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The term “neuromorphic” was originally introduced by Mead
in the late 1980s,1 referring to devices and systems that imitated
certain elements of biological neural systems. However, today the
interpretation of the term has diverged across different research
communities. Broadly speaking, “neuromorphic” relates to com-
puting approaches that are inspired by the brain. Not exclusively,
such approaches could include in-memory computing, continuous
learning in hardware, spike-based processing, fine-grained paral-
lelism, reduced precision computing, and asynchronous computing,
among others. Many of these concepts are explored independently,
not necessarily by linking them to neuromorphic technologies. For
example, a comprehensive review of in-memory computing using
emerging technologies is provided by Mannocci et al. in our first
issue.2

There are distinct approaches to neuromorphic research, dis-
tinguished by their primary goals. One goal is to provide efficient
hardware platforms to deepen our comprehension of biological
nervous systems (e.g., the human brain). Conversely, a different
objective is to harness brain-inspired principles to create efficient
computing applications, without being confined by the need for bio-
logical realism. The distinct goals of brain modeling and efficient
computing start to intersect when incorporating more biologically
credible mechanisms, such as learning processes, which can poten-
tially exceed the capabilities of existing machine learning and deep
learning paradigms.3 In connection to this, it is of paramount impor-
tance to establish a standardized and unbiased method of evaluating
the advantages and strengths of neuromorphic methods compared
to conventional deep learning-based techniques.4

The neuromorphic community is incredibly diverse and spans
across all stacks of computational abstractions. At the top layer,
neuromorphic algorithms most commonly refer to spiking neu-
ral networks (SNNs)5,6 or training models via biologically plausi-
ble learning rules. What does it mean for a learning rule to be

biologically plausible? A common criterion is the need for locality
in both space and time. While error backpropagation routes a huge
number of gradient signals to each model parameter [Fig. 1(a)], the
synapses in the brain are thought to only update on the basis of sig-
nals that are immediately available to it. For example, the work by
McCaughan et al. published in this issue of APL Machine Learning
derives a method to broadcast a global loss signal to all parameters,
where each weight in a network selectively “extracts” the compo-
nent relevant to itself7 [Fig. 1(b)]. While the technique is likened to
wireless communication, it also bears similarities to global mecha-
nisms in the brain, such as dopamine release. Fundamentally, the
power savings it can have by reducing the amount of data routing
are vast.

In the past several years, an emerging trend among the neu-
romorphic algorithms community is to hack apart error backprop-
agation to enable machine learning models to adapt and learn in
real-time. Almost all these techniques stem from the original real-
time recurrent learning training algorithm (RTRL) proposed back
in 1989 by Williams and Zipser.8 When training recurrent mod-
els, gradient-based updates require storing the state of all neurons
throughout all of history [Fig. 1(c)]. The memory demands become
prohibitively expensive for training continuous models. The RTRL
modifies this by pushing gradient signals forward in time instead,
eliminating the need for a historical trace of each neuron [Fig. 1(d)].
Doing so means the cost of training SNNs is no longer limited by
sequence length. The computational resources that once had to be
reserved for lengthy sequences can be reallocated to scaling up the
SNNs we train. Pushing this trend of large-scale SNNs was cata-
pulted by the recent emergence of the first neuromorphic language
model, SpikeGPT.9

Techniques such as e-prop approximate the RTRL by removing
recurrent feedback connections.10 Deep continuous online learn-
ing, or decolle, applies local losses to each layer to address the
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FIG. 1. Computational graphs of various modes of training. (a) Error backpropagation in a standard neural network. (b) Error broadcasting reduces the cost of gradient routing.
(c) Backpropagation through time in sequential neural networks. (d) Real-time recurrent learning pushes gradients forward in time.

spatial locality of error signals in addition to temporal locality.11

Forward propagation through time applies the RTRL to time-
varying losses with regularization to promote training stability.12

The general trend is to endow SNN learning with the benefits
of the RTRL and stress-testing how tolerant these models are of
approximations and alternative loss metrics.

While these are advances made at the software layer, the hard-
ware and devices community directly reaps the benefits. Frenkel and
Indiveri integrated forward-mode learning into a CMOS integrated
circuit to show that SNNs can be trained at ultra-low power on a
variety of dynamical tasks.13 This is the only silicon demonstration
of a task-agnostic chip that can learn continuously on a range of
data modalities. This range of high-performant lightweight learning
algorithms signals a shift away from low-level learning rules, such
as spike-time dependent plasticity, as we develop deeper insight as
to how local learning rules become competitive with their non-local
counterparts, especially when modulated by system-level objectives.

The absence of silicon chips in the online learning space is offset
when one digs deeper into the abstraction layers. The past decade of
neuromorphic devices and materials that have to adapt in real-time
to input stimuli opens up a breadth of work that aims to link dynam-
ics to functionality.14,15 The development of “neuromorphic devices”
might be the closest to the AIPP readership. This involves leverag-
ing the physical mechanisms of electronic, magnetic, and photonic
materials to create efficient novel nanodevices that mimic biological
functionalities such as those of neurons and synapses. The primary
distinction from neuromorphic engineering is the objective to real-
ize these functionalities through the inherent physics of materials
instead of relying on individual devices like transistors and aim-
ing for the most compact implementations (e.g., nanoscale devices).
Multiple examples of these can be found across the AIPP journals,
such as recent work on using memristive devices for neuromor-
phic applications,16 optoelectronic devices,17,18 magnetic devices,19

ferroelectric devices,20 and photonic devices,21 as well as roadmaps
and special issues.22–24 APL Machine Learning aspires to be the pre-
mier and preferred platform for all the aforementioned research.
This falls under what we term as “Applied Physics for Machine
Learning”—AP for ML, which is a central part of the journal’s scope.

Ultimately, neuromorphic computing is a natural stage for
blending the various abstractions. The brain is a physical manifes-
tation of the neural code, and building the most powerful comput-
ers will rely on researchers treating the link between physics and
applications, and everything in between, in much the same way. If

the above resonates with you and your research, please consider sub-
mitting it to APL Machine Learning. More information about the
journal’s scope can be found on our website, as well as in the first
editorial.25
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