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Abstract
Atomic substitution or doping of a bioceramic material hydroxyapatite (HA) with specific ions is an appealing approach for
improving its biocompatibility and activity, as well as imparting antibacterial properties. In this study, selenium- and/or
copper-substituted hydroxyapatite powders were synthesized by an aqueous precipitation method and using the freeze-
drying technique. The molar concentrations of constituents were calculated based on the proposed mechanism whereby
selenium (Se4+) ions partially substitute phosphorus (P5+) sites, and copper (Cu2+) ions partially substitute (Ca2+) sites in
the HA lattice. Dried precipitated samples were characterized using Inductively coupled plasma optical emission spec-
troscopy (ICP-OES), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR) and Field-emission
scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). Accordingly, substitution of Se4+

and/or Cu2+ ions took place in the crystal lattice of HA without the formation of any impurities. The presence of sulphur
(S2-) ions in the hydroxyapatite was detected by ICP-OES in all samples with copper substituted in the lattice. The
cytotoxicity of the powders on osteoblastic (MC3T3-E1) cells was evaluated in vitro. Selenium substituted hydroxyapatite
(SeHA), at the concentration (200 μg/mL), demonstrated higher populations of the live cells than that of control (cells
without powders), suggesting that selenium may stimulate the proliferation of these cells. In addition, the copper
substituted hydroxyapatite (CuHA) and the selenium and copper substituted hydroxyapatite (SeCuHA) at the concen-
trations (200 and 300 μg/mL) and (200 μg/mL), respectively demonstrated better results than the unsubstituted HA.
Antimicrobial activity was assessed using a well-diffusion method against Streptococcus mutans and Candida albicans, and
superior results has obtained with SeCuHA samples. Presented findings imply that selenium and/or copper substituted
modified hydroxyapatite nanoparticles, may be an attractive antimicrobial and cytocompatible substrate to be considered
for use in a range of translational applications.
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Introduction

Hydroxyapatite [HA, Ca10(PO4)6(OH)2], is the main inor-
ganic component of hard tissues, in biomedical applications
HA has a variety of uses in maxillofacial and orthopaedic
surgery, dentistry, drug delivery, coatings on metallic
prostheses, bone cement, and fillers, because of its excellent
biocompatibility, osteoconductivity, bioactivity, nontoxicity
and thermodynamic stability.1–4

However, pure HA has some limitations, such as poor
mechanical strength and lack of antibacterial properties. As
such, researchers have focused on modifying HA by in-
corporating different ions into its crystal lattice to enhance
its biological and physicochemical properties. One of the
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promising approaches to modify HA is atomic substitution
or doping with specific ions, which has been shown to
improve its biocompatibility, bioactivity, and antimicrobial
properties.5–7 Selenium (Se) and copper (Cu) are two trace
elements that have been of interest in biomedical research
due to their therapeutic potential. Selenium has been re-
ported to possess antioxidant, anti-inflammatory, and an-
ticancer properties,8–11 while copper is essential for bone
formation and has been shown to possess antibacterial
properties.12

Selenium has been shown to help with cardiovascular
disease, cancer, thyroid, brain, bone, tissue reproduction,
viral infections, and the immune system.13 A series of
different concentrations of selenium (between 1 to 5 mol
%) substituted hydroxyapatite powders were prepared
previously by Korowash et al. (2017) using an aqueous
precipitation method. In their study, the cytotoxicity of
the powders on both human bone marrow mesenchymal
stem cells (BM-MSCs) and umbilical cord-derived
mesenchymal stem cells (UC-MSCs) was studied
in vitro and in their work in comparison to pure HA
powders, 0.592 mM Se, corresponding to a 2 mol% Se
showed no cytotoxicity, but stimulated proliferation of
UC-MSCs.14

The poor antibacterial activity of pure HA limits its long-
term stability and increases the risk of implant-related in-
fections and the likelihood of implantation failures.15

Therefore, researchers have been exploring different ap-
proaches to enhance the antibacterial properties of HA to
overcome this challenge. Researches including successfully
doped HA with elements as silver (Ag), zinc (Zn), cerium
(Ce), manganese (Mn), samarium (Sm), and Cu into HA,
prevented implant-related infections.16,17 Gomes et al.
(2018) has reported that Cu integrated HA presents superior
antibacterial activity and least cytotoxicity of all the sub-
stitutions.18 Moreover, another approach is to incorporate
sulphur (S2-) or sulphate (SO4

