Bayes formation

Neural network cost function L()F Variational free energy

Sensory stimuli ot()ot Observations

Neural response xt
xt

� �
()st

State posterior

Synaptic strengths Wl()sig�1 A1l

� �
Parameter posterior

Threshold factor
ϕ :=

ϕ1
ϕ0

� �
()lnD

State prior

Firing threshold hl = ln bWl
~1+ϕl()lnA0l �~1 + lnDl

Initial synaptic strengths λWl � bW init

l ()a1l
Parameter prior

Bold case variables (e.g., st) denote theposterior expectations of thecorresponding italic case randomvariables (e.g., st); bWl := sig Wl

� �
is the sigmoid functionofWl in the elementwise sense (l = 0,1);

W init
l is the initial value ofWl ; and λWl is the inverse learning rate factor that expresses the insensitivity of synaptic strengths to plasticity. Please refer to previous work16,17 for details.
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100 sessions, each of which was an identical repetition of the 256
s-long random sequence.

Upon electrical simulation—generated by the mixture of the two
hidden sources—ourpreviouswork showed the emergenceof selective
neuronal responses to either of the two sources22,23. Response intensity
was defined as the number of spikes 10–30ms after a stimulation
(Fig. 2a) following the previous treatment22 (see Supplementary Fig. 1a
for other electrodes). This is because a large number of spikes—
induced by synaptic input—were observed during that period, while
most directly evoked action potentials (which were not the subject of
our analyses) occur within 10ms after stimulation40. The recorded
neuronal responses were categorised into source 1- and source
2-preferring and no-preference groups, depending on the average
response intensity, conditioned upon the hidden source (Fig. 2b). Note
that each electrode can record spiking responses from one or more
neurons. Learning was quantified as the emergence of functional
specialisation for recognising particular sources. The response inten-
sity of the source 1-preferring neurons changed during the training
period to exhibit a strong response selectivity to source 1 (Fig. 2c, left).
These neurons self-organised to fire at a high level when source 1 was
ON, but had a low response rate when source 1 was OFF. Similarly,
source 2-preferring neurons self-organised to respond selectively to
source 2 during training (Fig. 2c, right). These changes were inhibited
by N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-
phosphonopentanoic acid (APV) to a certain degree (Fig. 2d), indi-
cating that the observed self-organisation depends on NMDA-
receptor-dependent plasticity. These results indicate the occurrence
of blind source separation at a cellular level—through activity-
dependent synaptic plasticity—supporting the theoretical notion that
neural activity encodes the posterior belief (i.e., expectation) about
hidden sources or states1,2.

Given the consistency between source-preferring neuronal
responses and state posterior, one can then ask about the neuronal
substrates for other quantities in variational Bayesian inference. In
light of the above, we modelled neuronal networks using a canonical
neural network, comprising a single feed-forward layer (Fig. 1b, top
left). As noted above, this neural network acts as an ideal Bayesian
observer, exhibiting Bayesian belief updating under a POMDP gen-
erative model (Fig. 1b, top right), where the firing threshold encodes a
prior over initial states (Table 2)16,17. Thus, this in silicomodel can learn
to detect hidden sources successfully when the implicit state prior
matches that of the true generative process (in this case, D1 = 0:5;
Fig. 2e, middle). Conversely, both upregulation (D1 = 0:8; Fig. 2e, right)
and downregulation (D1 = 0:2; Fig. 2e, left) of the state prior sig-
nificantly disrupted this sensory learning (Fig. 2f). These simulations
used the same empirical stimuli applied to neuronal networks. Hence,
if this canonical neural network is an apt model for neuronal networks,
the firing threshold (i.e., baseline excitability) of the neuronal network
should encode the state prior, and changes in baseline excitability
should disrupt the inference and ensuing sensory learning.

To examine this hypothesis, we asked whether pharmacological
modulations of the baseline excitability of in vitro networks induce the
same disruptions of inference as the alterations in the state prior in the
in silico network. Pharmacological downregulation of gamma-
aminobutyric acid (GABA)-ergic inputs (using a GABAA-receptor
antagonist, bicuculline) or its upregulation (using a benzodiazepine
receptor agonist, diazepam) altered the baseline excitability of neu-
ronal networks. These substances were added to the culture medium
before the training period and were therefore present over training.
Average response levels were higher in bicuculline-treated cultures
than in control cultures. Conversely, diazepam-treated cultures
exhibited lower response levels, but retained sufficient responsiveness
to analyse response specificity. Crucially, alterations in neuronal
responses—and subsequent learning—were observed when we phar-
macologically modulated the GABAergic input level (Fig. 2g). We

observed that both hyper-excitability (Fig. 2g, right) and hypo-
excitability (Fig. 2g, left) significantly suppressed the emergence of
response specificity at the cellular level (Fig. 2h). This disruption of
learning was observed both for source 1- and 2-preferring neuronal
responses.

Effective synaptic connectivity analysis suggested that a certain
amount of plasticity occurred even in the presence of bicuculline or
diazepam (Supplementary Fig. 1b). The difference was observed in the
specificity of connectivity emerging during the training period (Sup-
plementary Fig. 1c). Here, the specificity was characterised with a gap
in the contribution of a sensory electrode to sources 1- and
2-preferring units. While the specificity increased in all groups, it was
significantly inhibited in the presence of bicuculline or diazepam.

Remarkably, our in silico model—under ideal Bayesian assump-
tions—could predict the effects of this GABAergic modulation on
learning using a simple manipulation of the prior belief about hidden
states (please compare Fig. 2e, f with Fig. 2g, h). This involved setting
the prior expectations so that sensory causes were generally present
(analogous to the GABAergic antagonist effect) or generally absent
(analogous to the agonist effect). Physiologically, this corresponds to
increasing and reducing the response intensity, respectively, which is
consistent with the effects of these pharmacological manipulations on
baseline activity. In terms of inference, this manipulation essentially
prepares the network to expect the presence or absence of an object
(i.e., a hidden source) prior to receiving sensory evidence. The key
notion here is that this simple manipulation was sufficient to account
for the failure of inference and subsequent learning, as evidenced by
the absence of functional specialisation. Thus, changes in the prior
(neuronal) representations of states provide a sufficient explanation
for aberrant learning.

