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Highlights 

 

 Novel data-driven approaches to quantifying amyloid burden from in-vivo PET 

imaging have been developed to address common sources of variability such as the 

dependence on the definition of a reference region.  

 

 We evaluated four novel data-driven amyloid metrics against the binding potential 

and Centiloid scale using consistent data and evaluation criteria. 

 

 Three metrics (Aβ load, Aβ index, CLNMF) showed strong association with the 

binding potential and Centiloid scale. The CLNMF and Aβ load could offer a more 

precise alternative to the more established Centiloid. 

 

 As the Aβ load, Aβ index and CLNMF rely on the decomposition of PET images in 

specific and non-specific binding components, our results are consistent with a 

multivariate pattern of amyloid deposition over time.  
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Abstract 

Purpose 

Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. 

Established methods for assessing Aβ burden can be affected by physiological and technical factors. 

Novel, data-driven metrics have been developed to account for these sources of variability. We 

aimed to evaluate the performance of four data-driven amyloid PET metrics against conventional 

techniques, using a common set of criteria. 

Methods 

Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, 

[18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established 

metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, 

the non-displaceable binding potential (BPND). The four data driven metrics computed were the 

amyloid load (Aβ load), the Aβ PET pathology accumulation index (Aβ index), the Centiloid derived 

from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). 

These metrics were evaluated using reliability and repeatability in test-retest data, associations with 

BPND and CL, and sample size estimates to detect a 25% slowing in Aβ accumulation. 

Results 

All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the 

BPND. The associations with CL suggests that cross-sectional measures of CLNMF, Aβ index and Aβ load 

are robust across studies. Sample size estimates for secondary prevention trial scenarios were the 

lowest for CLNMF and Aβ load compared to the CL.  

Conclusion 

Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide 

comparable performance to more established quantification methods of Aβ PET tracer uptake. The 
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CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger 

cohorts should be conducted.  
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LIST OF ABBREVIATIONS 

AD – Alzheimer’s disease 

ADNI – Alzheimer's Disease Neuroimaging Initiative 

AIBL – Australian Imaging Biomarkers and Lifestyle Study of Ageing 

AMPSS – amyloid pattern similarity score 

Aβ index – Aβ-PET pathology accumulation index 

ARC – annualised rate of change 

BPND – non-displaceable binding potential 

CL – Centiloid scale 

CLNMF – Centiloid scale based on non-negative matrix factorisation 

CSF – cerebrospinal fluid 

DARTEL – diffeomorphic anatomical registration through exponentiated lie algebra  

DVR – distribution volume ratio 

GAIIN – Global Alzheimer's Association Interactive Network 

GIF – geodesic information flow 

ICC – intraclass correlation coefficient 

K – amyloid carrying capacity 

LME – linear mixed effects models 

MCI – mild cognitive impairment 

MNI – Montreal Neurological Institute 

MRI – magnetic resonance imaging  

NifTI – Neuroimaging Informatics Technology Initiative 

NS – non-specific binding 

p.i. – post injection 

PCA – principal component analysis 

PET – positron emission tomography 

ROI – region of interest 

SMC – subjective memory complaint 

SUVr – standard uptake value ratio 

SVM – support vector machine 
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INTRODUCTION 

 

Longitudinal Positron Emission Tomography (PET) studies measuring the rate of change in amyloid 

and tau burden can provide a better understanding of the earliest stages and subsequent spread of 

Alzheimer’s disease (AD) pathology. Measuring small spatiotemporal changes in protein deposition 

with high accuracy and precision can facilitate early detection and tracking of the disease [1], 

increase the prognostic value by determining the risk of cognitive decline [2], and better inform 

clinical trial design [3]. PET-based imaging endpoints are particularly relevant for regulatory approval 

of an anti-amyloid therapy as a disease modifying treatment for individuals with AD [4,5], especially 

for preclinical trials like the AHEAD 3-45 study [6–9]. In clinical practice, quantification plays a 

supplemental role in assisting visual reads of scans in the earliest stages of pathological build-up, 

where there is lower confidence in image interpretation [10]. When disease-modifying therapies 

would become more widely available, quantification might also be used in response monitoring with 

more precision than a discrete visual rating scale [11], and help inform treatment efficacy decisions 

[12]. 

 

The accuracy and precision of PET data quantification is influenced by the measure used to 

determine the cortical amyloid β (Aβ) burden and rate of accumulation. Quantitative PET 

measurements based on kinetic modelling of fully dynamic acquisitions can best account for specific 

and non-specific contributions to tracer uptake. Although the non-displaceable binding potential 

(BPND) derived from those measurements is considered the most accurate in the absence of 

histopathology, it is often not feasible to acquire this data in most patients. Thus, the most common 

technique to measure amyloid burden is the standard uptake value ratio (SUVr) using shorter static 

acquisitions at a pre-determined period post-injection, where the tracer is assumed to have reached 

pseudo-equilibrium. The SUVr corresponds to the ratio between the average uptake of the 
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radiotracer in a target region of interest (ROI) and a reference region which is assumed to have no 

specific tracer uptake. To mitigate biases and variabilities attributed to various tracer effects, the 

Centiloid scale (CL) was introduced as a means of calibrating measures of amyloid burden to a 

tracer-independent, unbounded scale where 0 (PET signal characteristic of young healthy controls) 

and 100 (typical AD subjects) serve as anchor points. The calibration that the Centiloid scale offers 

may be advantageous for multi-centre and multi-tracer studies [13]. 

 

However, semi-quantitative measures obtained with SUVr and CL can be affected by a wide range of 

additional biological and technical sources of error and variability [14], such as the reliance on an MR 

for accurate quantification. In addition, the choice of reference region is a recurrent subject of 

debate as the tracer used, the stability and the definition of the reference region significantly affect 

the amyloid signal over time [15–18]. Accurate spatial definition of the ROIs relies on the quality of 

the segmentation, and in particular its ability to capture an accurate sampling of non-specific uptake. 

