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Highlights 5 

• Synergisms greater than 2-fold reported in roughly 5% of investigated mixtures.  6 

• This frequency is representative of mixtures toxicology studies in the literature. 7 

• Magnitude of synergistic deviations from additivity can be large (up to 100-8 

fold). 9 

• Further research to increase mechanistic understanding of synergisms is 10 

required.   11 

Abstract 12 

Chemical pollution is characterised by sequential and simultaneous exposure to unintentional 13 
complex mixtures. The almost infinite number of real-life mixtures poses major challenges for 14 
investigations of all possible exposure scenarios through whole mixture or component-based 15 
approaches. As a pragmatic approach in data-poor situations, the application of a Mixture 16 
Assessment Factor to single substances assessments under REACH was announced in the 17 
European Chemicals Strategy for Sustainability. Current proposals for this factor are based on 18 
the assumption that mixtures behave additively, assuming that synergistic interactions are 19 
rare. This assumption is based on eight reviews published in the last 30 years. Synergistic 20 
deviations from additivity greater than 2-fold were reported in roughly 5% of investigated 21 
mixtures. This was more, rather than less, frequent in the handful of suitable studies of low 22 
dose mammalian mixture toxicity. This frequency is representative of mixtures toxicology 23 
studies in the literature and should not be interpreted as the frequency of synergisms in real 24 
world exposures. Understanding the frequency and likelihood of synergisms would entail 25 
detailed understanding of the co-occurrence of groups of substances giving rise to such 26 
interactions in relevant environmental media. Assumptions that synergistic interactions in 27 
real-life mixtures are rare appear to be premature. While further research is required, 28 
potential synergisms should not be omitted from debates on the conservatism or otherwise of 29 
mixture allocation factor or other regulatory approaches to protect people and environment 30 
from mixture effects. 31 

Keywords: chemical mixtures, synergism, mixture assessment factor, mixture 32 

allocation factor, MAF, interaction 33 

Abbreviations: 34 

CA: Concentration or dose addition 35 

IF: Interaction Factor 36 

MAF: Mixture Assessment Factor or Mixture Allocation Factor 37 

MRA: Mixture Risk Assessment 38 

POD: Point of departure 39 
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1. Context 41 

All living systems including humans are sequentially and simultaneously exposed to 42 

complex mixtures of chemicals. Over 350 000 anthropogenic chemicals and mixtures 43 

of chemicals have been registered for production and use [1] and the myriad of by-44 

products, metabolites and abiotically formed transformation products are not 45 

included in this figure.  Chemical pollution is therefore a wicked problem characterised 46 

by exposure to unintentional complex mixtures found in air, water, soils, in food and 47 

household and consumer products. The “something from nothing” toxicological 48 

behaviour of chemicals, or observation of mixture effects when all individual chemicals 49 

are present at concentrations below their individual no-effect levels [2], has been 50 

demonstrated in a broad range of complex chemical mixtures [3]. 51 

The scientific understanding of mixture effects has indisputably advanced in recent 52 

years as has the development of methods to assess risks from combined exposures 53 

[4,5]. Nonetheless, the almost infinite number of real-life mixtures poses major 54 

challenges for investigations of all possible exposure scenarios through whole mixture 55 

or component-based approaches. Additionally, regulatory systems were designed to 56 

address single substances through different regulatory jurisdiction often aligned with 57 

specific uses, applications or processes rather than co-exposure to multiple chemicals 58 

regulated under different legislative silos [6]. The need for cross-cutting, intermediary, 59 

pragmatic approaches that can be implemented at relatively short notice to address 60 

potential mixture risks was recognised in the European Union Chemical Strategy for 61 

Sustainability [7].  The Strategy, published in 2020, announced the introduction of a 62 

Mixture Assessment Factor (MAF), sometimes referred to as a Mixture Allocation 63 