In summary, the emergence of response specificity observed
under normalnetwork excitabilitywasdisruptedbypharmacologically
induced hyper- or hypo-excitability of the network. The canonical
neural network (i.e., ideal Bayesianobserver) predicted theseempirical
effects—of the agonist and antagonist—by reproducing the hypo-
excitability (diazepam) condition, analogous to the prior belief that
sources are OFF (‘nothing there’), or by the hyper-excitability (bicu-
culline) condition, analogous to the prior belief that sources are pre-
sent (ON). In either case, in vitro and in silico networks failed to
perform causal inference, supporting our claim that the failure can be
attributed to a biased state prior, under which they operated. These
results corroborate the theoretical prediction that the firing threshold
is the neuronal substrate of the state prior16,17, validating the proposed
equivalence at the cellular level. This further licences an interpretation
of neuronal network dynamics in terms of Bayesian inference and
learning.

The free-energy principle predicts learning in neuronal
networks
In this section, we examine the predictive validity of the free-energy
principle by asking whether its application to neuronal networks can
predict their self-organisation. We considered that the neuronal
responses of source 1- and source 2-encoding ensembles in each
in vitro networks are represented by their averaged response intensity
and refer to themas x1 and x2, where the offset was subtracted, and the
value was normalised in the range between 0 and 1. We thenmodelled
the neuronal responses of in vitro networks in the form of a canonical
neural network and estimated the requisite synaptic strengths W (i.e.,
effective synaptic connectivity) by fitting empirical neuronal respon-
ses to themodel (Fig. 3a; see theMethods section ‘Reverse engineering
of generative models’ for details). Using these estimates, we depicted
the trajectories (i.e., learning curves) evinced by subsequent neuronal
responses.

First, we computed the synaptic strengths W that minimised the
neural network cost function L using neuronal responses x. This
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Fig. 2 | Neuronal networks perform blind source separation, consistent with
Bayesianbelief updating. a Early evoked responsesof in vitroneurons recorded at
a single electrode, showing a source 1-preferring neuronal response. Raster plot of
spiking responses (left) and peristimulus time histogram (PSTH, right) before and
after training are shown. The two sources provide four hidden state patterns,
st = 1,1ð Þ, 1,0ð Þ, 0,1ð Þ, 0,0ð Þ, and responses in these four conditions are plotted in
green, red, blue, andblack, respectively. Responses in shaded areas (10–30msafter
a stimulus) were used for analyses. b Recorded neuronal responses were cate-
gorised into source 1-preferring (red), source 2-preferring (blue), and no-
preference (grey) groups. The Pie-chart indicates numbers (electrodes) in each
group, obtained from30 independent experiments. cChanges in evoked responses
of source 1- (left) and source 2- (right) preferring neurons, respectively. Response
change from session 1 is shown. Lines and shaded areas represent mean values +/–
standarderrors. Here and throughout, the two-sidedWilcoxon signed-rank testwas
used for paired comparisons. d Comparison of response specificities in control
(n = 965 electrodes) and APV-treated (n = 296 electrodes from 9 independent
experiments) culturegroups.Hereand throughout, the two-sidedMann‒WhitneyU
test was used for unpaired comparisons. Box-and-whisker plots in (d)(f)(h) follow

standard conventions: the central line indicates the median, the bottom and top
box edges indicate the first and third quartiles, respectively, and the whiskers
extend to the furthest data point within 1.5 times the interquartile range of the first
or third quartile. e Simulations of ideal Bayesian observers. The posterior belief
about source 1 with varying hidden state priors is shown. Red and blue lines
represent how much the posterior expectation changes, when source 1 is ON or
OFF, respectively (n = 100 simulations for each condition). In (e) (g), changes in
response from session 1 were computed and then the averaged response (trend) in
each session was subtracted to focus on response specificity to the preferred
source. Lines and shaded areas in (e) (g) represent mean values +/– standard
deviations. f Difference in responses to s1 = 1 and s1 = 0, at session 100 (changes
from session 1).gTransitions of selective neuronal responses of source 1-preferring
neurons under control (middle), hypo- (left), and hyper-excitability (right) condi-
tions. Red and blue lines represent the averaged evoked response of source
1-preferring neurons, when source 1 is ON or OFF, respectively (n = 127, 514, 129
electrodes from 7, 30, 6 independent experiments for diazepam, control, and
bicuculline conditions, respectively). h Same as (f), but for empirical responses.
Source data are provided as a Source Data file.
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Fig. 3 | Predictive validity of the free-energyprinciple. a Schematic of the system
architecture comprising the generative process and the in vitro neuronal network
modelled as a canonical in silico neural network. Two neural ensembles receive 32
inputs generated from two sources. b Left: Trajectory of empirically estimated
synaptic connectivity (W) depicted on the landscape of variational free energy (F).
Red and blue lines show trajectories of red and blue connectivities in (a). The slope
indicates a theoretically predicted free energy landscape. Darker green represents
lower free energy. Whereas, synaptic strengths (i.e., effective synaptic connectivity
or efficacy) are calculated using empirical data in sessions 1–100. Right: Predictions
of synaptic plasticity during training. The initial conditions (i.e., parameters of a
generative model) were identified using neuronal responses from the first 10 ses-
sions. A brighter colour indicates the predicted synaptic trajectory in the absence
of empirical response data. c Empirically estimated posterior belief (A) about
parameter A. d Error in neuronal networks estimating each column of A matrix,
defined as the squared error between empirical and idealAmatrices, dividedby the
squared amplitude of A (n = 28, 120, 24 columns for diazepam, control, and bicu-
culline conditions, respectively). e Correlation between theoretically predicted

strengths and strengths estimated from data, at session 100. f Error in predicting
synaptic strengths, defined as the squared error between estimated and predicted
ð bW 1, bW0Þ, divided by the squared Frobenius norm of ð bW 1, bW0Þ (seeMethods for the
definition).gTrajectory of observed (left) andpredicted (right) neuronal responses
of source 1-coding ensembles, during training. Red and blue lines indicate the
responses when source 1 is ON and OFF, respectively. h Comparison of observed
(black) and predicted (red) responses in session 100. i Correlation between
observed and predicted responses during session 91–100. j Error in predicting
neuronal responses, defined as the mean squared error: err = E ∣xt � xP

t ∣
2

h i
=2.

k Synaptic trajectories on free energy landscape under 0, 25, and 50% mix condi-
tions. l Trajectory of variational free energy. Changes from session 1 are plotted
(n = 4, 30, 4 independent experiments for 0, 25, and 50% mix conditions, respec-
tively). In (d, f, i, j, l), data from n = 30 independent experiments under the control
condition were used. Lines and shaded areas (or error bars) in (d, f, g, i, j, l)
represent mean values +/– standard deviations. Grey areas in (f, g, j) indicate the
first 10 sessions, from which data were used. See Methods for further details.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-40141-z

Nature Communications |         (2023) 14:4547 7



corresponds to a conventional (model-based) connection strength
estimation, where the W of the canonical neural network model was
optimised to fit the empirical data (see Methods). We then plotted the
trajectory of the estimated synaptic strengths on the landscape of
variational free energy F (Fig. 3b, left). This landscape was char-
acterised by the state prior (encodedby thefiring threshold) estimated
using empirical data from only the initial 10 sessions. According to the
free-energy principle, synaptic plasticity occurs in a manner that des-
cends on free energy gradients1,2. As predicted, we found that the
trajectory of the empirically computed synaptic connectivity des-
cended the free energy landscape (Fig. 3b, left; see also Supplementary
Movie 1). This observation suggests that variational free energy mini-
misation is a plausible description of self-organisation or learning in
neuronal networks.