Finally, some reference regions have also shown evidence of amyloid pathology in specific forms of 

AD, such as cerebellar Aβ plaques in autosomal dominant forms of AD [19].  

To alleviate some of these concerns for model-based analysis methods, novel data-driven methods 

to measure Aβ deposits have been proposed: 

 

- The amyloid load (Aβ load) was developed by Whittington and Gunn and is based on image 

decomposition to extract the specific tracer binding. This decomposition is based upon 

characterizing the SUVr trajectory over the disease course with a logistic growth model, 

assuming unique maximum amyloid carrying capacity for each brain region [20]. 

- The Aβ-PET pathology accumulation index (Aβ index) by Leuzy et al. relies on a principal 

component analysis (PCA) approach where one component, representing the tracer specific 

binding to Aβ is estimated as part of a registration process between a new image and an 

adaptive group template [21].  
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- The improved Centiloid scale (CLNMF) developed by Bourgeat et al., uses non-negative matrix 

factorisation (NMF), another type of image decomposition, to generate a metric less 

susceptible to tracer-related changes in longitudinal studies compared to the original CL 

scale [22].   

- The Amyloid Pattern Similarity Score (AMPSS) proposes a classifier-based approach that uses 

a support vector machine (SVM) to identify the multivariate patterns of amyloid burden, and 

produces a probabilistic score reflecting this burden relative to a reference population [23].  

 

These four metrics have been developed using independent datasets and have been validated using 

different sets of evaluation criteria, such as agreement with the SUVr and histopathology, or 

precision in detecting changes over time. However, there has yet to be a systematic validation of 

these novel data-driven metrics using consistent data and evaluation criteria. This study aims to 

evaluate these data-driven metrics based on their performance against metrics established in the 

literature, in terms of repeatability, reliability, association with BPND and CL, and sample size 

requirements to power clinical trials. These assessments have been conducted using two 

longitudinal datasets and a test-retest dataset. In addition, we also considered the advantages and 

limitations in the implementations of those metrics to best assess how they could help capture small 

changes in protein deposition over time.   
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MATERIALS & METHODS 

The four data-driven approaches that were considered are described below: the Aβ load 

[20], the Aβ index [21], the CLNMF [22], and the AMPSS [23] (key concepts detailed in 

Supplementary material). To simplify the evaluation of these metrics, we summarised the 

key implementation steps and harmonised the nomenclature around the different aspects 

of these methods (see Figure 1). A comparative overview of the different methods can be 

found in Table 1.  
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Figure 1 Key concepts behind four novel metrics of amyloid deposition 

Abbreviations – SUVr: standard uptake value ratio; Ref. reg.: reference region used for SUVr computation; 

CGM: cerebellar grey matter reference region; WHC: whole cerebellum reference region; PC: principal 

component; NS: non-specific; K: amyloid carrying capacity; NMF: non-negative matrix factorisation. 
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Table 1 Overview of four data-driven metrics of Aβ deposition  

Abbreviations - NS: non-specific; K: maximum amyloid carrying capacity; ADNI: Alzheimer's Disease 

Neuroimaging Initiative; AIBL: Australian Imaging Biomarkers and Lifestyle Study of Ageing; GAIIN: Global 

Alzheimer's Association Interactive Network; AMPSS: amyloid pattern similarity score; SUVr: standard uptake 

value ratio; CL: Centiloid scale; CSF: cerebrospinal fluid. 

Main 

characteristics 

Aβ load 

Whittington et al., 2019 

Aβ index 

Leuzy et al., 2020 

CLNMF 

Bourgeat et al., 2021 

AMPSS 

Prosser et al. 

Key idea 

Image decomposition into 2 

components:  non-specific 

binding and Aβ carrying 

capacity determined via 

logistic growth model 

Image decomposition 

via principal component 

analysis isolates specific 

binding 

Image decomposition 

via non-negative matrix 

factorisation (NMF) 

Support vector machine 

to produce probabilities 

score from little to no 

specific binding through 

to AD-like scans 

Assumptions 

Spatially synchronised 

accumulation according to 

the maximum amyloid 

carrying capacity of each 

region 

Second principal 

component represents 

specific binding 

First component 

represents specific 

binding 

- 

Range 
% 

unbounded 

-1 to 1 

unbounded 

0 to 100 

0 and 100 are anchor 

points 

% 

bounded 

(or unbounded using a 

logit transform) 

Reference region 

independent 
No No No Yes 

MR independent  No Yes  (but No for training) No No 

Specificity when 

processing scans 

from different 

tracers 

Needs to match NS_K image 

scale  

[24] 

Principal components 

specific to each tracer 

 NMF components 

specific to each tracer 

Training on tracer 

specific datasets 

Possible application 

for tau 
Implemented [25] 

Not implemented, 

comparable approach by 

Cho et al. [26] 

N/A Not implemented 

Validation 
Against SUVr on ADNI [20] 

and GAAIN data [24] 

Against SUVr, CSF, visual 

read and 

neuropathology on 

BioFINDER and ADNI 

data [21,27] 

Against standard CL on 

GAAIN and AIBL data 

[22] 

Against SUVr and CSF 

Aβ42 using ADNI data 

Availability 
Available via Invicros’s IQ 

Analytics Platform 

Software freely available 

for research upon 

request 

Open source 

https://doi.org/10.2591

9/5f8400a0b6a1e. 

Plans to make it open 

source 

Implementation in 

studies 

Zammit et al., 2019, 2021 

[28,29] 
Haller et al., 2021 [30] - - 

Main strengths 

- Increased sensitivity for 

longitudinal change in 

amyloid load 

- Implemented for all 

amyloid tracers (PiB [29]; 18F 

tracers [24]) 

- Implemented for tau [25] 

- MR independent 

-  Reference region 

independent 

- Software includes pre-

processing 

- Fully automatic process 

(~20 seconds) 

- Robustness to change 

in tracer in a longitudinal 

setting 

- Improve longitudinal 

consistency compared to 

CL 

- Implemented for all 

amyloid tracers 

 

Reference region 

independent 

 

Main limitations Relies on a reference region 
Relies on a reference 

region for training 

- Relies on a reference 

region 

- Sub-optimal 

decomposition for 18F 

tracers 

Sensitivity to training set 

Possible 

improvements 
- 

Allow for more principal 

components 

Independence from MR 

using CapAIBL [31,32] 
Independent from MR 
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Data acquisition 

 

Data from three separate cohorts was used (see Table 2).  

