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SUMMARY

Many problems in geophysics, acoustics, elasticity theory, cancer treatment, food process control
and electrodynamics involve study of wave field synthesis in some form or another. In the present work,
modeling of wave propagation phenomena is studied as a static problem, using Finite Element Method
and treating time as an additional spatial dimension. In particular wave field synthesis problems are
analyzed using discrete methods. It is shown that a fully finite element based scheme is very natural
and effective method for the solution of such problems.

Distributed wave field synthesis in the context of two-dimensional problems is outlined and
incorporation of any geometric or material non-linearities is shown to be straightforward. This has
significant implications for problems in geophysics or biological media, where material inhomogeneities
are quite prevalent. Numerical results are presented for several problems referring to media with
material inhomogeneities and predefined absorption profiles. The method can be extended to three
dimensional problems involving anisotropic media properties in a relatively straightforward manner.
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1. Introduction

The area of wave field synthesis is a broad one that has applications in various diverse fields like
geophysics [26], indoor acoustics [6], elasticity theory [23, 25], cancer treatment, food process
control [27] and elastodynamics [24].

One form of cancer treatment is interstitial thermal therapy which is also called
hyperthermia. This refers to the use of various heat generating sources to be injected into
the body and selectively raise the temperature of a local tissue region. The method offers the
promise of becoming an alternative to surgery, radiation therapy and chemotherapy [19, 20]. Its
applications refer to the treatment of certain localized malignancies like brain tumors [15] and
prostate cancer [13, 14]. The treatment protocol involves placing needle-based energy sources
directly in the tumor and increasing the tissue temperature to cause cell death. The energy
sources available for interstitial thermal therapy include radio frequency electrodes, microwave
antennas, ultrasound transducers and laser fiber optics [16]. Of these, the largest technological
and clinical experience has been with radio frequencies and microwave applicators [17],[12].
Using these techniques one can cure tumors up to approximately 3cm in diameter. Microwave
antennas launch electromagnetic waves in the frequency range of 300 MHz to 2450 MHz in the
surrounding tissue. The waves propagate and interact with each other causing small currents
to flow locally as they propagate. These local currents produce heating of the tissue due to
the resistance of the tissue and increase the local temperature which depends on the intensity
of the wave.

The volume of tissue that can be heated with a single thin antenna is usually small, and
therefore, arrays of several antennas with precisely controlled field generation are required
to destroy an entire tumor [18]. However, placement of these antennas with accurate field
evolution is essential to produce the desired effects and wave field synthesis provides a
way of analyzing this problem. Currently, forward analysis with the two-dimensional finite
element/finite difference method is widely used to solve the wave propagation problem.
This forward analysis method derives the temperature distribution for a given electrode
configuration by solving the wave equation and then the bio-heat transfer equation. This
analysis requires modification of the electrode configuration by trial and error to reach an
optimum configuration for better temperature distribution [21]. This type of analysis does not
give an optimal heating condition directly. Wave field synthesis provides a convenient way to
overcome the above mentioned difficulty. The present paper is applicable to the field synthesis
and hence addresses a part of this problem.

Acoustic wave field analysis or simply wave field analysis (WFA) refers to the recording of
sound fields in enclosures with arrays of microphones and to the processing of the recorded data.
Acoustic wave field synthesis or simply wave field synthesis (WFS) refers to the generation
of sound fields with desired or prescribed temporal and spatial properties. The idea of wave
field synthesis has been in existence for many years, and is often credited to have been first
introduced by Berhkout in 1988 [1],[5]. Its theoretical foundation is related with the Huygens’
principle [22]. A good introductory review of this literature can be found in [3],[4].