2-) ions into HA. Sulphur and
sulphates are known as biological cements because they
prevent osteoarthritis and help regenerate skin, hair, nails,
and cartilage. They have long been known to have anti-
bacterial properties and are also clinically utilized to treat
hypercalcemia.19–21 The replacement of sulphate ions in
hydroxyapatite had received little attention in research
articles.22

Previous studies have mostly reported the successful
substitution of various ions into HA lattice, including
strontium (Sr), magnesium (Mg), Zn and Cu, as a mono or
di-substitution, which have been shown to improve its
mechanical strength, osteoinductivity, and antibacterial
properties.23–27 Few studies have also looked into the co-
incorporation of Se and Sr or Zn into the HA in an effort to
modify its biological characteristics.28,29 However, to the
best of our knowledge, the co-doping of selenium and
copper into HA has never been examined.

From chemical precursors, mainly calcium and phospho-
rus, hydroxyapatite can be produced using a range of tech-
niques, including dry, wet, thermal, or a mixture of these. As
well as HA can be extracted from naturally occurring sources
such animal scales and bones, which have large concentrations
of HA. Different synthesis techniques result in different
crystallinities, sizes, and morphologies.30–32

In this study, selenium- and/or copper-substituted hy-
droxyapatite powders were synthesized by an aqueous
precipitation method, while being processed under various
conditions, including pH, temperature, time and chemical
molar ratios to obtain a pure phase of HA. Following that, a
freeze-drying method was used to produce finer material.33

The objective of the present work; is to enhance the
biocompatibility and antimicrobial properties of synthetic
HA by simultaneous ion doping to produce an antimicrobial
bioactive material. This material could have a wide range of
applications, including toothpaste formulation and use as a
filler or in tissue engineering scaffolds to prevent post-
implant infections and promote bone/tooth healing.

Materials and methods

Preparation of hydroxyapatite powders

Stoichiometric HA nanopowders were prepared through an
aqueous precipitation method.33,34 As raw materials, cal-
cium carbonate (CaCO3, ≥99%) and di-ammonium hy-
drogen phosphate ((NH4)2HPO4, ≥99%), purchased from
Merck KGaA, Germany, were used as a source of Ca2+ and
PO4

3- ions respectively, with addition of nitric acid. The
molar ratio of Ca/P for the reaction was 1.67 and pH was
kept at 8.3 by adding ammonia solution.33 Sodium selenite
(Na2SeO3, 99%) and/or copper sulfate pentahydrate
(CuSO4.5H2O, ≥98%), purchased from Merck KGaA,
Germany, were added during synthesis to form three dif-
ferent hydroxyapatite phases: selenium substituted hy-
droxyapatite (SeHA) with selenium percentage (1.96 mol%
Se/(P+Se)) at the expense of phosphate salt; copper
substituted hydroxyapatite (CuHA) with copper percentage
(5 mol% Cu/(Ca+Cu)) at the expense of calcium salt; se-
lenium and copper substituted hydroxyapatite (SeCuHA)
with selenium percentage (1.96 mol% Se/(P+Se)) and
copper percentage (5 mol% Cu/(Ca+Cu)) at the expense of
phosphate salt and calcium salt, respectively, as shown in
Table 1. The reaction took place at room temperature then
left for 24 h under continuous stirring at 40°C. The formed
precipitates were carefully washed with distilled water,
frozen at –20°C and dried in a lyophilizer.

Powders characterization

The elemental composition of the prepared powder samples
was determined by ICP-OES (ICP-OES, Agilent
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5100 Synchronous Vertical Dual, Australia). The molar
ratio of calcium to phosphorus and the concentration of
added Se and Cu, in addition to S that was assumed to be
incorporated into HA by using the copper source Cu-
SO4.5H2O, were calculated from the results obtained.

In addition, phase identification of the HA samples was
evaluated using X-ray diffractometer (XRD) (Bruker
D8 diffractometer, Germany) utilizing a 40 kV accelerating
voltage, 35 mA, and Cu Kα radiation (λ = 1.54184 Å).

Fourier-transform infrared (FTIR) spectroscopy (Spec-
trum One, Perkin Elmer, UK) was used to identify the
functional groups of HA samples. The spectral area ana-
lysed was over the range of 4000– 500 cm�1 with a res-
olution of 4 cm�1, and the initial background absorbance
was collected for calibration.