 

Insight46 

 

First, 350 subjects from Insight46, a prospective neuroscience sub-study of the MRC National Survey 

of Health and Development [33], with baseline and follow-up dynamic PET-MR scans (follow-up time: 

2.4 ± 0.2 years) acquired with [18F]florbetapir were included. All study members were born in the 

same week of 1946. The majority were cognitively normal. 

 

Images were acquired on the same Biograph mMR 3T PET/MRI scanner (Siemens Healthcare, 

Erlangen). The full study protocol is described elsewhere [33]. In short, 370 MBq of [18F]florbetapir 

(Amyvid) was injected intravenously. PET data were acquired continuously for 60 minutes from the 

time of injection to allow both full kinetic modelling and static analysis during the last 10 min of 

scanning (from 50 to 60 min). Both static and dynamic data were acquired in list-mode and 

reconstructed offline via a 3D OSEM algorithm with three iterations and 21 subsets, using the 

software Niftypet [34]. Attenuation correction was based on a pseudo-CT synthesis from T1 and T2 

weighted MR images [35,36]. The dynamic acquisition consisted of 31 frames (4x15 seconds, 8x30 

seconds, 9x60 seconds, 2x180 seconds, and 8x300 seconds). Images were smoothed with a 4mm 

Gaussian kernel with no partial volume correction was applied and were then used as inputs for the 

image processing and analysis pipelines. 
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AIBL 

 

We included 277 subjects from the Australian Imaging, Biomarkers and Lifestyle (AIBL) flagship study 

of aging with PET scans acquired at up to three timepoints using [18F]flutemetamol [37]. The AIBL 

study was designed in part to determine the individual risk of developing AD, the time from 

symptom onset, as well as specific risk factors, for which healthy controls (HC; N=69), and subjects 

from the AD spectrum were recruited, including 118 subjects with subjective memory complaint 

(SMC), 64 with mild cognitive impairment (MCI), 17 with AD, and 9 with another diagnosis.  

 

PET images were acquired for 20 minutes, starting at 90min after intravenous injection of 

approximately 185 MBq of [18F]flutemetamol. The AIBL data is a multi-centre study using several PET 

scanners: Allegro Body (Philips Medical Systems), Biograph128 (Siemens Healthcare, Erlangen), 

Discovery (GE Medical Systems). Images were reconstructed iteratively via 3D RAMLA, 3D OSEM or 

VPHD algorithms respectively of their scanners, then smoothed with a 6mm Gaussian kernel. No 

partial volume correction was applied. The full study protocol is described elsewhere [37]. Images 

were then used as inputs for the image processing and analysis pipelines. 

 

 

Test-retest data  

 

[18F]florbetapir test-retest data (Insight46 cohort) 

Because there were no dedicated test-retest studies for [18F]florbetapir available, we identified 

individuals from Insight46 who are unlikely to accumulate Aβ over time as a proxy for test-rest 

[18F]florbetapir data, as in Landau et al. [38]. Subjects were included based on the following criteria: 
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(1) both baseline and follow-up PET available (follow-up time: 2.4 ± 0.1 years), (2) CSF Aβ42/40 and 

ptau181 available at follow-up, (3) at follow-up, CSF Aβ42/40 value in the top quartile, (4) at follow-

up, CSF ptau181 <=57 pg/ml (cut-off from the manufacturer and further validated [39]), (5) no mild 

cognitive impairment or major brain disorder at baseline (based clinical consensus criteria [40]), 

yielding 16 individuals. 

 

[18F]flutemetamol test-retest data (independent cohorts) 

Finally, 10 test-retest scans from subjects with an AD diagnosis acquired using [18F]flutemetamol were 

also included [41,42].  

The test-retest [18F]flutemetamol data comprised of two [18F]flutemetamol  studies: 5 subjects from a 

Japanese Phase II study (GE067-017) with scans acquired 1-4 weeks apart [42] and 5 subjects from a 

European Phase II study (ALZ201) with scans acquired 7 days apart [41]. All subjects had a confirmed 

AD diagnosis. The 10 subjects were injected 120 MBq of the tracer at each timepoint. PET images 

were acquired from 90min to 120min post injection (p.i.) [42] or 85min to 115min p.i. [41]. PET 

scans were reconstructed into 6x5min frames either iteratively or via filtered back projection 

depending on the scanner used. Images were smoothed with a 6mm Gaussian kernel. No partial 

volume correction was applied. 
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N Subjects 

(1
st

 

timepoint) 

Age  

(years) 

Gender 

(% 

female) 

ApoE4 

ε4  

(% 

carriers) 

N 

Timepoints 

Follow-

up time 
Radiotracer 

Dynamic 

acquisition 

Insight 46 350 
70.6 ± 

0.7 
48.9 29.3 2 

2.4 ± 0.2 

years 

18
F-

florbetapir 
yes 

AIBL 277 
73.4 ± 

5.9 
51.6 30.4 3 

fu1: 1.6 ± 

0.6 years 

fu2: 3.2 ± 

0.5 years 

18
F-

flutemetamol 
no 

Test-retest       
 

 

 

18
F-florbetapir 

test-retest 

(Insight46 

cohort) 

16 
70.5 ± 

0.6 
25 - 2 

2.4 ± 0.1 

years 

18
F-

florbetapir
 yes 

 

18
F-flutemetamol 

test-retest 

(independent 

cohort) 

10 
72.5 ± 

6.5 
40.0 - 2 

7 days or 

1-4 weeks 

18
F-

flutemetamol 
no 

 

Table 2 Demographic characteristics for each dataset 

Where applicable, values are described as mean ± standard deviation. 