In traditional applications of sound enhancement or reproduction, individual or groups of
loudspeakers are used to generate a replica of the desired sound pattern [2]. Use of high-
quality systems in appropriate manner will help in generation of required temporal properties
of sound, however the spatial properties are determined by the interference patterns and often
the spatial signal is correct only within a very limited listener area. As an example, consider
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the use of two loud speakers to enhance the signal of a primary point source behind them. Most
listeners perceive the signal of the loudspeakers earlier than the primary signal which leads to
mislocalization, since the first arriving sound wave determines the direction from which the
sound is heard. Another drawback of the traditional approach of sound reproduction, is that
the sound field is measured first, at a few chosen ”representative” positions, assuming that
the acoustic parameters (sound speed, attenuation) are valid for some (usually) large region
around these points. This, however, is not a reliable approach as it does not include the spatial
and temporal inhomogeneities of the acoustic medium.

In the current state of the art, these problems are overcome with the use of array technology
involving the use of arrays of microphones and micro-speakers. These are placed at suitable
positions either on the boundary or within an enclosed volume. Then techniques based on the
wave field synthesis (WFS) and the wave field analysis (WFA) involving a significant amount
of experimentation and hence considerable cost, are used. In the present work, a numerical
technique using continuous interpolations both in space and time is developed, in order to carry
out the procedure of wave field synthesis. Space-time techniques for solving elastodynamic and
wave propagation problems have been studied in the past by Hulbert and Hughes [7],[8],[11].
Galerking methods have been applied to hyperbolic problems with the use of basis functions
that are continuous in space but discontinuous in time by Johnson [9].

A short description of the wave field synthesis problem is as follows. Given a complete
description in space and time of a scalar wave field Φ(x, y, z, t) inside a spatial region S, specify
a source function F (x, y, z, t), distributed at specific points in this region, which creates a field
as similar as possible to the previous field. In the present work we investigate the effectiveness
of finite element method applied to wave field synthesis problems that are two dimensional.

The paper is organized as follows. First, preliminary definitions are postulated. Then a
2-D wave field model both in continuous and in matrix form is described. Based on this
model a formal definition of a distributed wave field synthesis problem is presented together
with a numerical solution technique. The paper concludes with several examples of wave field
synthesis applied in various simple domains. The effect of domain partition and the induced
error is studied in detail as well.

2. Preliminaries and modeling

2.1. Preliminary definitions

Consider wave propagation inside a 2 dimensional, inhomogeneous medium (spatial region S
with boundary ∂S) with geometrical characteristics defined by a subset S ⊂ R2 and properties
(modulus of elasticity k, density ρ and absorption coefficient a) which are functions of both
space and time [3],[5]. Additionally consider [0, T ] to be the time interval of interest.
Under the above assumptions we can make the following definitions:

Definition 1: Continuous space-time domain as the following cartesian product: Ω = S ×
[0, T ].

Definition 2: Cubic space-time elemental domain or sub-domain ∆Ω(n) having as origin the
point (xn, yn, tn) and sides ∆X, ∆Y and ∆T as the following set:
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∆Ω(n) = [xn, xn + ∆X]× [yn, yn + ∆Y ]× [tn, tn + ∆T ] (1)

Definition 3: Square space-time surfaces are boundary surfaces of the elemental domain
∆Ω(n) defined as:

∆S
(n)
−x = {xn} × [yn, yn + ∆Y ]× [tn, tn + ∆T ]

∆S
(n)
+x = {xn + ∆X} × [yn, yn + ∆Y ]× [tn, tn + ∆T ]

∆S
(n)
−y = [xn, xn + ∆X]× {yn} × [tn, tn + ∆T ]

∆S
(n)
+y = [xn, xn + ∆X]× {yn + ∆Y } × [tn, tn + ∆T ]

∆S
(n)
−t = [xn, xn + ∆X]× [yn, yn + ∆Y ]× {tn}

∆S
(n)
+t = [xn, xn + ∆X]× [yn, yn + ∆Y ]× {tn + ∆T}

(2)

Definition 4: Partition of the space time domain Ω into N space-time elemental domains
∆Ω(n)

n=1,...,N is defined as the union of N disjoint space-time elemental domains
⋃N

n=1 ∆Ω(n)

satisfying the following properties:

1. Ω ⊂ ⋃N
n=1 ∆Ω(n)

2. No elemental domain ∆Ω(m) with origin the point (xm, ym, tm) can be contained in
the remaining set

⋃N
n=1 ∆Ω(n) − Ω. In other words 6 ∃(xm, ym, tm) ∈ ⋃N

n=1 ∆Ω(n) − Ω :
∆Ω(m) ⊆ (

⋃N
n=1 ∆Ω(n) − Ω)

3. If the intersection between any two elemental domains from the set {∆Ω(n)}n=1,...,N is
not empty then this intersection is one of the space-time surfaces defined in definiton 3
which belongs to both of the elemental domains.