The surface morphology of powders was investigated
under a field emission scanning electron microscope
(FESEM) using a Zeiss Sigma 300 VP FESEM equipped
with Zeiss SmartEDX (Zeiss, Cambridge, UK). The
powders were dispersed on a clean glass surface, and a
stub with sticky 12 mm carbon tabs was gently tabbed
from above to collect sample from the glass, and excess
was removed using compressed air. Stubs were sputter
coated with 95% gold and 5% palladium before
inspection.

Antimicrobial activity study

Antimicrobial efficacy of the HA powder samples was
evaluated on representative microbial strains, including
Streptococcus mutans and Candida albicans (ATCC,
USA). This was carried out using agar well diffusion
assay with Mueller-Hinton agar (MHA) and Sabouraud
Dextrose Agar (SDA) media (Sigma-Aldrich, UK).35

100 µL of microbial suspension were uniformly dis-
seminated onto the surface of MHA and SDA, with a
sterile cotton swab. Wells of 6 mm in diameter were
holed with a cork borer in an inoculated agar then filled
with 50 µL of the sample in distilled water suspension.
The plates were then left for about 1 day at 37°C for
Streptococcus mutans and 2 days at 28°C for Candida
albicans growth. Ciprofloxacin antibiotic was used as a
positive control and sterile distilled water was used as a

negative control. The experiments were run in three
replicates and following incubation, the antimicrobial
activity of the samples was assessed by measuring the
diameter of the zone of inhibition that formed around the
wells.

In vitro biocompatibility study

The osteoblastic cell line of MC3T3-E1 from mouse was
acquired from ECACC in the United Kingdom and cul-
tured in MEM-α medium that supplemented with 10 v/v%
FBS and 1 v/v% P/S (Penicillin/Streptomycin). Sample
powders (HA, SeHA, CuHA and SeCuHA) suspended in
complete growth media in various concentrations (200 and
300 μg/mL) were placed in 96-well tissue culture plates
(TCP) after sterilization under UV for 30 min. The cells
were seeded on the HA samples or on TCP, then left in an
incubator for 3 and 7 days at 37°C and 5% CO2. For each
sample type and TCP, three replication trials were
conducted.

Following the incubation time periods, the metabolic
activity of the cells was assessed using the Cell-Titer One
reagent/MTS test kit (Promega, Southampton, UK). 20 µL
of was added to each well containing 100 µL culture media
and incubated at 37°C for 1.5 h. Then, using 120 µL of the
media from each well on the new 96-well which was read
with a Plate Reader (Tecan Infinite M200, Switzerland),
absorbance was determined at 490 nm. As a reagent blank,
wells holding only media/media and samples were prepared
for each time point.

All values are presented as means and standard devia-
tions (SD) after one-way ANOVA, Holm Comparison Test,
Bonferroni’s Multiple Post-Test (p<0.05) were used to
assess the data.

Live-Dead Assay: The LIVE/DEADTM Kit (Gibco
L3224, Thermo Fisher, Paisley, UK) was used to evaluate
the in vitro qualitative assessment of cell viability. The cells
and cells with samples were exposed to calcein-AM and
ethidium homodimer-1 for 30 min at room temperature in
the dark after being incubated for 7 days at a density of 1.5 ×
104 cells/mL. An inverted fluorescence microscope (LEICA
Instruments, Milton Keynes, UK) and image Capture Pro
software were used for the examination.

Table 1. The constituents molar concentration and ratios in the different prepared samples.

Samples Molar concentration of constituents (Ca+Cu)/(P+Se) molar ratio Cu/(Ca+Cu) (%) Se/(P+Se) (%)

Ca P Se Cu

HA 5 3 — — 1.67 — —

SeHA 5 2.9412 0.0588 — 1.67 — 1.96
CuHA 4.75 3 — 0.25 1.67 5 —

SeCuHA 4.75 2.9412 0.0588 0.25 1.67 5 1.96
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Results and discussion