Abbreviations - ApoE ε4 carriers: carriers of at least one copy of the ε4 allele of the APOE gene; fu= follow-up 

 

Image processing 

 

Harmonised pre-processing 

Except for the Aβ index which does not require any pre-processing, each of the amyloid metrics uses 

a slightly different pipeline. For a fairer comparison, we tried to harmonise these steps as much as 

possible. When required by the methodologies (see Table S1), the PET scans were registered into 

Montreal Neurologic Institute (MNI) 152 space [43]. First,  [18F]florbetapir or [18F]flutemetamol scans 

were co-registered to the corresponding T1w MR using a rigid body transformation with the SPM 12 

toolbox (Statistical Parametric Mapping, Wellcome Trust Centre for Neuroimaging, London, UK) [44]. 

Using diffeomorphic nonlinear registration tools (DARTEL) [45], the bias-corrected T1w scans were 

used to create a group average template that was then registered into MNI152 space. Finally, the 
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DARTEL flow fields were applied (without modulation) to the PET data to register the scans into 

MNI152 space.   

 

Conventional metrics 

T1w images were parcellated with a multi-atlas based segmentation using geodesic information flow 

(GIF) [46]. The labels were propagated to the PET scan through the transformation obtained from 

the PET-to-MR registration. Centiloid values were computed with the whole cerebellum as reference 

region, as in the recommended processing guidelines [13]. SUVr was transformed into Centiloid 

using the previously published calibration equations for test-retest [18F]flutemetamol [47] and 

Insight46 [18F]florbetapir data [48]. We focused on Centiloid values though SUVr results can be found 

in Supplementary material. The dynamic analysis was performed with tissue activity curves fitted 

using the reference Logan method [49] with a start time of 30 minutes, from which the distribution 

volume ratio (DVR) was derived, and BPND is defined as DVR - 1. The mean time activity curve was 

obtained from the same composite ROI as used in the static analysis and with the cerebellar grey 

matter as the reference region. 

 

Data-driven metrics 

All data-driven metrics except for AMPSS and Aβ load used the training sets as laid out in the original 

papers. Specific processing requirements and implementation for the data-driven metrics can be 

found in Supplementary material. 

 

Evaluation of the performance and statistical analysis 

 

To evaluate the performance of these novel data-driven metrics against established metrics in the 

literature, we compared these methodologies based on the following criteria (1) repeatability and 
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reliability; (2) strength of the association with the BPND, which is considered to be closer to ground 

truth than other available metrics, (3) strength of the association with the CL scale; (4) variability of 

the annualised rates of change and (5) sample size requirements to power a clinical trial aimed at 

detecting a 25% decrease in amyloid accumulation over 2 years. Statistical analyses were performed 

using R, version 4.0.4 (R Program for Statistical Computing) [50]. 

 

Repeatability and Reliability 

Repeatability of both the data-driven metrics and conventional measures of amyloid burden were 

assessed according to the standard deviation between test and retest scans, decomposed into 

between subject and within-subject components. These metrics have different ranges and various 

offsets, while being either bounded or not. Discrepancies in their mathematical definition hence 

restricts our ability to perform head-to-head comparisons. 

The test-retest reliability was assessed using the intraclass correlation coefficient (ICC) [51]. ICC 

estimates and their 95% confidence intervals were calculated using R irr package based on a mean-

rating (k = 2), absolute-agreement and a 2-way mixed-effects model, which assumes the same 

measurement error at each timepoint. 

Two of the cohorts in this study provided some capability for assessing reliability of the data driven 

metrics. The first was a [18F]florbetapir test-retest dataset build selection of 16 stable subjects from 

Insight46, and the second was the [18F]flutemetamol test-retest dataset (from independent cohorts) 

with 10 individuals with high amyloid burden and short interval between scans. 

 

Correlation with BPND 

No ground truth, such as histopathology, exists for in vivo quantification of amyloid burden, 

however, BPND obtained from dynamic acquisitions using kinetic modelling accounts for variations in 

physiological factors such as blood flow alterations and radiotracer clearance [14,52]. These 

advantages provide a more accurate representation of the true measurements of specific amyloid 
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binding compared to the SUVr. We therefore computed the repeated measurement correlation 

between each data driven metric and the BPND. The repeated measurement correlation 

(implemented in the R package rmcorr) was chosen to take into consideration the non-

independence of the measures obtained for the same individual over time [53]. It does so by shifting 

the common use of analysis of variance (ANOVA) and using it to determine the relationship between 

two continuous variables (amyloid metrics at baseline and follow-up) while controlling for between-

subject variance. From this atypical ANOVA implementation can be derived a repeated 

measurement correlation coefficient (𝑟𝑟𝑚), which here represents the within-person change in one 

metric versus the BPND, and is defined as follows: 

𝑟𝑟𝑚 =  
𝑆𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒

𝑆𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒 + 𝑆𝑆𝑒𝑟𝑟𝑜𝑟
 

 

with 𝑆𝑆𝑚𝑒𝑎𝑠𝑢𝑟𝑒  and 𝑆𝑆𝑒𝑟𝑟𝑜𝑟  representing the sum of squares of the measures and errors respectively.   

95% confidence intervals for 𝑟𝑟𝑚  were built using 2,000 bootstrap replicates. This was only evaluated in the 

Insight46 dataset, as the AIBL data acquisitions included only late static frames.  