Factor, to single substance risk assessments under REACH [8]. 64 

The application of the MAF has been argued to differ from uncertainty factors applied 65 

in chemical hazard assessment to account for extrapolation of experimental data in 66 

animals to the real world [9]. It is driven by co-exposure considerations and therefore 67 

more akin to the risk cup/allocation factor concept applied in the context of cumulative 68 

exposure and risk assessments [10]. It has been defined as a factor by which the 69 

regulatory safety threshold for an individual compound needs to be divided to ensure 70 

the same level of protection against unintended mixture effect as the level of protection 71 

aimed for in single substance assessment [10] and is intended as a pragmatic default 72 

approach in data-poor situations. 73 

One of the greatest challenges to introducing a MAF and subject of much debate and 74 

contention is how to select an appropriate size for this factor [11,10]. Whilst the MAF 75 

has been said to target additional uncertainties encountered in chemical mixture risk 76 

assessment (MRA) including potential synergies, (eco)toxicological data gaps and lack 77 

of full composition information [12], the algorithms proposed to date to derive the size 78 

of the MAF for both environmental and health risk assessment are based on the 79 

explicit assumption that multi-component mixtures behave additively, adopting the 80 

principle of concentration or dose addition (CA) as a conservative default [11,10]. It is 81 
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therefore clear that the MAF, as currently discussed, would not account for the 82 

potential for synergistic interactions (more-than-additive).  In earlier discussions on 83 

the size of a MAF, a separate Interaction Factor (IF), an additional MAF to specifically 84 

account for synergistic interactions, was discussed in the context of defined mixtures, 85 

such as biocide formulations [13]. A commonly encountered assumption is that 86 

synergisms occur rarely at concentrations close or below the point of departure (POD) 87 

concentrations of individual mixture components [11,14]. This assumption is typically 88 

justified by citing one or more of the several reviews that have attempted examine the 89 

frequency and/or magnitude of deviations from additivity [15] in the last 30 years. 90 

Implications of this assumption are that, without evidence of the contrary, the 91 

potential for synergistic effects can be considered negligible [14,16]. What is rare, 92 

frequent or negligible is however not strictly a scientific fact but represents a value 93 

judgment. The normative conclusions about the frequency of synergistic interactions 94 

of most of these reviews were written when the scientific and regulatory debates 95 

revolved around the feasibility and validity of component-based approaches to MRA. 96 

This context has now changed. While the factual evidence and numbers remain, their 97 

regulatory significance has shifted. In this commentary, the evidence base for the 98 

frequency and magnitude of synergistic interactions in chemical mixtures is briefly 99 

summarised before opening a debate around the interpretation of this evidence in the 100 

current regulatory context of the application of a MAF. 101 

2. Experimental evidence on the frequency and magnitude of 102 

synergisms 103 

2.1. Narcosis in aquatic organisms 104 

Warne and Hawker [17] reviewed 104 equitoxic mixtures of a total of 182 chemicals 105 

with a predominantly unspecific, narcotic mode of action on aquatic organisms. Using 106 

a corrected Toxic Enhancement Index, they formulate their funnel hypothesis, i.e. the 107 

frequency of deviations from additivity decreases with the number of components in 108 

the mixture. These authors did not observe deviations that underestimated the 109 

predicted effect concentrations by more than a factor of 5. It is not possible to derive 110 

the frequency of synergisms from the data as presented.  111 

2.2. Aquatic toxicity of pesticides 112 

Deneer [18] reviewed the literature on joint effect of pesticides on aquatic organisms 113 

from 1972 to 1998, assembling data from 202 mixtures in 26 studies. Deviation from 114 

CA by a factor of more than two-fold was found in less than 10% of mixtures, and the 115 

frequency of synergisms and antagonisms were comparable. These proportions 116 

remained similar when excluding studies on algae, the frequency of more than two-117 

fold deviation from CA was 6% (8/132 mixtures). The magnitude of synergistic 118 

deviation was as high as 20-fold in a mixture of deltamethrin and carbaryl. For 3 of 119 

these 8 mixtures, the underestimation of mixture effect doses by CA was greater than 120 

5-fold. 121 
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2.3. Ecotoxicological endpoints 122 

Belden et al. [19] reviewed 303 separate ecotoxicological mixture experiments with 123 

pesticides. About 5% of the 207 experiments that evaluated the CA model reported 124 

model deviation ratios greater than 2, most deviations from CA were less than 5-fold 125 

although a nearly 10-fold deviation was reported for a mixture of organophosphates in 126 

fish.  127 

Vijver et al. [20] focused on 19 ecotoxicological studies (160 experiments) with 128 

organism exposed through water to mixtures of Cd, Cu or Zn, published between 1981 129 

and 2009. Whilst these authors report that interactions were more frequent than 130 

additivity, their criteria to classify deviations from additivity were much stricter than 131 

in the other reviews summarised herein (0.1 or 0.2-fold as compared to 2-fold). 132 

Antagonisms appeared to be more frequent than synergisms. The largest synergistic 133 

deviation reported a 7.5-fold underestimation of the mixture effect dose by CA. 134 