The results of the ICP-OES of the apatite powders are
shown in Table 2 demonstrated a noticeable discrepancy
between the calculated dopant ratios presented in (Table 1)
and the measured dopant ratios for the powders produced in
Table 2. These findings indicate that not all the dopants
added participated as a part of HA. The increase in the molar
ratio of (Ca+Cu)/(P+Se+S), which is over 1.67, is due to
the partial substitution of P ions by CO3 as confirmed by
the FTIR results. This substitution is most likely the
result of an ion exchange with atmospheric CO2 during
the dissolving, stirring, and reaction phases.33,36 More
research is necessary to determine the source of CO2 and
the specific process of replacement because these issues
fall outside the purview of the current work. However,
the substitution of carbonate into the HA crystal structure
causes a decrease in crystallinity and an increase in
solubility.37,38 As well as the determined amounts of Se
in the HA lattice were 2.58 mol% and 2.48 mol%,
i.e., which was higher than the calculated value (1.97 mol
%). While the amounts of Cu introduced into the HA
lattice were 3.45 mol% and 3.35 mol%, i.e., less than the
calculated value of (5 mol%) which means that Cu was
loaded at amounts less than that of the feed values. A
partial substitution of small amounts of Cu substituted
the Ca ions in the HA crystal structure. This may be
attributed to the smaller ionic radius of Cu2+ ions
(0.073 nm) compared to that of Ca2+ ions (0.099 nm).39 It
has been reported that SO4

2- ions substitute for PO4
3-

ions within the apatite lattice, (sulphate ionic radius is
larger than the phosphate one; 0.258 nm vs 0.238 nm).22

The incorporation of SO4
2- into apatite structure leads to

increased structural disorder. SeO4
2- ions have a geo-

metric shape that resembles that of PO4
3- ions, but they

are much larger, measuring 0.249 nm as opposed to
0.238 nm for PO4

3- ions.40–42 SeO32
- ions have a di-

ameter of 0.239 nm, which is comparable to that of PO4
3-

ions, but they are geometrically arranged differently and
are composed of a flat trigonal pyramid structure.41,43,44

However, the recorded FTIR bands assigned to the
SeO3

2- ions in the spectra of the apatite (SeHA), con-
firming their presence in the structure. The presence of
the divalent selenium oxy-anion in the apatite structure,
presumably as replacements for some of the PO4

3- ions in

the apatite lattice, is to be expected given the charge
compensation necessary for substitution of a -2 anion
(SO4

2-) for a -3 anion (PO4
3-). The substitution of S ions

is favoured in the presence of Se ions as evident from the
recorded value (1.95 mol%) in SeCuHA, which is higher
than that of CuHA (1.7 mol%). While slightly decreasing
the incorporation amount of that have a small ionic ra-
dius, Cu ions (3.35 vs 3.45 mol%, in SeCuHA and
CuHA, respectively).

Overall, the results suggest that the incorporation of
dopants into the HA structure can be complex and influ-
enced by several factors, including ionic radius, charge
compensation, and structural disorder. Further studies may
be necessary to understand the mechanisms underlying the
incorporation of different dopants into the HA structure and
their effects on the material’s properties thoroughly.

The XRD pattern of the prepared powders are shown in
Figure 1. All peaks correspond well with the JCPDS PDF
card no. 09-432 reference pattern for HAwith no impurities.
The pH of the reaction medium was maintained at 8.3, Ortiz
et al. (2020) showed that the shape and size of the nano-
particles as well as the number of crystalline phases can
change depending on the pH during the synthesis. When the
pH value drops from 9.6 to 7, it has been seen that the
production of the monoclinic phase increases and the
hexagonal phase decreases, additionally, the crystallite size
drops from 46.69 to 19.56 nm.45 Broadening of the peaks in
the substituted hydroxyapatite, particularly in the CuHA
and SeCuHA powders, compared to the pure phase indi-
cated a decrease in the crystallite size of HA powders.38,46,47

The issue of generating a nano-sized HA has received a lot
of attention since human bone HA is in the nanometer size
range and because it functions better in clinical settings than
micron-sized HA.30 These findings confirm the successful
ion incorporation of copper and/or selenium into the HA
crystal structure. The molar fractions of Cu2+ and Se4+ ions
in the samples were relatively small compared to the
original components of HA. Consequently, no new com-
pounds were formed, which was evident from the absence
of characteristic peaks.

FTIR spectra of the different apatite powders are dis-
played in Figure 2. There were typical absorption bands
associated with phosphate bending modes of vibration at
520, 560, and 598 cm�1, symmetric stretching at 962 cm�1,
and asymmetric stretching at about 1018 cm�1. There were

Table 2. Elemental composition of different prepared powders measured by ICP-OES.