 

Correlation with CL 

The repeated measurement correlation of each metric with CL values was also evaluated, as it allows 

for the comparison of [18F]flutemetamol (AIBL) and [18F]florbetapir (Insight46) data. In each case, the 

strength of the association was determined by the repeated measurement correlation 𝑟𝑟𝑚 and 95% 

confidence intervals for 𝑟𝑟𝑚  were built using 2,000 bootstrap replicates. The CL scale being developed to 

harmonise amyloid measurements across tracers, we would not expect to observe a significant 

difference in longitudinal change across metrics. 
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Annualised rates of change 

For Insight46, the annualised rates of changes (ARC) were computed as the difference between 

follow-up and baseline metric over the time interval between scans. As the AIBL data comprises a 

subset of subject with three timepoints (N=119), the amyloid accumulation rates were estimated 

with linear mixed effects models (LME; using the lme4 package in R). We included both random 

slopes and random intercepts to account for inter-individual variability, with an unstructured 

covariance matrix allowing for a covariance between the slope and intercept. With dt representing 

the time since the baseline scans in years, the LME model was as follows: 

𝑦𝑖,𝑗 = β0,𝑖 + β1,𝑖𝑡𝑖,𝑗 + 𝑒𝑖,𝑗 

with, ei,j ∼ N 0,σe
2 , 𝑓𝑜𝑟 𝑖 ≠ 𝑘, 𝑐𝑜𝑣 𝑢𝑖, 𝑢𝑘 = 0, cov ei,j, uj = 0 

Here y𝑖,𝑗 is the value of the outcome variable (i.e., amyloid metric) for the 𝑖th subject, attending their 

𝑗th PET acquisition (j = 1 to 3). β0,𝑖 = β0 + 𝑢0,𝑖 and β1,𝑖 = β1 + 𝑢1,𝑖 with β0 and β1 the overall fixed 

effects for the intercept and the slope, and 𝑢0,𝑖 and 𝑢1,𝑖 the random effects for the intercept and the 

slope at the group level such that  
𝑢0,𝑖
𝑢1,𝑖

 ~𝑁 0, 
𝜎0
2 𝜎01

𝜎01 𝜎1
2   . 𝑒𝑖, 𝑗 is the random effect at the 

individual level and 𝑡𝑖,𝑗 the time of the 𝑗th PET acquisition relative to the time of the baseline 

acquisition (in years). The corresponding R syntax is : ‘Metric ∼ dt + (1 + dt|subject)’. 

In some cases, this model would not converge due to the inability of estimating the random slope 

effect in the amyloid negative population. In these instances, a random intercept only model was 

used for the amyloid negative group.  The previous equation can be simplified with β1,𝑖 = β1, 

𝑢0,𝑖 ∼ 𝑁 0,σ0
2   and the R syntax is then: ‘Metric ∼ dt + (1 |subject)’. 

Additionally, coefficients of variation for the ARC were computed (standard deviation/mean), with 

the sampling uncertainty assessed using bootstrap resampling. Bias-corrected and accelerated 

confidence intervals were obtained using 5,000 bootstrap replicates.  
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Sample size estimates 

Finally, the ARC and standard deviations were used to compute the samples size estimates (α = 0.05; 

1-β = 80%) required to detect 25% decrease in annualised amyloid accumulation. The sample size 

estimates represent the required sample size per arm, in the context of a trial with one measure of 

change and equal number of participants in each arm.  As in Lopes Alves et al. [3], we designed two 

clinical trial scenario, based on CL cut-off values. The first is a secondary prevention trial with 

individuals in early amyloid accumulation or preclinical AD (20 ≤ CL ≤ 50 at baseline) [7]. The second 

is a secondary prevention trial with individuals with at least intermediate amyloid load (CL > 20 at 

baseline). Non-parametric, bias-corrected, and accelerated confidence intervals were estimated 

using 5,000 bootstrap replicates. 
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RESULTS 

Repeatability and Reliability  

A summary of our results on the repeatability and reliability of each metric can be found in Table 3. 

 

 

 

Table 3 Repeatability and reliability of amyloid metrics evaluated on test-retest [
18

F]florbetapir data from a subset of Insight46 scans 

assumed to be stable over time (N=16, except for DVR: N=13), and on test-retest [
18

F]flutemetamol data from independent cohorts 

(N=10). Selection criteria for Insight46 stable group: (1) baseline and follow-up PET available, (2) CSF Aβ42/40 and ptau181 available at 

follow-up, (3) at follow-up, CSF Aβ42/40 value in the top quartile, (4) at follow-up, CSF ptau181 <=57 pg/ml, (5) no mild cognitive 

impairment or major brain disorder at baseline 

ICC and 95% confidence intervals (in brackets) estimates were calculated based on a mean-rating (k = 2), absolute-agreement and a 2-

way mixed-effects model. 

Abbreviations – AD: Alzheimer’s disease; HC: healthy controls; RMS: root mean squares; ICC: intraclass correlation coefficient 

  
18

F-florbetapir (Insight46 cohort) 
18

F-flutemetamol (independent cohort) 

    
DVR  

(BPND + 
1) 

CL 
Aβ 

load 
Aβ 

index 
CLNMF AMPSS CL 

Aβ 
load  

Aβ 
index 

CLNMF AMPSS 

Sample Mean 1.06 -6.74 0.17 -0.53 -2.39 0.25 97.96 0.94 0.21 106.32 0.84 

Sample SD 0.03 7.95 0.05 0.09 8.99 0.11 21.55 0.18 0.14 22.39 0.06 

 
RMS between 
subjects 

0.05 11.25 0.08 0.13 12.72 0.16 30.48 0.26 0.20 31.66 0.09 

 
RMS within 
subjects 

0.02 3.69 0.01 0.04 2.78 0.04 2.63 0.02 0.01 2.10 0.01 

ICC 
0.81  

[0.36, 
0.94] 

0.89 
[0.69, 
0.96] 

0.97 
[0.91, 
0.99] 

0.92 
[0.76, 
0.97] 

0.95 
[0.87, 
0.98] 

0.93 
[0.80, 
0.97] 

0.99  
[0.97, 
1.00] 

0.99  
[0.96, 
1.00] 

1.00  
[0.98, 
1.00] 

1.00  
[0.98, 
1.00] 

0.99  
[0.95, 
1.00] 
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Figure 2 Bland-Altman plots indicating bias between test and retest measurements. Dashed lines indicate the 

mean, lower and upper limit of agreement (+/- 1.96 standard deviation from the mean) 

 

The [18F]flutemetamol test-retest data represents short-interval acquisitions in 10 subjects with an 

AD diagnosis, while the [18F]florbetapir data was a much longer scan interval in a subset of 

individuals that represented a stable group of 16 healthy controls. Test and retest scans acquired 

with [18F]flutemetamol show higher agreement with each other than the ones in [18F]florbetapir 

subset (Figure 2).  