Interestingly, the reverse engineering enables us to map empiri-
cally estimated synaptic strengths (W) to the posterior expectation (A)
about parameter matrix A, to identify the generative model that the
neuronal network employs (Table 2). The reconstructed posterior A
precisely captured the characteristics of the true A in the external
milieu, such that source 1 has a greater contribution to o1, . . . ,o16

� �
,

while source 2 to o17, . . . ,o32
� �

(Fig. 3c). An error between empirical and
ideal (Bayesian) posteriors significantly decreased with sessions
(Fig. 3d, left). The error was larger in bicuculline- or diazepam-treated
condition, owing to biased inference and subsequent learning in these
neuronal networks (Fig. 3d, right). These results support the theore-
tical notion that synaptic strengths encode the posterior expectation
of the parameter1,2. As predicted, synaptic plasticity following the free
energy gradient entailed a recapitulation of the generative process
within the neuronal network architecture.

The observation that the empirical synaptic trajectory pursues a
gradient descent on variational free energy implies that one can pre-
dict the subsequent learning in the absence of empirical constraints.
Once the initial values of synaptic strengths are identified, the sub-
sequent learning process can in principle be predicted using the free-
energy principle, under the canonical neural network (i.e.,
generative) model.

To test this hypothesis, we predicted the neuronal responses (x)
and synaptic plasticity (W) in sessions 11–100 using the neural network
cost function L reconstructed based exclusively on the empirical
responses in the initial 10 sessions (see the Methods section ‘Data
prediction using the free-energy principle’ for details). As established
above, this cost function is formally identical to variational free energy
F under a class of POMDP generative models16,17. Thus, evaluating the
responses andplasticity thatminimise this cost function L (� F)—in the
absence of data—furnishes a prediction of neuronal responses and
plasticity under the free-energy principle.

We found that the predicted changes in connectivity matched the
changes in empirically estimated effective synaptic connectivity
(Fig. 3b, right). Specifically, we observed a strong correlation between
the synaptic strengths estimated using neuronal data and the
strengths predicted in the absence of data (Fig. 3e). The prediction
error was less than 4%, up to the final session (Fig. 3f; n = 30 inde-
pendent experiments). These results indicate that, based on initial
conditions, the free-energy principle can predict the self-organisation
of neuronal networks.

In addition to the synaptic trajectory, we confirmed that a mini-
misation of free energy canpredict the underlying changes in neuronal
responses (Fig. 3g). The predictions based only on initial conditions
were consistent with observed responses. Specifically, the predicted
responses were consistent with the observed responses at each time
step (Fig. 3h, i). Quantitatively, we could predict more than 80% of the
neuronal responses in session 100, based only on data from sessions
1–10 (Fig. 3j). These results suggest that the free-energy principle can
predict both changes in synaptic efficacy and the time evolution of
neuronal responses based only on initial data. Note that this is a highly

nontrivial prediction, because synaptic efficacy shows activity-
dependent changes and neuronal responses depend upon synaptic
efficacy.

Another interesting observation was that when we varied the free
energy landscape by manipulating the mixing matrix A in the stimulus
generating process, empirical synaptic plasticity kept pursuing a gra-
dient descent on the new variational free energy (Fig. 3k). This speaks
to a generality of this physiological property. Here, we experimentally
varied the mixing balance (A) of two sources between 0 and 50%, to
train neuronal networks with the generated sensory stimuli (o), where
0% indicates an unmixed (i.e., easily separable) condition, while 50%
indicates a uniformly mixed (i.e., inseparable) condition. Irrespective
of various conditions (i.e., forms of generative process and prior
beliefs), the reverse engineering could reconstruct generative models
and predict subsequent self-organisations of neuronal networks
(Supplementary Fig. 2; see also Supplementary Movie 1).

Finally, we observed that during the process of assimilating sen-
sory information, neuronal networks significantly reduced their var-
iational free energy (Fig. 3l). Here, variational free energy F for each
session was calculated empirically by substituting the observed neu-
ronal responses into the cost function L. As expected, an easier task
(i.e., 0% mix condition) entailed a faster (i.e., greater) reduction of
variational free energy. These results provide explicit empirical evi-
dence that neuronal networks self-organise to minimise variational
free energy.

In summary, we found that the trajectory of the empirically esti-
mated effective synaptic connectivity is consistentwith a slowgradient
descent on variational free energy. Furthermore, we demonstrated
that the free-energy principle can quantitatively predict sensory
learning inneuronal networks in termsof bothneuronal responses and
plasticity. These results suggest that the self-organisation of the neu-
ronal networks—in response to structured sensory input—is consistent
with Bayesian belief updating and the minimisation of variational free
energy. This endorses the plausibility of variational free energy mini-
misation as a rule underlying the dynamics and self-organisation of
neuronal networks.

Discussion
The present work has addressed the predictive validity of the free-
energy principle at the circuit level by delineating the functional spe-
cialisation and segregation in neuronal networks via free-energy
minimisation. Identifying the characteristic functions of arbitrary
neural networks is not straightforward. However, according to the
complete class theorem41–43, any system that minimises a cost function
under uncertainty can be viewed as Bayesian inference. In light of this,
we showed that any neural network—whose activity and plasticity
minimise a common cost function—can be cast as performing (varia-
tional) Bayesian inference16,17. Crucially, the existence of this equiva-
lence enables the identification of a naturalmap fromneuronal activity
to a unique generative model (i.e., hypothesis about the external
milieu), underwhich a biological systemoperates. This step is essential
to link empirical data—which report the ‘internal’ circuit dynamics (i.e.,
physiological phenomena)—to the representation of the ‘external’
dynamics (i.e., functions or computations) that the circuit dynamics
imply, in terms of variational Bayesian inference. Using this technique,
we fitted stimulus-evoked responses of in vitro networks—comprising
the cortical cells of rat embryos—to a canonical neural network and
reverse engineered an POMDP generative model, apt to explain the
empirical data. In other words, we were able to explain empirical
responses as inferring the causes of stimuli, under an implicit gen-
erative or world model.