Samples Se/(P+Se+S) (%) Cu/(Ca+Cu) (%) S/(P+Se+S) (%) (Ca+Cu)/(P+Se+S) molar ratio Ca/P molar ratio

HA — — — 1.73 1.73
SeHA 2.58 — — 1.74 1.79
CuHA — 3.45 1.7 1.73 1.7
SeCuHA 2.48 3.35 1.95 1.72 1.74
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also seen hydroxyl bands at 640 and 3570 cm�1. In the
substituted HA, especially in the CuHA, the intensity and
resolution of the bands observed for HA reduced. All the
apatite powder spectra showed additional bands at 874,
1330, and 1430 cm�1 that were carbonates in the B position.
Adsorbed water band at 3220 cm�1 and an occluded water
band at 1634 cm�1 were seen in all the spectra. Two distinct
shoulder and less intense bands at approximately 774 and
735 cm�1 respectively appeared in the spectra of SeHA
samples. These bands were attributed to the vibrations of
Se–O bands of the selenite ion (SeO3

2-) in
hydroxyapatite.14,41,44

The FESEM images obtained at the two magnifications
(1.00 and 10.00 KX) revealed that the hydroxyapatite
powders are made up of clusters of tiny particles that appear
to be spherical in shape (Figure 3). This agglomeration
might be connected to the preparation’s 24-h stirring pe-
riod.48 Furthermore, a considerable tendency to produce

Figure 1. XRD spectra of prepared powders: HA, SeHA, CuHA and SeCuHA.

Figure 2. FTIR spectra of different hydroxyapatite powders: HA,
SeHA, CuHA and SeCuHA.

Korowash et al. 5



thick agglomerates is visible in the substituted hydroxyapatite
creating pores within, as seen at 10.00 KX magnification.
Furthermore, when ions were doped, more microscale ag-
gregates were seen, most likely as a result of ion exchange in
thematerial, where coarsening of crystallite size happens in the
particles to form denser structures as microscale aggregates.
Particle fusion also leads to the formation of loose
aggregates.49,50 However, because of the dense formed
clusters of both pure and doped HA particles, determining the
size of a single particle was challenging. Spherical powders
offer higher rheological qualities than irregular powders and
less cytotoxicity than needle and plate shaped nano-
hydroxyapatite, making them ideal for medical
applications.51,52 Elements Ca, P, Cu, Se, S, and O were
discovered in these SeCuHA agglomerates using the EDX
method, which agrees with the ICP-OES results (Table 2).

Based on the ICP-OES, XRD, FTIR and SEM-EDX
results, it is observed that Se and/or Cu containing HA
showed pure phases of HA without any impurities in ad-
dition to the doping of S besides Cu ions in the HA lattice
indicated the dual substitution caused by CuSO4.5H2O. All
these elements have a vital role in the cell growth and
proliferation of the cells as well as the antibacterial activity
effect.10–14,18,21,53,54 The occurrence of S2- ion in the hy-
droxyapatite was detected by ICP-OES in copper containing
HA powders samples accompanying substitution of Cu2+ in
the lattice indicated the dual substitution might have been
caused by CuSO4.5H2O, the precursor used.

The chemical composition and surface topography of a
nanostructured material have a significant impact on cy-
tocompatibility performance of the material. These factors
also control how well cells adhere to surfaces, migrate,
differentiate, and proliferate. Thus, the particle diameter,
shape, size, dose, and contact properties of nano-
hydroxyapatite have an impact on its biotoxicity.55 The
crystal structure of natural hydroxyapatite can be altered by
various ionic substitutions.

The well diffusion technique was used to test the ability
of the four prepared apatite samples to inhibit microbial
growth. The diameter of the zone of inhibition formed
around the wells was measured. SeCuHA sample showed
excellent antimicrobial properties, in contrast to the rest of
samples, against both tested microorganisms even though
the zone of inhibition was extensively dispersed throughout
the wells, as shown in Figure 4. It is measured as 25 ±
0.6 mm and 32 ± 0.41 mm against Streptococcus mutans
and Candida albicans, respectively in contrast to the
positive control which showed zone of diameter equals 19 ±
0.28 mm against Streptococcus mutans. That is may due to
the release of the Se4+, Cu2+ and S2- ions inhibit the growth
of the surrounding microbes and enhance the antimicrobial
activity of the apatite sample.