Repeatability can only be compared for the CL and CLNMF as they are on a similar scale. Both in the 

[18F]flutemetamol and [18F]florbetapir data, the within-subject RMS of these two metrics is within 1 

unit. Furthermore, we can assess the reliability of all metrics against each other as the ICC is not 

dependant on the range of the metric. For the [18F]flutemetamol test-retest scans, we observed 

excellent reliability of all the metrics (ICC ≥ 0.98), which indicates that the variability observed 

between the two scans is mostly attributable to an underlying difference in protein deposition 

across individuals rather than measurement error. The overlapping confidence intervals suggest that 

there is no evidence of difference in this across methods. For [18F]florbetapir, our results suggest 
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that all metrics have acceptable reliability. We verified using an F test that the high ICC values could 

not be explained by high between-subject variability. 

 

Correlation with BPND 

 

 

 

 

Figure 3 Correlation between amyloid metrics and non-displaceable binding potential BPND, evaluated with 

dynamic acquisition scans from Insight46 data. The 95% confidence interval for     was built using 2,000 

bootstrap replicates. The dotted lines represent the regression for the metrics averaged per subject.  

Abbreviation -    : repeated measurement correlation coefficient 

 

Repeated measure correlations between BPND and the other metrics were computed for the 

Insight46 dataset (only dataset with dynamic acquisitions) and are shown in Figure 3.   There is a 

positive association between the longitudinal change in all metrics and BPND, with highest rrm values 

for the CL, Aβ load and Aβ index. A correlation of the novel metrics and the SUVr can be found in 

Supplementary material. 
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Correlation with CL 

 

Figure 4 Correlation between amyloid metrics and the Centiloid scale (CL). The dotted lines represent the 

regression for the metrics averaged per subject. The 95% confidence interval for     was built using 2,000 

bootstrap replicates. 

Comparison of the data driven metrics with the CL scale over both datasets is shown in Figure 4. The 

CLNMF, Aβ load and Aβ index show close regression slopes for both AIBL and Insight46. The 𝑟𝑟𝑚 is 

highest for these three metrics indicating a high association with longitudinal change in CL especially 

in Insight46, although a lower 𝑟𝑟𝑚 for the Aβ index in AIBL. All data-driven metrics systematically 

show higher correlation with CL in Insight46 compared to AIBL.  
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Annual rate of change & Coefficients of variation 

 

 
   Insight46  AIBL  

    ARC CV ARC CV 

 
   All CL ≤ 15 

20 ≤ CL ≤ 
50 

CL > 20 All All CL ≤ 15 
20 ≤ CL ≤ 

50 
CL > 20 All 

N    438 331 39 67 438 185 100 11 52 185 

BPND    
0.01 ± 
0.02 

0.01 ± 
0.02 

0.03 ± 0.02 
0.03 ± 
0.02 

1.6 
[1.3, 2.2] 

N/A 

CL    2.4 ± 3.5 1.5 ± 2.8 6.1 ± 3.8 5.5 ± 3.5 
1.5 

[1.3, 1.7] 
0.5 ± 
13.8 

-0.1 ± 12.5 3.0 ± 13.4 2.4 ± 15.7 
26.8 

[8.7, >100] 

Aβ load    
0.01 ± 
0.02 

0.01 ± 
0.01 

0.03 ± 0.02 
0.03 ± 
0.01 

1.7 
[1.4, 2.0] 

0.01 ± 
0.04 

0.01 ± 
0.03 

0.02 ± 0.02 
0.02 ± 
0.05 

2.9 
[2.3, 3.7] 

Aβ 
index 

   
0.01 ± 
0.03 

0.01 ± 
0.03 

0.04 ± 0.03 
0.04 ± 
0.03 

2.2 
[1.8, 3.2] 

0.02 ± 
0.08 

0.01 ± 
0.04 

0.04 ± 0.14 
0.03 ± 
0.09 

3.6 
[2.7, 6.3] 

CL
NMF

    2.1 ± 3.0 1.2 ± 2.3 5.9 ± 3.1 5.2 ± 2.8 
1.5 

[1.3, 1.8] 
2.4 ± 
5.6 

1.6 ± 5.6 3.6 ± 4.2 3.5 ± 5.5 
2.4 

[2.0, 3.0] 

AMPSS    
0.02 ± 
0.04 

0.02 ± 
0.04 

0.04 ± 0.05 
0.04 ± 
0.05 

1.9 
[1.6, 2.4] 

0.01 ± 
0.11 

0.01 ± 
0.11 

0.03 ± 0.07 
0.02 ± 
0.11 

12.9 
[4.6, >100] 

 

Table 4 Annualised rates of change in amyloid deposition and coefficients of variation in AIBL and Insight46 

datasets. Values are described as mean ± standard deviation. Bias corrected and accelerated confidence 

intervals for the coefficients of variation were built via bootstrap resampling using 5,000 replicates.  