Definition 5: Orthogonal grid of points ΩG given a partition
⋃N

n=1 ∆Ω(n) defined in 4 is
a set of G global space-time points ΩG = {(xg, yg, tg)g=1,...,G ∈ Ω} that are defined by the
apexes of the elemental domains {∆Ω(n)}n=1,...,N , namely: {xn, xn +∆X, yn, yn +∆Y, tn, tn +
∆T}n=1,...,N

Definition 6: Boundary sets of surfaces N±x, N±y, N±t of a partition
⋃N

n=1 ∆Ω(n) of a
domain Ω are surfaces of the elemental domains ∆Ω(n) defined in 3 which satisfy:

N±x = {n ∈ {1, ..., N} : ∀m ∈ 1, ..., N ∆S
(n)
±x 6= ∆S

(m)
±x }

N±y = {n ∈ {1, ..., N} : ∀m ∈ 1, ..., N ∆S
(n)
±y 6= ∆S

(m)
±y }

N±t = {n ∈ {1, ..., N} : ∀m ∈ 1, ..., N ∆S
(n)
±t 6= ∆S

(m)
±t }

(3)
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2.2. Continuous form of the wave PDE at the element level

Based on the above definitions, and considering an acceptable degree of approximation, at
every space-time point (x, y, t) ∈ ∆Ω(n) the properties of the medium can be assumed to be
constant. More precisely, in acoustics and in mechanics generally, the modulus of elasticity
k(x, y, t), the density ρ(x, y, t) and the absorption coefficient a(x, y, t), may satisfy:

∀(x, y, t) ∈ ∆Ω(n) : k(x, y, t) ≈ kn, ρ(x, y, t) ≈ ρn, α(x, y, t) ≈ αn (4)

Therefore inside such a domain the 2 dimensional wave partial differential equation that
relates the wave field function Φ(x, y, t) with the source function F (x, y, t), can be assumed to
be satisfied, namely:

kn[Φxx +Φyy]−ρnΦtt−anΦt = −F with Φxx =
∂2Φ
∂2x

Φyy =
∂2Φ
∂2y

Φtt =
∂2Φ
∂2t

(5)

The form in (5) is the continuous form of the wave equation which is satisfied at the
points of the elemental domain ∆Ω(n). However in the next sections we make use of a matrix
form of the same equation for the points of the orthogonal grid ΩG. The derivation of this
matrix form is presented in Appendix A.

2.3. Matrix form of the wave PDE

Given an orthogonal grid of G space-time points defined in definition 5 and following the
procedure described in Appendix A, a linear system that governs the relationship between
the values of a wave field Φ at these space-time points (contained in the vector {Φ(G)}) and
the values of a source function generating the previous field at these points (contained in the
vector {F (G)}) can be obtained. This system is call the matrix form of the Wave PDE and
can be expressed by:

[KG×G]{Φ(G)}+ {F (G)} = 0 (6)

Based on the previous linear system, a formal definition of a distributed wave field synthesis
problem is postulated and a numerical solution technique is described.

3. Distributed Wave Field Synthesis - dWFS

Wave field synthesis problems or WFS are problems that refer to the synthesis of certain
known field functions Φ(x, y, t) in a specific space-time domain Ω by means of a source
function F (x, y, t) that has to be specified. For more details on these problems refer to [1, 2].
Such problems appear also as inverse wave field problems [29], as opposed to direct wave
field problems in which the field is the unknown parameter and not the source function. A
distributed wave field synthesis problem, or dWFS [30], is a problem in which both the field
and the source functions are described only in a finite set of points ΩG, as opposed to the
classical WFS problems where both functions are described in the whole domain Ω. Usually
in dWFS problems the values of both the source and the field function at the points of Ω that
are not grid points are derived using linear interpolation based on the values of these functions
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at the grid points. There are two versions of dWFS problems. The ideal and the constrained
version, which will be analyzed next.