Furthermore, reverse engineering a generative model from
observed responses specifies a well-defined synaptic plasticity rule.
Using this rule, we showed that the self-organisation of in vitro net-
works follows a gradient descent on variational free energy under the
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(POMDP) generativemodel. In short, the virtues of reverseengineering
are that: (i) when provided with empirical responses, it systematically
identifies what hypothesis (i.e., generative model) the biological sys-
tem employs to infer the external milieu. Moreover, (ii) it offers
quantitative predictions about the subsequent self-organisation (i.e.,
learning) of the system that can be tested using data. This provides a
useful tool for analysing and predicting electrophysiological and
behavioural responses and elucidating the underlying computational
and self-organisation principle.

Although numerous neural implementations of Bayesian infer-
ence have been proposed44–46, these approaches generally derive
update rules from Bayesian cost functions without establishing the
precise relationship between these update rules and the neural activity
and plasticity of canonical neural networks. The reverse engineering
approach differs conceptually by asking what Bayesian scheme could
account for any given neuronal dynamics or neural network. By iden-
tifying the implicit inversion scheme—and requisite generativemodel—
one can then lend any given network an interpretability and explain-
ability. In the current application of this approach, we first consider a
biologically plausible cost function for neural networks that explains
both neural activity and synaptic plasticity. We then identify a parti-
cular generative model under which variational free energy is equiva-
lent to the neural network cost function. In this regard, reverse
engineering offers an objective procedure for explaining neural net-
works in terms of Bayesian inference. Further, the synaptic plasticity
rule is derived as the gradient descent on the cost function that is
determined by the integral of neural dynamics. Crucially, learning
through this plasticity rule can be read, formally, as Bayesian belief
updating under an appropriate generative model. Conversely, naive
Hebbian plasticity rules—with an ad hoc functional form—correspond
to Bayesian belief updating under a suboptimal generative model with
biased prior beliefs, which cannot solve simple blind source separation
problems16. As predicted, in vitro neural networks above failed to
perform blind source separation, with changed baseline excitability
and implicit priors. In short, the free-energy principle is necessary to
determine the optimal balance between Hebbian and homeostatic
plasticity that enables blind source separation by in vitro networks.

Previous work has established that ensembles of neurons encode
posterior expectations47 and prediction errors48; however, other
quantities in Bayesian inference—such as the state prior and parameter
posterior—have yet to be fully investigated. The reverse engineering
approach enables us to identify the structures, variables, and para-
meters of generative models from experimental data, which is essen-
tial for empirical applications of the free-energy principle. This is a
notion referred to as computational phenotyping49; namely inferring
the generative model—and in particular, the priors—that best explain
empirical responses under ideal Bayesian assumptions. The reverse
engineering naturally maps empirical (biological) quantities to quan-
tities in variational Bayesian inference. Our empirical results suggest
that neuronal responses encode the hidden state posterior (Fig. 2c),
baseline excitability encodes the state prior (Fig. 2g), and synaptic
efficacies encode the parameter posterior (Fig. 3c), as predicted the-
oretically (Table 2).

Having said this, because the free-energy principle can arguably
describe any observed biological data by its construction19, showing
the existence of such a mapping alone is insufficient as an empirical
validation. Conversely, one can examine the predictive validity, which
is a more delicate problem, by asking whether the free-energy princi-
ple can predict subsequent self-organisation without reference to
empirical data. Such a generalisability on previously unseen (test) data
comprises an essential aspect for empirical applications of the free-
energy principle.

We demonstrated that, equipped with the initial conditions (i.e.,
generative model and implicit prior beliefs of the network) char-
acterised by the experimental data, variational free energy

minimisation can predict the subsequent self-organisation of in vitro
neural networks, in terms of quantitative neuronal responses and
plasticity. It further predicted their performance when spontaneously
solving source separation problems, including their speed and accu-
racy. These results not only validate this application of the free-energy
principle; they also speak to the neurophysiological plausibility of
related theories of the brain50,51 and spiking neural network models
that perform Bayesian inference44–46.

In essence, the free-energy principle constrains the relationship
between neural activity and plasticity because both activity and plas-
ticity follow a gradient descent on a common variational free energy,
under ideal Bayesian assumptions. This property in turn enables pre-
cise characterisation of plausible self-organisation rules and quantita-
tive prediction of subsequent neuronal activity and plasticity, under a
canonical neural network (generative) model.

Our combined in vitro–in silico system showed that variation of
the state prior (in silico model) is sufficient to reproduce the changes
in neural excitability and inhibitions of sensory learning and inference
observed in vitro. These results suggest that a neuronal networks’
excitability is normally tuned so that the ensemble behaviour is close
to that of a Bayes optimal encoder under biological constraints. This is
reminiscent of previous experimental observation that suggests that
the activity of sensory areas encodes prior beliefs52.

These empirical data and complementary modelling results also
explain the strong influence of prior beliefs on perception and causal
inference—and the disruptive effects of drugs on perception in neu-
ronal networks. Both synaptic plasticity and inference depend on
convergent neuronal activity; therefore, aberrant inferencewill disrupt
learning. Conversely, inference is not possible without the knowledge
accumulated through experience (i.e., learning). Thus, inference is
strongly linked to learning about contingencies that generate false
inferences. Our findings demonstrate this association both mechan-
istically and mathematically, in terms of one simple rule that allows
prior beliefs to underwrite inferences about hidden states.

Combining mathematical analyses with empirical observations
revealed that baseline excitability is a circuit-level encoding of prior
beliefs about hidden states. The notion that manipulating the state
prior (encoded by neuronal excitability) disrupts inference and learn-
ing may explain the perceptual deficits produced by drugs that alter
neuronal excitability, such as anxiolytics and psychedelics53. This may
have profound implications for our understanding of how anxiolytics
and psychedelics mediate their effects; namely, a direct effect on
baseline activity can alter subsequent perceptual learning. Addition-
ally, aberrant prior beliefs are a plausible cause of the hallucinations
and delusions that constitute the positive symptoms of
schizophrenia54,55. This suggests that, in principle, reverse engineering
provides a formal avenue for estimating prior beliefs from empirical
data—and for modelling the circuit mechanisms of psychiatric dis-
orders (e.g., synaptopathy). Further, the reproduction of these phe-
nomena in in vitro (and in vivo) networks furnishes the opportunity to
elucidate the precise pharmacological, electrophysiological, and sta-
tistical mechanisms underlying Bayesian inference in the brain.