Abbreviations – ARC: annualised rates of change, CV: coefficients of variation 

 

 

The annualised amyloid accumulation rates were computed for all metrics in Insight46 and AIBL, for 

three subsets of the datasets defined using the baseline CL value of each subject (Table 4). The 

ability to compare these ARC in between metrics is restricted by the various ranges of these 

methodologies as well as the different cognitive profiles of the subjects in the Insight46 and AIBL 

studies.  Nonetheless, we can observe that the ARC variability is from two and up to eight times 

higher in the AIBL dataset compared to the Insight46 dataset. In Insight46, the coefficients of 

variation of the ARC for the CLNMF and the Aβ load were in line with the ones from the conventional 

metrics while in AIBL, these two metrics had a lower CV compared to the CL. The mean CL ARC was 

found to be negative in AIBL in the subset of scans with CL≤15). 
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Sample size estimates  

 

 Insight46 

 
20 ≤ CL ≤ 50 CL > 20 

N 39 67 

BPND 93 [39, 340] 105 [52, 284] 

CL 96 [56, 183] 117 [69, 232] 

Aβ
 
load 81 [52, 139] 111 [69,208] 

Aβ index 131 [69, 288] 147 [84,348] 

CL
NMF

 71 [45, 113] 74 [52, 109] 

AMPSS 558 [220, 3123] 553 [217, 3069] 

 

 

 

 

 

 

 

The sample size estimates to detect a 25% reduction in accumulation rates are summarised in Table 

5. For secondary prevention trials scenario, targeting early accumulators and subjects with at least 

moderate amyloid burden, the CLNMF consistently displayed lower sample size requirements in 

comparison to all other metrics, though the confidence intervals do overlap between measures. The 

Aβ load performed in line with the BPND and the CL approaches. 

  

Table 5 Samples size estimates per arm (α = 0.05; 1-β = 80%) required to 

detect a 25% decrease in annualized amyloid accumulation. This assumes 

two arms, one treatment and one placebo with equal size. Two scenarios 

were assessed: a secondary prevention trial focusing on early 

accumulators (20<CL≤ 50), and a secondary prevention trial for 

individuals with at least moderate amyloid burden (CL20). Bias-

corrected and accelerated confidence intervals were obtained using 5,000 

bootstrap replicates. 

Abbreviations – cgm: cerebellar grey matter reference region; whc: whole 

cerebellum reference region 
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DISCUSSION 

 

In this study, we evaluated four novel data-driven metrics of amyloid deposition on three datasets, 

acquired with [18F]florbetapir and [18F]-flutemetamol, and compared them the more established 

model-based values including CL and BPND.  

 

We first evaluated the repeatability and reliability of the data-driven methodologies. The variability 

of repeated measurements should be considered together with the mean, standard deviation, and 

range of each metric. Indeed, a direct comparison between these metrics is not always possible 

because of the different scales and ranges of these novel measures. No difference in ICC between 

metrics was observable in the test-retest [18F]flutemetamol and [18F]florbetapir data, except for the 

DVR which had a slightly lower ICC and greater confidence interval than all other metrics. This might 

be explained by small between-subject variability with the DVR (rather than high within-subject 

variability), as a result of DVR values across amyloid negative individuals being very similar (around 

1.0-1.1). This results in the within-subject variation being almost as high as the between subject 

variation, which in turn decreases the ICC.  

Repeated measure correlations between the amyloid metrics and the BPND (DVR - 1) suggest that the 

longitudinal trajectories of the CL, Aβ index, Aβ load and CLNMF are close to those of the BPND. 

When examining the association between these data-driven metrics with the well-established CL 

scale, we found strong cross-sectional relationships between the CLNMF, Aβ load and Aβ index across 

both of our main datasets. AMPSS, on the other hand, showed a more divergent relationship 

between the two datasets, suggesting that it could be dependent on the training set used. In our 

case, we withheld part of the original dataset to form the training data, hence differences in the 

original dataset might be reflected on the final AMPSS. While there are similar relationships between 

datasets, all metrics show a noticeably higher association to longitudinal/intra-individual change in 

CL in the Insight46 dataset compared to AIBL. This could be explained by the definition of the 𝑟𝑟𝑚 
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coefficient as it may be unstable in cases where the expected slope across subjects varies 

significantly, and in cases where the number of observations per subject differs. These two factors 

would be more prominent in AIBL compared to Insight46, which is mostly comprised of cognitively 

unimpaired subjects who underwent two PET scans. Additionally, differences in the type of scanner 

used between these datasets could result in slightly different observed uptake in the reference 

region. The Insight 46 uses a single Siemens Biograph combined PET-MR scanner, which tends to be 

more modern than many of the PET-CT scanners used in AIBL, as well as having a larger axial field of 

view. Another explanation could be that the Insight 46 cohort comprises mostly healthy controls 

while the linear regression for AIBL has more individuals, given the inclusion of MCI and AD patients, 

having higher amyloid values.  

Finally, our results show than the BPND, CLNMF and Aβ load are the metrics that are the most sensitive 

to changes in amyloid accumulation rate, leading to lower coefficients of variation and lower sample 

size estimates required to power hypothetical secondary prevention trials. We chose not to include 

the sample size estimates for AIBL (where the sample sizes were also lowest for the CLNMF and Aβ 

load) because there was no evidence for many of the metrics, data-driven or established, of the ARC 

being significantly different from zero, which appears to be driven more by a high level of 

longitudinal variability. This variability might stem from differences in uptake values in the 

cerebellum at each timepoint, that are dependent on the patient positioning within the scanner field 

of view. Some approaches rely on an accurate definition and registration of the cerebellum or 

cerebellar grey matter to build their image component templates from which the data-driven 

metrics are derived. Under or over-estimation of the amyloid burden in the cerebellum might 

therefore increase the longitudinal variability across all metrics.  Overall, the CLNMF and Aβ load seem 

to offer a more precise alternative to the established CL, though further studies on larger cohorts 

that also include [18F]florbetaben are required for confirmation.   
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Beyond quantitative performance criteria, several of the data driven metrics provide other potential 

benefits that should be taken into consideration. As mentioned previously, the AMPSS and the Aβ 

index do not require a pre-defined reference region which is regularly subject of debate and a well-

documented source of uncertainty. For the AMPSS, as the original training consisted of F-18 

florbetapir PET data from ADNI, we first attempted to use this training data for the F-18 

flutametamol AIBL dataset as well, but the poor performance of the SVM suggests that the voxel-

wise multivariate pattern captured by the training is tracer-specific (data not shown). For unseen 

data, the optimisation of a well-calibrated unbiased, cross-tracer training set could potentially 

increase the accuracy and precision of this metric. There may be instances, such as individuals with 

contraindications to MR, where PET-only methods are desirable. The Aβ index and an updated 

version of the CLNMF do not require an MR, and can be alternatives to PET-only pipelines that were 

developed for the SUVr and CL [54,55]. The Aβ load can also be computed without MR, provided 

that the NS and K templates are available and that SUVr maps are obtained with a PET-only pipeline. 