 Cedergreen [21] completed the Belden et al. [19] and the Vijver et al. [20] datasets 135 

with additional searches on mixtures of antifoulants and an update with papers 136 

published up to 2013. A total of 67 studies could be included in a quantitative analysis 137 

of the frequency of synergistic interactions for pesticides, metals and anti-foulants, 138 

respectively. Synergy occurred in 7%, 3% and 26% of the 194, 21 and 136 binary 139 

pesticides, metals and antifoulants mixtures, respectively. The magnitude of the 140 

deviation from CA was generally less but could exceed 10-fold. For pesticides, 95% of 141 

the synergistic mixtures contained combinations including cholinesterase inhibitors 142 

or azole fungicides, two groups of pesticides known to interfere with metabolic 143 

degradation of other xenobiotics. 144 

2.4. Ecotoxicological and mammalian mixture studies  145 

We conducted a systematic review of mixture experiments published between 2007 146 

and 2017 covering all chemicals and toxicity outcomes [22]. Our searches resulted in 147 

an inventory of 1220 mixture experiments from 761 eligible studies, of which about a 148 

quarter reported synergisms. Approximately two thirds of these experiments were 149 

conducted with binary mixtures, and the funnel hypothesis [17] could neither be 150 

confirmed nor refuted. Most experiments relied on low-cost assays with readily 151 

quantifiable endpoints and outcomes of relevant for human risk assessment (e.g. 152 

carcinogenicity, genotoxicity, reproductive toxicity, immunotoxicity, neurotoxicity) 153 

were rarely addressed. About half of the 1220 entries were rated as “definitely” or 154 

“probably” low risk of bias.  155 

Of the 557 experiments that reported synergistic or antagonistic interactions, 388 156 

reported sufficient information to allow a quantitative reappraisal of their claims. Only 157 

twenty percent of those (N = 78) reported synergisms more than two-fold higher or 158 

lower than the predicted additive doses (Fig. 1). Strong synergisms (4 to nearly 100-159 

fold in an in vitro androgen receptor reporter gene assays in Chinese hamster ovary 160 
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cell line) were observed in 9 in vitro and one in vivo mammalian study and 32 161 

ecotoxicological studies (deviations between 4 to 50-fold). 162 

Previous concerns about the synergistic potential of combinations of triazine, azole 163 

and pyrethroid pesticides at environmentally relevant doses were confirmed, while 164 

evidence of synergisms with endocrine disrupting chemicals, particularly anti-165 

androgens, emerged. 166 

2.5. Synergisms at low doses in human/mammalian toxicology  167 

Boobis et al. [23] retrieved 43 studies published between 1990 and 2008 reporting 168 

synergisms in mammalian test systems at doses close to the PODs for individual 169 

chemicals. The focus of the literature search does not allow one to comment on the 170 

frequency of synergisms at low doses. The magnitude of synergisms was included in 11 171 

papers, and this includes studies where deviations from effect doses predicted for 172 

additivity that were less than 2-fold. None of these synergistic deviations exceeded a 173 

factor of 4. Synergisms at low doses were observed for mixture of organophosphate 174 

pesticides, thyroid axis disrupting chemicals and carcinogenic solvents. 175 

Elcombe et al. [24] conducted a review of the peer reviewed studies published between 176 

2000 and 2020 relating to low-dose mixtures of chemicals (defined as those in which 177 

all components were at or below their POD) in mammalian in vivo systems. Of the 30 178 

eligible mixture studies that used component-based methods, only 7 employed 179 

experimental designs which allowed for comparison to additivity predictions. 180 

Nonetheless, nearly half (3 of 7), all mixtures of endocrine disrupters, reported 181 

responses significantly greater than additivity, suggesting synergy.  182 

3. Discussion 183 

In reviews that allowed estimation of the frequency of synergistic deviations from 184 

additivity greater than 2-fold, synergisms were reported in roughly 5% of investigated 185 

mixtures. This was more, rather than less, frequent in the handful of suitable studies 186 

of low dose mammalian mixture toxicity [24]. It should also be noted that these figures 187 

do not account for potentiation, where the combination of one active and one inactive 188 

component leads to exacerbations of effects. This frequency is representative of 189 

mixtures toxicology studies in the literature and should not be interpreted as the 190 

frequency of synergisms in real world exposures. Understanding the frequency and 191 

likelihood of synergisms would entail detailed understanding of the co-occurrence of 192 

groups of substances giving rise to such interactions in relevant environmental media. 193 