Importantly, although this paper focused on a comparison of
in vitro data and theoretical prediction, the reverse engineering
approach is applicable to characterising in vivo neuronal networks, in
terms of their implicit generative model with prior beliefs. It can, in
principle, be combined with electrophysiological, functional imaging,
and behavioural data—and give predictions, if the learning process is
continuously measured. Thus, the proposed approach for validating
the free-energy principle can be applied to the neural activity data
from any experiment that entails learning or self-organisation; irre-
spective of the species, brain region, task, or measurement technique.
Even in the absenceof learning, it can be applied, if one canmake some
theoretical predictions and compare themwith experimental data. For
accurate predictions, large-scale and continuous measurements of
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activity data at the population level from pre-learning to post-learning
stages would be a prerequisite. In future work, we hope to test,
empirically, whether the free-energy principle can quantitatively pre-
dict the perception, learning, and behaviour of various biological
systems.

The generic mechanisms for acquiring generative models can be
used to construct a neuromorphic hardware for universal
applications56,57. Back-propagation is central in many current deep
learning methods, but biologically implausible. This has led to various
biologically plausible alternatives; e.g., refs. 58–61, some of which
appeal to predictive coding formulations of variational free energy
minimisation. The equivalence between neural networks and varia-
tional Bayes could be useful to establish biologically plausible learning
algorithms, becauseHebbian learning rules derived under this scheme
are local (energy-based) algorithms. This is because the contribution
to variational free energy as an extensive quantity can be evaluated
locally. Such a biomimetic artificial intelligence—that implements the
self-organising mechanisms of neuronal networks—could offer an
alternative to conventional learning algorithms such as back-propa-
gation, and tohave thehighdata, computational, and energy efficiency
of biological computation62,63. This makes it promising for the next-
generation of artificial intelligence. In addition, the creation of bio-
mimetic artificial intelligence may further our understanding of
the brain.

In summary, complementary in vitro neural network recordings
and in silico modelling suggest that variational free energy minimisa-
tion is an apt explanation for the dynamics and self-organisation of
neuronal networks that assimilate sensory data. The reverse engi-
neering approach provides a powerful tool for the mechanistic inves-
tigation of inference and learning, enabling the identification of
generative models and the application of the free-energy principle.
The observed sensory learning was consistent with Bayesian belief
updating and the minimisation of variational free energy. Thus, var-
iational free energy minimisation could qualitatively predict neuronal
responses and plasticity of in vitro neural networks. These results
highlight the validity of the free-energy principle as a rule underlying
the self-organisation and learning of neuronal networks.

Methods
Generative process
The experimental paradigm established in previous work22 was
employed. The blind source separation addressed in this work is an
essential ability for biological organisms to identify hidden causes of
sensory information, as considered in the cocktail party effect27,28. This
deals with the separation of mixed sensory inputs into original hidden
sources in the absence of supervision, which is a more complex pro-
blem than naive pattern separation tasks.

Two sequences of mutually independent hidden sources or states

st = ðsð1Þt ,sð2Þt ÞT generated 32 sensory stimuli ot = ðoð1Þt , . . . ,oð32Þt ÞT through
a stochastic mixture characterised by matrix A. Each source and
observation took values of 1 (ON) or 0 (OFF) for each trial (or time) t.
These stimuli were applied to in vitro neural networks as electrical
pulses from 32 electrodes (Fig. 1a, left). In terms of the POMDP
scheme38,39, this corresponds to the likelihood mapping A from two
sources st to 32 observations ot (Fig. 1a, right). The hidden sources st
were sampled from a categorical distribution Pðs jð Þ

t Þ=CatðD jð ÞÞ. The
state priors varied between 0 and 1, in keeping with D jð Þ

1 +D jð Þ
0 = 1. The

likelihood of o ið Þ
t is given in the form of a categorical distribution,

Pðo ið Þ
t ∣st ,AÞ=CatðA ið ÞÞ, each element of which represents

Pðo ið Þ
t = j∣s 1ð Þ

t = k,s 2ð Þ
t = l,AÞ=A ið Þ

jkl . Half of the electrodes (1≤ i≤ 16) con-

veyed the source 1 signal with a 75% probability or the source 2 signal
with a 25% probability. Because each element of the A matrix repre-

sents the conditional probability that ot occurs given st = ðs 1ð Þ
t ,s 2ð Þ

t Þ, this

characteristic is expressed as AðiÞ
1�� = ðPðoðiÞt = 1∣st = ð1,1ÞÞ, PðoðiÞt = 1∣st =

ð1, 0ÞÞ,PðoðiÞt = 1∣st = ð0, 1ÞÞ,PðoðiÞt = 1∣st = ð0, 0ÞÞÞ= ð1, 0:75, 0:25, 0Þ. The
remaining electrodes (17 ≤ i≤ 32) conveyed the source 1 or 2 signal

with a 25% or 75% probability, respectively, A ið Þ
1�� = 1,0:25,0:75,0ð Þ. The

remaining elements of A were given by A ið Þ
0�� = 1� A ið Þ

1��. The prior dis-

tribution of A was given by the Dirichlet distribution PðA ið ÞÞ=Dir a ið Þ� �
with sufficient statistics a. Hence, the generative model was given as
follows:

P o1:t ,s1:t ,A
� �

=P Að Þ
Yt
τ = 1

P sτ
� �

P oτ ∣sτ ,A
� � ð1Þ

Here, o1:t := o1, . . . ,ot
� �

represents a sequence of observations,
P Að Þ= Q32

i = 1 PðAðiÞÞ, Pðsτ Þ= Pðsð1Þτ ÞPðsð2Þτ Þ, and P oτ ∣sτ ,A
� �

=Q32
i= 1 PðoðiÞτ ∣sτ ,AÞ are prior distributions and likelihood that factorise16.

Variational Bayesian inference
We considered a Bayesian observer under the generative model in the
form of the above POMPD and implemented variational message
passing to derive the Bayes optimal encoding of hidden sources or
states38,39. Under the mean-field approximation, the posterior beliefs
about states and parameters were provided as follows:

Q s1:t ,A
� �

=Q Að Þ
Yt
τ = 1

Q sτ
� �

ð2Þ

Here, the posterior distributions of sτ and A are given by cate-
gorical Q sτ

� �
=Cat sτ

� �
and Dirichlet Q Að Þ=Dir að Þ distributions,

respectively. The bold case variables (e.g., st) denote the posterior
beliefs about the corresponding italic case variables (e.g., st), and a
indicates the Dirichlet concentration parameter. Due to the factorial
nature of the states, st anda are theouter products of submatrices (i.e.,
tensors): see ref. 16 for details.