3.1. Ideal distributed wave field synthesis problem

Generally, a wave field synthesis problem or an inverse wave problem can be formulated as
follows. Given a medium, geometrically defined by a set S ⊂ R2 with boundaries ∂S which
has properties (density ρ, modulus of elasticity k and absorption coefficient α), a time interval
[0, T ] and assuming a time evolving scalar field Φ(x, y, t) satisfying the equation:

k[Φxx + Φyy]− ρΦtt − aΦt = −F, ∀(x, y) ∈ S ∀t ∈ T (7)

specify the source function F (x, y, t) that produces the field distribution Φ(x, y, t).

An important observation that can be derived from the above formulation is that the
resulting source function will not necessarily have to reside in one specific region or act at
specific time intervals, hence can be distributed in both space and time. These ideas lead us
to define a new family of WFS problems called distributed WFS problems or dWFS.

Compared with the classical WFS problems, dWFS refer to partitioned domains ΩG

(according to definition 5) defined by space time points, ωg = (xg, yg, tg). These triplets are
apexes of elemental cubes. Therefore as an introductory example, lets consider a simple case
of a medium where 18 space time points are defined (9 space points for each of the two time
frames) as displayed in figure 3.1.

1 2 3

4
5 6

7 8
9

10

11
12

13
14

15

16
17 18

FRAME 1
(t=0)

FRAME 2

(t= T)D

(0,0,0)

(0, Y,0)D

( X,0,0)D (2 X,0,0)D

(0,0, )DT

(0,2 Y,0)D

Figure 1. Partitioned space time domain of 2 frames of 9 points each

Given the above partition and based on the mathematical derivations in Appendix A a linear
relation between the values of the field Φ and the values of the source F at the above space
time points can be obtained:

[K(G)
18×18]{Φ(G)

18×1}+ {F (G)
18×1} = 0, (8)

where {Φ(G)
18×1} is a 18x1 vector containing in the first 9 entries the field values at the space-

time points of the first frame and in the next 10-18 entries the field values at the space-time
points of the second frame. In the same manner the vector {F (G)

18×1} contains the respective
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source values at the same space-time points.

In a more general context and considering a finer partition for the same domain, the number
of space time points is much larger. Assuming F frames and P space points at each frame we
will have a set {1, ..., G} of G = FP space-time points. Therefore, generally a G × G system
expressing the coupling between the field and source values at these G space-time points can
be written as:

[K(G)
G×G]{Φ(G)

G×1}+ {F (G)
G×1} = 0 (9)

Based on this formulation and the knowledge of field values at these specific points, it makes
sense to evaluate the source function at the same points, by solving directly the system for the
vector {F (G)

G×1}.

{F (G)
G×1} = −[K(G)

G×G]{Φ(G)
G×1} (10)

In this case the {F (G)
G×1} vector contains the values of the required source signals that must be

applied at the G space-time points. In other words this direct solution describes the amplitudes
at specific locations and time instances of the source function F that produces the field values
contained in {Φ(G)

G×1}.

However very often, a source residing at specific locations and acting at time intervals
specified by the direct solution (10), is not physically realizable. For example in ultrasound
cancer treatment, placing sources inside the patient’s body is impossible.

Therefore we have to impose certain constraints referring to where and when the source
should act. Consequently, a different problem referring to the spatial and temporal constraints
of the source function is formulated. This problem is analyzed in the next section.