Moreover, the availability of the software is important to consider towards the aims of 

reproducibility and open science. If the software to perform the data-driven metric includes all pre-

processing steps, or alternatively documentation that is suitably comprehensive such that these 

steps can be accurately reproduced in other user’s environments, then the variability caused by 

using various pipelines (and in particular, the registration software) could be limited. Indeed, we 

found that the Aβ index was the metric which performs most similarly across both our datasets in 

terms of correlation with CL (cross-sectional data only). Importantly, the CLNMF, like the CL, is tracer 

independent and was shown to be more robust than CL to change in tracer in the original paper [22]. 

The improved precision of the CLNMF could further encourage the use of Centiloid and standardised 

scales by establishing a harmonised outcome metric for clinical practice, and by being key to several 

stages of drug development [11]. Lastly, it is worth noting that the Aβ index, the AMPSS and the 

CLNMF are either open-source or available to researchers upon request.  
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These novel metrics, being data-driven, may help us gain insight into the spatiotemporal pattern of 

amyloid accumulation. The Aβ index, Aβ load and CLNMF that isolate the specific binding pattern, and 

the AMPSS that dichotomises Aβ accumulation between HC and AD, overall show relatively close 

performance compared to the SUVr. This would suggest that for a large proportion of the 

population, there is a multivariate pattern of amyloid uptake rather than a regional spreading 

pattern. This supports a relatively generalisable global multivariate pattern of uptake, where some 

regions accumulate faster than others. This is line with the work of Whittington and Gunn [56] and 

Cho that showed that amyloid accumulation occurs simultaneously across many regions in the brain, 

usually by the time tau deposition in the entorhinal cortex emerges [26].  

 

Data-driven metrics also present with some limitations. They are all surrogate measures of amyloid 

deposition and usually compress spatial information into a single summary metric. It is nonetheless 

worth noting that two methodologies can also help image amyloid patterns: the AMPSS which can 

output a feature weighted map from the SVM and the Aβ load which computation requires a SUVr 

fitted image from the NS and K maps. We could however take advantage of specific spatial patterns 

to target specific populations. For instance, subjects with cerebral amyloid angiopathy (CAA) have 

shown significant amyloid uptake in the occipital cortex [57]. A data-driven approach could 

potentially isolate a component specific to CAA, allowing the discrimination of two types of amyloid 

deposition. Finally, as these methods are data-driven and more susceptible to bias, demographic 

characteristics and technical specificities should be considered before implementing them on novel 

datasets. 

There are potential limitations with regards to our implementation of each method. We chose to 

process the scans with little or no modification to the methods, including using the training and 

calibration data provided for each method where available. Although these methods are all data-

driven, the training and calibration datasets differed in the number of scans required, amyloid 

burden distribution in the dataset and spatial and intensity normalization parameters. The use of 
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different training and calibration sets unique to each data driven metric is another potential source 

of variability. On the other hand, our approach avoids overfitting and allowed us to evaluate the 

methods how they will most likely be implemented by other researchers and clinicians. Furthermore, 

the training set for the Aβ load from which the NS and K maps are derived was made of 

[18F]florbetapir scans and is therefore not best suited for the AIBL study acquired with 

[18F]flutemetamol. Despite the data-driven metrics being less reliant on formal anatomical 

boundaries to define a specific reference or target region, most implementations of these metrics 

still involve some reference region definition as part of the process, and the choice of reference 

region is different between methods. 

 

Apart from the four metrics evaluated in this study, other data-driven methods have been 

developed. The AMYQ method by Pegueroles et al. [58] is similar to the Aβ index in that it relies on a 

PCA approach and does not require the definition of a reference region. The idea of the adaptive 

template created via PCA in the Aβ index has also been achieved using MR independent deep 

learning approach by Kang et al. [59] Another Aβ load implemented by Tanaka et al. [60], which 

mainly differs from the Aβ load by Whittington and Gunn in the creation of K and NS templates, for 

which they use a PCA. Defining a metric without a formally defined reference region was also the 

goal of Chincanari et al., who developed ELBA, a metric of amyloid deposition relying on the intensity 

distribution patterns rather than specific ROIs. [61] Finally, Liu et al. proposed a method to estimate 

the specific amyloid burden (SAβ load) relying on the estimate of the non-specific binding using deep 

learning [62].  

 

Future directions 

The methods examined seem to be able to capture population-level, longitudinal, patterns of 

amyloid deposition. Further investigation assessing their capacity to accurately measure the change 

in protein burden at the subject level would be clinically relevant. To implement these metrics in a 
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longitudinal setting, their robustness to different tracers and scanners with different spatial 

resolution, as often is the case in multi-centre studies, should be investigated further. Future 

evaluation could also include [18F]-florbetaben data which was not tested our study, as well as novel 

tau metrics which were beyond the scope of this study.   

Overall, the recent drive to develop innovative, alternative methods to measure protein 

deposition via PET might benefit from a formal challenge in the future where these methods are 

evaluated against an unseen reference dataset that each group processes and provides results on. 

 

CONCLUSION 

We evaluated and validated four types of data-driven metrics of amyloid deposition on three 

separate datasets using a joint set of criteria against the more established CL and BPND. We found Aβ 

index, Aβ load and CLNMF all have a close longitudinal association with the BPND, while the CLNMF and 

Aβ load could offer a more precise alternative to the CL. Moreover, these novel data driven metrics 

can provide benefits such as being robust across tracers and pre-processing pipelines while offering 

a precision comparable or superior to the CL. Reducing the variability of PET longitudinal 

measurements may be achieved by using data-driven metrics of amyloid uptake.  
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