Variational free energy—or equivalently, the negative of evidence
lower bound (ELBO)3—is defined as an upper boundof sensory surprise
F o1:t ,Q s1:t ,A

� �� �
:= EQ s1:t ,Að Þ �lnP o1:t , s1:t , A

� �
+ lnQ s1:t , A

� �� 	
. Given the

above-defined generative model and posterior beliefs, ensuing varia-
tional free energy of this system is given by:

F =
Xt
τ = 1

sτ � ln sτ � lnA � oτ � lnD
� �

+O ln tð Þ ð3Þ

up to an O lntð Þ term. This O lntð Þ corresponds to the parameter com-
plexity expressed using the Kullback–Leibler divergence
DKL Q Að Þ∣∣P Að Þ½ �= P32

i= 1f a ið Þ � a ið Þ� � � lnA ið Þ � lnB a ið Þ� �g and is negligible
when t is sufficiently large. Note that � expresses the inner product
operator, lnA ið Þ indicates the posterior expectation of lnA ið Þ, and B �ð Þ
is the beta function. Inference and learning entail updating posterior
expectations about hidden states and parameters, respectively, to
minimise variational free energy. Solving the fixed point ∂F=∂st =0
and ∂F=∂a=O yields the following analytic expression:

st = σ lnA � ot + lnD
� � ð4Þ

a=a+
Xt
τ = 1

oτ � sτ ð5Þ

where σ �ð Þ is a softmax function, which corresponds to the sigmoid
activation function, and

N
expresses the outer product operator.

From Eq. (5), the parameter posterior is given as lnA=ψ að Þ �
ψ a1� + a0�
� �

using the digamma function ψ �ð Þ= Γ 0 �ð Þ=Γ �ð Þ. As Eqs.
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(2)–(5) adopted a simplified notation, please refer to ref. 16 for the
detailed derivation taking into account the factorial nature of the
states.

Canonical neural networks
The complete class theorem41–43 suggests that any neural network
whose internal statesminimise a common cost function can be read as
performing Bayesian inference. However, the implicit Bayesian model
that corresponds to any given cost function is a more complicated
issue. Thus, we reverse engineered cost functions for canonical neural
networks to identify the corresponding generative model16,17.

The neural response xt = xt1,xt2
� �T at time t upon receiving sen-

sory inputs ot is modelled as the canonical neural network, which is
expressed as the following ordinary differential equation:

_xt / �sig�1 xt
� �

+Wot +h ð6Þ

where sig�1 xt
� �

indicates the leak current characterised by the inverse
of sigmoid function (or equivalently, logit function), W denotes a 2 ×
32 matrix of synaptic strengths, Wot is the synaptic input, and h is a
vector of the adaptive firing thresholds. We considered that
W :=W 1 �W0 is the sum of excitatory (W 1) and inhibitory (W0)
synaptic strengths. The firing threshold is expressed as h :=h1 � h0

using h1 and h0 that are functions of W 1 and W0. This model derives
from realistic neuron models4–6 through approximations17.

Without loss of generality, Eq. (6) can be derived as the gradient
descent on a cost function L. Following previous work16,17, this cost
function can be identified by taking the integral of the right-hand side
of Eq. (6) with respect to xt (referred to as reverse engineering):

L=
Xt
τ = 1

xτ

xτ

� �T

ln
xτ

xτ

� �
� W 1

W0

� �
oτ �

h1

h0

� �
 �
+ C ð7Þ

up to a negligible C term. The overline variable indicates oneminus the
variable, xt :=~1� xt , where~1 := 1, . . . ,1ð ÞT is a vector of ones. Equation
(7) ensures that the gradient descent on L with respect to xt ,
_xt / �∂L=∂xt , provides Eq. (6). The C term is a function ofW 1 andW0,
C = C W 1,W0

� �
, and usually considered to be smaller than order

t, C = o tð Þ16:
The firing thresholds can be decomposed as h1 = ln bW 1

~1 +ϕ1 and
h0 = ln bW0

~1 +ϕ0, respectively, where ϕ1 and ϕ0 are the threshold fac-
tors, bW 1 := sig W 1

� �
is the sigmoid function of W 1 in the elementwise

sense, and bW 1 indicates one minus bW 1 in the elementwise sense.
Subsequently, Eq. (7) can be transformed as follows:

L=
Xt
τ = 1

xτ

xτ

� �T

ln
xτ
xτ

� �
� ln

bW 1
bW 1bW0
bW0

0@ 1A oτ
oτ

� �
� ϕ1

ϕ0

� �8<:
9=;+ C

ð8Þ

We showed that this cost function L can be cast as variational free
energy F under a class of POMPD generativemodels16,17. Equation (8) is
asymptotically equivalent to variational free energy (Eq. (3)) under the
generativemodel defined in Eq. (1), up to negligibleO lntð Þ and C terms.
One-to-one correspondences between components of L and F can be
observed. Specifically, the neural response xt encodes the state pos-

terior st ,
xτ
xτ

� �
= st ; synaptic strengths W encode the parameter pos-

teriorA, ln
bW 1

bW 1bW0
bW0

 !
= lnA; and the threshold factorϕ encodes the

state prior D, ϕ=
ϕ1
ϕ0

� �
= lnD, as summarised in Table 2. Hence, the

neural network cost function is asymptotically equivalent to varia-
tional free energy for sufficiently large t. Further details, including the

correspondence between the C term in Eq. (8) and the parameter
complexity (O lntð Þ term in Eq. (3)), are described in previous work16.

The virtue of this equivalence is that it links quantities in the
neural network with those in the variational Bayes formation. More-
over, this suggests that a physiologically plausible synaptic plasticity
(derived from L) enables the network to learn the parameter posterior
in a self-organising or unsupervised manner16,17. Further, reverse-
engineering can naturally derive variational Bayesian inference—under
a particular mean-field approximation defined in Eq. 2—from a cano-
nical neural network architecture. This representation of posterior
beliefs is essential for the networks to encode rapidly changing hidden
states (sτ) and slowparameters (A) with neural activity (x) and synaptic
strengths (W ), respectively. In this setting, amean field approximation
implements a kind of adiabatic approximation, inwhich the separation
of timescales between fast neuronal responses and slow learning is
leveraged to increase the efficiency of inference. Please see ref. 16. for
further discussion.

Simulations
In Fig. 2, simulations continuedoverT =25600 time steps andused the
empirical stimuli applied to in vitro neural networks. Synaptic
strengths were initialised as values close to 0. Here, D1 = 0:5 (Fig. 2e,
centre)matched the true process that generates sensory stimuli. Either
the upregulation (right, D1 = 0:8) or downregulation (left, D1 = 0:2) of
the state prior disrupted inference and ensuing learning.