Socianu et al. [11] derived a generic chemical mixture that approximates a mixture co-194 

exposure profile of the EU general population from the HBM4EU-Aggregated dataset 195 

which included phthalates, known endocrine disrupters, and pyrethroid pesticides. 196 

Exposure to some of the culprits identified to be involved in synergistic interactions is 197 

therefore not a rare occurrence. Both classes of compounds have been associated with 198 

synergistic effects in experimental studies. Notwithstanding that CA has been 199 

demonstrated to be a useful default assumption for MRA, on the basis of currently 200 
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available evidence, assuming that synergisms are rare enough to be negligible is 201 

premature. 202 

Selecting the size for a MAF accounting for additive interactions is already 203 

contentious. Such decisions can be informed by scientific evidence, e.g. the recent 204 

analysis by the Swedish Chemical Agency KEMI found that MAF values of 10, 20 and 205 

50 seemed sufficient for over 70%, 95% and all the mixtures analysed, respectively 206 

[10]. The desired level of protection is a value-laden societal choice attempting to 207 

balance the consequences of over- or under-conservatism under uncertainty. Some 208 

concerns regarding over-conservatism stem from the view that the application of 209 

uncertainty factors during individual substances’ hazard assessment may already 210 

result in undue overprotection, particularly for human health [25]. Beyond muddying 211 

the transparency of uncertainty analyses, such assumptions do not necessarily hold 212 

true [26,27].  For example, chemical-specific inter-individual toxicodynamic 213 

variability can exceed the default assumption of 101/2 [28].  214 

In this context, increasing a MAF based on assumption of additivity, e.g. by an 215 

additional IF, to account for potential synergisms is likely to be met with some 216 

resistance, even before discussing the potential size of such a factor. The latter should 217 

be informed not only by the frequency but also by the magnitude of deviations from 218 

additivity. Whilst the largest deviations from additivity have been reported in in vitro 219 

systems (up to 100-fold), the magnitude of synergistic deviations from additivity can 220 

be large; up to around 30-fold in in vivo ecotoxicological studies, whilst available data 221 

on in vivo mammalian study does currently allow any conclusion to be drawn [22]. An 222 

alternative would be to apply an IF to groups of chemicals known or suspected to give 223 

rise to synergisms on the basis of currently available evidence. This may however 224 

discourage the generation of new knowledge and understanding of synergistic 225 

interactions in chemical mixtures.  226 

When discussing the conservatism of assessment or allocation factors, it should be 227 

stressed that default factors are typically a pragmatic response to lack of data. Such 228 

regulatory solutions should be conservative enough to encourage and reward the 229 

generation of data and mechanistic understanding by allowing such factors to be 230 

refined if adequate evidence is provided. Scientific evidence of synergistic or 231 

antagonistic interactions could help progress towards priorities for further research, 232 

namely; building a FAIR open evidence database of toxicokinetic or toxicodynamic 233 

interactions comparable to those available in pharmacology, increasing mechanistic 234 

understanding particularly in realistic, i.e. unbalanced (as opposed to equipotent) 235 

environmental mixtures, as well as test the funnel hypothesis. 236 

Finally, debates around conservatism should also account for the uncertainty related 237 

to factors beyond the scope of chemical risk assessments. Living organisms during 238 

most of their lifetime often must cope with environmental stress deviating from the 239 

optimal environmental conditions used in (eco)toxicological experimental settings. A 240 

review of more than 150 studies covering stressors including heat, cold, desiccation, 241 

oxygen depletion, pathogens and immunomodulatory factors combined with a variety 242 

of environmental pollutants revealed that synergistic interactions between the effects 243 

of various natural stressors and toxicants were reported in more than 50% of the 244 
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available studies [29]. In a context of rapid global environmental change, we may have 245 

to accept that the space in the risk cup that can be allocated to chemical pollution 246 

before it overflows is shrinking. 247 

4. Conclusions 248 

Based on evidence available to date, assumptions that synergistic interactions in real-249 

life mixtures are rare and their likelihood therefore negligible appear to be premature. 250 

Further research aiming to increasing mechanistic understanding of the likelihood of 251 

synergisms and the frequency of co-occurrence of groups of chemicals giving rise to 252 

such synergisms is required.  253 

In the meantime, potential synergisms should not be omitted from debates on the 254 

conservatism or otherwise of mixture allocation factor or other regulatory approaches 255 

to protect people and environment from mixture effects. 256 

  257 
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