The effect of the hydroxyapatite powders (HA, SeHA,
CuHA and SeCuHA) at two different concentrations
(200 and 300 μg/mL) on MC3T3-E1 were tested. Figure 5
displayed the cell compatibility by measuring the

Figure 3. FESEM images of prepared powders: hydroxyapatite (HA), selenium substituted hydroxyapatite (SeHA), copper substituted
hydroxyapatite (CuHA) and selenium and copper substituted hydroxyapatite (SeCuHA), at two magnifications of 1 and 1000 KX. EDX
analysis for SeCuHA powders showed its elemental composition.
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mitochondrial activity of the MC3T3-E1 cells using the
MTS assay. A significant difference (p<0.01) was detected
in between all powder samples and the control (cells only
on TCP). By comparing the data of MTS it can be de-
termined that the MC3T3-E1 cells after cultured for 7 days
with selenium substituted hydroxyapatite (SeHA) at both
concentrations (200 and 300 μg/mL), copper substituted
hydroxyapatite (CuHA) at concentration (200 μg/mL) and
selenium and copper substituted hydroxyapatite (Se-
CuHA) at concentration (200 μg/mL) showed the highest
metabolic activity rate than the other powders in the de-
scending order: SeHA200, SeHA300, CuHA200 then
SeCuHA200.

The fluorescence images following the live-dead assay for
the MC3T3-E1 cells cultured on various hydroxyapatite
powders for 7 days (Figure 6) revealed that SeHA at both
concentrations (200 and 300 μg/mL) and CuHA at low
concentration (200 μg/mL) showed a higher accumulation of
live cells and lower accumulations of dead cells than all other
powders. Even at low concentration of SeHA (200 μg/mL),
more live cells were present than in the control, demon-
strating that selenium at this concentration promotes cell
proliferation.

Moreover, the results showed that CuHA at a high
concentration of 300 μg/mL and SeCuHA at a low con-
centration of 200 μg/mL performed better than the

Figure 5. Cell metabolic activity of MC3T3-E1 cells cultured on tissue culture plate (control) and different HA powders samples after
incubation for 3 and 7 days. Data are represented as mean SD (n = 3) with statistical assessment performed by using the one-way
ANOVAwith Bonferroni’s Multiple Comparison Post Test and Holm Comparison Test. All pairs simultaneously compared, and they are
significantly differenced with the p value <0.01 over each the day 3 (*) and day 7 (**).

Figure 4. Photographs of the antimicrobial activity of apatite samples against the tested microbes. (1) HA, (2) SeHA, (3) CuHA, (4)
SeCuHA. Ciprofloxacin and distilled water as positive and negative controls respectively are located in the centre.

Korowash et al. 7



unsubstituted HA by comparing abundance of live cells to
the dead cells. The incorporation of Se and Cu, in addition to
S ions into the hydroxyapatite lattice is likely responsible
for this improvement. These ions are essential for cell
development and proliferation,53,54,56 and their incorpora-
tion may have a positive impact on the cytocompatibility of
the hydroxyapatite powders.

The capacity of these materials to induce cell adhesion
and spreading, their cytocompatibility and antimicrobial
activity make it a promising candidate for further investi-
gation in the field of biomedical materials. However, further
research is needed to determine the long-term effects of
SeCuHA on cell behaviour and tissue regeneration.

Conclusion

In conclusion, the substitution of different ions, including
selenium, copper, and sulphur, into the hydroxyapatite
lattice affects the properties of the resulting material. In this
study, hydroxyapatite powders substituted with these ions
were synthesized by an aqueous precipitation method and
using the freeze-drying technique. The XRD peaks became
broader and all XRD and FTIR patterns referred to HAwith
no impurities, indicating the incorporation of the
substituting ions. Selenium-substituted hydroxyapatite
(SeHA) was found to increase the proliferation of MC3T3-

E1 cells, while SeCuHA, which contained three substituted
ions of Se, Cu and S, showed excellent antimicrobial ac-
tivity against Streptococcus mutans and Candida albicans,
as well as presenting cytocompatibility in vitro. These re-
sults suggest that SeCuHA has the potential to be used in
various biomedical applications, including orthopaedic and
dental applications, tissue engineering, and as a restorative
dental material in toothpaste or as a filler or insert. Future
studies could focus to evaluate the performance of SeCuHA
in vivo to further establish its suitability for these
applications.
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