Cell culture
The dataset used for this work comprised data obtained from newly
conducted experiments, and those originally used in the previous
work22. All animal experiments were performed with the approval of
the animal experiment ethics committee at the University of Tokyo
(approval number C-12-02, KA-14-2) and according to the University of
Tokyo guidelines for the care and use of laboratory animals. The
procedure for preparing dissociated cultures of cortical neurons fol-
lowed the procedures described in previous work22. Pregnant Wistar
rats (Charles River Laboratories, Yokohama, Japan) were anaesthetised
with isoflurane and immediately sacrificed. The cerebral cortex was
removed from 19-day-old embryos (E19) and dissociated into single
cells by treatment with 2.5% trypsin (Life Technologies, Carlsbad, CA,
USA) at 37 °C for 20min, followed by mechanical pipetting. Half a
million dissociated cortical cells (a mixture of neurons and glial cells)
were seeded on the centre of MEA dishes, where the surface of MEA
was previously coated with polyethyleneimine (Sigma‒Aldrich, St.
Louis, MO, USA) overnight. These cells were cultured in the CO2

incubator. Culture medium comprised Neurobasal Medium (Life
Technologies) containing 2% B27 Supplement (Life Technologies),
2mM GlutaMAX (Life Technologies), and 5–40U/mL penicillin/strep-
tomycin (Life Technologies). Half of the culture medium was changed
once every second or third day. These cultures were recorded during
the age of 18–83 days in vitro. During this stage, the spontaneous firing
patterns of the neurons had reached a developmentally stable
period64,65.

In this work, 21 independent cell cultures were used for the con-
trol condition to conduct 30 independent experiments, 6 were treated
with bicuculline, 7with diazepam, 9with APV, 4were trained under the
0% mix condition, and 4 under the 50% mix condition. Out of these
samples, 7 in the control condition, 6 treated with bicuculline, and 7
with diazepam were obtained from newly conducted experiments,
where their response intensities were 3.0 ± 1.1, 3.7 ± 1.9, and
2.3 ± 0.86 spike/trial, respectively (mean ± standard deviation). Other
cultures were originally recorded for previous work22. The cell-
culturing and experimental conditions in the previous work were
essentially the same as those recorded for the present work. Note that
the same cultures were used more than once for experiments with
other stimulation pattern conditions, after at least one day interval.
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This is justified because the different stimulation patterns were inde-
pendent of each other, and thus, learning history with other stimula-
tion patterns did not affect the subsequent experiments22.

Pharmacological treatment
The excitability of cultured neuronswaspharmacologically controlled.
To block GABAA-receptor activity, bicuculline, a GABAA-receptor
antagonist (Sigma‒Aldrich, St. Louis, MO, USA) was used. Bicuculline
was adjusted to 10mM using phosphate-buffered saline (PBS), and
10 µL was added to the culture medium to a final concentration of
50 µM. To upregulate GABAA-receptor activity, diazepam, a benzo-
diazepine receptor agonist (Sigma‒Aldrich) was used. Diazepam was
adjusted to 100 µM using N,N-dimethylformamide (DMF), and 20 µL
was added to the culturemedium to afinal concentration of 1 µM.After
adding the solution to the medium, cultured neurons were placed in a
CO2 incubator for 30min, and stable activity of the neurons was con-
firmed before recording.

Electrophysiological experiments
Electrophysiological experiments were conducted using an MEA sys-
tem (NF Corporation, Yokohama, Japan). This enabled extracellular
recordings of evoked spikes from multiple sites immediately after
electrical stimulation20,21. AnMEA dish comprises 8×8microelectrodes
(50-µm square each) embedded on its centre, deployed on a grid with
250-µmmicroelectrodes separation. Recordings were conducted with
a 25-kHz sampling frequency and band-passfilter of 100–2000Hz. The
data acquisition was conducted using LabVIEW version 2011. The spike
sorting analysis suggested that an electrode was expected to record
the activities from up to four neurons. Three-phasic extracellular
potentials, as described in previous work20,21, were recorded from the
majority of the electrodes.

The 32 stimulation electrodes were randomly distributed over
8×8 MEAs in advance and fixed over training. A biphasic pulse with a
1-V amplitude and 0.2-ms duration, which efficiently induces activity-
dependent synaptic plasticity22, was used as a sensory stimulus. A
session of training comprised a 256-time-step sequence of stimuli with
1-s intervals, followed by a 244-s resting period. We repeated this
training for 100 sessions (approximately 14 h in total). All recordings
and stimulation were conducted in a CO2 incubator.

Data preprocessing
For spike detection, the acquired signals were passed through a digital
band-pass filter of 500‒2000 Hz after the removal of the saturated
ranges and noises that were caused by electric potential variations
associatedwith the switch fromthe stimulation circuit to the recording
circuit. Subsequently, waveform valleys that fell below 4 times the
standard deviation of the signal sequence of each electrode were
detected as spikes. Note that for data obtained in the previous work22,
waveform valleys that fell below 5 times the standard deviation were
detected as spikes because of the difference in the noise level.

Irrespective of the presence or absence of bicuculline or diaze-
pam, the peak of evoked response usually fell at 10–20ms after each
stimulus. Accordingly, we defined the intensity of the evoked response
to the stimulus by the number of spikes generated until 10–30ms after
each stimulus. We referred to the evoked response at electrode i as rti
(spike/trial), using discrete time step (or trial) t. Only electrodes at
which the all-session average of rti was larger than 1 spike/trial were
used for subsequent analyses.

The conditional expectation of evoked response rti—when a cer-
tain source state s1,s2

� �
= 1,1ð Þ, 1,0ð Þ, 0,1ð Þ, 0,0ð Þ is provided—is given as

E rit ∣s1,s2
� 	

:= E rti∣st = s1,s2
� �

, 1≤ t ≤ 256
� 	

(spike/trial). This E rit ∣s1,s2
� 	

was computed for each session. Recorded neurons were categorised
into three groups based on their preference to sources.We referred to
a neuron (or electrode) as source 1-preferring when the all-session
average of E rit ∣1,0

� 	� E rit ∣0,1
� 	

was larger than 0.5 spike/trial, as

source 2-preferring when the all-session average of E rit ∣1,0
� 	�

E rit ∣0,1
� 	

was smaller than –0.5 spike/trial, or no preference when
otherwise. Note that the number of source 1-preferring, source 2-pre-
ferring, and no preference electrodes in each sample are 17.1 ± 7.0,
15.0 ± 7.0, and 11.5 ± 6.7, respectively (n = 30 samples under the control
condition). Sources 1- and 2-preferring ensembles were quantitatively
similar because the total contribution fromsources 1 and 2 to stimuliot
wasdesigned to be equivalent, owing to the symmetric structure of the
Amatrix. Under this setting, this similarity was conserved, irrespective
of the details of the A.

Our hypothesis23 was that the stimulus (o) obligatorily excites a
subset of neurons in the network, while repeated exposure makes
other neurons with appropriate connectivity learn that the patterns of
responses are caused by ON or OFF of hidden sources (s). Thus, the
recorded neuronal responses comprise the activity of neurons directly
receiving the input and that of neurons encoding the sources. To
identify functionally specialised neurons, we modelled recorded
activity as a mixture of the response directly triggered by the stimulus
and functionally specialised response to the sources. Most directly
triggered responses occur within 10ms of stimulation, and their
number is largely invariant over time, while their latency varies in the
range of a few hundred microseconds40. Conversely, functionally
specialised responses emerge during training, and the majority occur
10–30ms after stimulation. Thus, analysing the deviation of the
number of spikes in this period enables the decomposition of the
responses into stimulus- and source-specific components.

The empirical responses were represented as the averaged
responses in each group. For subsequent analyses, we defined xt1 as
the ensemble average over source 1-preferring neurons and xt2 as that
over source 2-preferring neurons in each culture. For analytical tract-
ability, we normalised the recorded neural response to ensure that it
was within the range of 0≤ xt1,xt2 ≤ 1, after subtracting the offset
and trend.

Statistical tests
The two-sided Wilcoxon signed-rank test was used for paired com-
parisons. The two-sided Mann‒Whitney U test was used for unpaired
comparisons.

Reverse engineering of generative models
In this section, we elaborate the procedure for estimating the thresh-
old factor (ϕ) and effective synaptic connectivity (W ) from empirical
data, to characterise the landscape of the neural network cost function
L (� F) and further derive the generative model that the biological
system employs.

Assuming that the change in threshold factor was sufficiently slow
relative to a short experimental period, the threshold factor ϕ was
estimated based on the mean response intensity of empirical data.
Following the treatment established inpreviouswork16,17, the constants
are estimated for each culture using the empirical data as follows:

ϕ=
ϕ1

ϕ0

� �
= ln

xt

� 

xt

� 
 !
ð9Þ

where �h i := 1
t

Pt
τ = 1 � indicates the average over time. Equation (9) was

computed using data in the initial 10 sessions. Subsequently, the state
priorDwas reconstructed from the relationship lnD=ϕ (Table 2). This
D expresses the implicit perceptual bias of an in vitro network about
hidden sources.

Synaptic plasticity rules conjugate to Eq. (6) are derived as the
gradient descent on L16,17, which are asymptotically given as _W 1 /
� 1

t
∂L
∂W 1

= xto
T
t

� 
� xt
~1T

D E
� bW 1 and _W0 / � 1

t
∂L

∂W0
= xto

T
t

� 
� xt~1
T

D E
�bW0 in the limit of a large t, where� denotes the elementwise product

(a.k.a., the Hadamard product). These rules comprise Hebbian plasti-
city accompanied with an activity-dependent homeostatic term,
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endorsing the biological plausibility of this class of cost functions.
Solving the fixed point of these equations provides the following
synaptic strengths:

W 1 = sig
�1 xto

T
t

� 
	 xt
~1T

D E� �
W0 = sig

�1 xto
T
t

� 
	 xt~1
T

D E� �
8><>: ð10Þ

where 	 denotes the elementwise division operator. In this work, we
refer to Eq. (10) as the empirically estimated effective synaptic con-
nectivity, where W =W 1 �W0. This was estimated for each session,
using empirical neuronal response data xt . These synaptic strengths
encode the posterior belief about the mixing matrix A (Table 2). Fur-
ther details are provided in previous works16,17.

These empirically estimated parameters are sufficient to char-
acterise the generative model that an in vitro neural network employs.
Owing to the equivalence, the empirical variational free energy F for
the in vitro network was computed by substituting empirical neuronal
responses x and empirically estimated parameters W (Eq. (10)) and ϕ
(Eq. (9)) into the neural network cost function L (Eq. (8)): see Fig. 3l for
its trajectory.

Data prediction using the free-energy principle
The virtues of the free-energy principle are that it offers the quanti-
tative prediction of transitions (i.e., plasticity) of the neural responses
and synaptic strengths in future, in the absence of empirical response
data. We denote the predicted neural responses and synaptic
strengths as xP

t and WP , respectively, to distinguish them from the
observed neural responses xt and empirically estimated synaptic
strengths W defined above.

The predicted neural response is given as the fixed-point solution
of Eq. (6):

xP
t = sig WPot +h

P
� �

ð11Þ

where hP = ln bWP

1
~1� ln bWP

0
~1 +ϕ1 � ϕ0 denotes the adaptive firing

threshold. Empirical ϕ (Eq. (9)) estimated from data in the initial
10 sessions was used to characterise hP . Here, predicted synaptic
strength matrix WP was used instead of the empirically estimated W .
The predicted synaptic strengths are given as follows:

WP
1 = sig

�1 xP
t o

T
t

� 
	 xP
t
~1T

D E� �
WP

0 = sig
�1 xP

t o
T
t

D E
	 xP

t
~1T

D E� �
8><>: ð12Þ

whereWP :=WP
1 �WP

0. Here, the predicted neural responses xPt were
employed to compute the outer products. The initial value ofWP was
computed using empirical response data in the first 10 sessions. By
computing Eqs. (11) and (12), one can predict the subsequent self-
organisation of neuronal networks in sessions 11–100, without
reference to the observed neuronal responses.

We note that the reverse engineering approach provides three
novel aspects compared to earlier work22,23. First, previous work
assumed the form of the generative model and did not examine
whether all elements of the generative model corresponded to biolo-
gical entities at the circuit level. In the present work, we objectively
reverse-engineered the generative model from empirical data and
showed a one-to-one mapping between all the elements of the gen-
erative model and neural network entities. Second, previous work did
not examine the impactof changingpriorbeliefs onBayesian inference
performedby in vitro neural networks. Thepresentwork analysed how
Bayesian inference and free energy reduction changed when the prior
belief and external environment were artificially manipulated and
showed that the results were consistent with theoretical predictions.
This work validated the predicted relationship between baseline

excitability and prior beliefs about hidden states. Third, previous work
did not investigate whether the free-energy principle can quantita-
tively predict the learning process of biological neural networks based
exclusively on initial empirical data. This was demonstrated in the
current work.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The neuronal response data are available at GitHub https://github.
com/takuyaisomura/reverse_engineering. Source data are provided
with this paper.

Code availability
The simulations and analyses were conducted using MATLAB version
R2020a. The scripts are available at GitHub https://github.com/
takuyaisomura/reverse_engineering66. The scripts are covered under
the GNU General Public License v3.0.
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