3.2. Distributed wave field synthesis problem with source constraints

A distributed wave field synthesis problem with source constraints is essentially a dWFS
problem with additional spatial and temporal constraints in the source function F (x, y, t). We
can view these constraints as regions of the space-time orthogonal grid ΩG where the function
is allowed to take non zero values. Equivalently, these constraints can be described by a null
set or a subset of ΩG where the function F is forced to be zero. More precisely:

Definition 7: Null set ΩF of a constrained source function F (x, y, t) is a subset of the
orthogonal grid of points ΩG, defined in definition 5, satisfying:

ΩF = {(xg, yg, tg) ∈ ΩG : F (xg, yg, tg) = 0} (11)

Having defined the null set of a source function we can postulate the definition of a dWFS
problem with source constrains as follows:

Given:
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[1] An isotropic spatial medium geometrically defined by a set S ⊂ R2 with boundaries
∂S which has certain properties (density ρ(x, y, t), modulus of elasticity k(x, y, t) and
absorption coefficient a(x, y, t)) and a time interval [0, T ] which together with S define a
domain Ω = S × [0, T ].

[2] An orthogonal grid of points ΩG that defines a partition of the domain Ω according to
definition 5.

[3] A partition of ΩG into two disjoint subsets Ω1 and Ω2

(ΩG = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅).
[4] The information of a time evolving scalar field Φ(x, y, t) at the space-time points of ΩG

as values {Φ(xg, yg, tg) : (xg, yg, tg) ∈ ΩG} which are contained in a vector {Φ(G)} .

Specify:
The values of a constrained source function Fc with null set ΩFc

= Ω2, as a vector {F (G)
c }

such that the following quantity is minimized

||{Φ(G)} − {Φ(G)
c }||2 = min (12)

subject to the matrix form of the wave PDE, which relates the values of this source {F (G)
c }

to the values of the field it creates {Φ(G)
c }:

[K(G)
G×G]{Φ(G)

c }+ {F (G)
c } = 0 (13)

The notation ||.||2 is used to represent the second norm of a vector, or the square root of
the sum of the squares of its entries.

It is easy to comprehend the previous formulation through an example. Consider a two
dimensional elliptical region S consisting of two subregions S1 and S2. The continuous and the
partitioned versions of these regions are displayed in figure 2. Also assume that S = S1 ∪ S2

and S1 ∩ S2 = ∅.

Figure 2. Continuous and partitioned elliptical 2D region

Now consider the same divided 2D space region S as it “evolves” during a specific time
interval [0, T ] , T > 0. In other words consider the space-time points (x, y, t) where (x, y) ∈ S
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and t ∈ [0, T ]. Then the created space-time domain Ω = S × [0, T ] will obtain a cylindrical
like shape as figure 3 depicts. Following also the partition of the region S into S1 and S2 and
assuming that the boundary between the regions S1 and S2 does not change with time, the
domain Ω can be partitioned into two sub-domains Ω1 = S1 × [0, T ] and Ω2 = S2 × [0, T ] as
in figure 3.

Figure 3. Continuous and partitioned domain Ω

An example of such a configuration might be a cross section of a human body having a
tumor in the region S2 and the only feasible locations to place microwave sources are points
in region S1. Therefore by letting the sources reside only in S1 and act at every time instance
in [0, T ], is equivalent with forcing the null set of the constrained source function {Fc} to be
the sub-domain Ω2 = S2 × [0, T ].

In order to pass from a continuous domain to a partitioned domain, space time elemental
domains described in definition 2 must be used. A time step or a “side” in the time axis of
these elemental domains ∆T must be chosen. If the time step is the same for all the elemental
domains then it must be equal to ∆T = T

F−1 where F is the total number of frames tf ,
f = 1, ..., F , including the first one. The partition in space remains the same as presented in
figure 2. By the apexes of the resulting elemental domains a grid of G space time points is
defined following definition 5. Then both the source and the field functions are described as
vectors, containing their values at the space-time points defined by the previous grid, namely:

{Φ(G)} = {Φ(xg, yg, tg)}g=1,...,G {F (G)} = {F (xg, yg, tg)}g=1,...,G (14)

For the configuration of this example a constrained dWFS problem might described as
follows. Given a destructive for the tumor field {Φ(G)} (having big values in Ω2) specify a
constrained source {F (G)

c } with null set the grid of points that belong to Ω2, such that the
error between the field it creates {Φ(G)

c } and the original field {Φ(G)} (||{Φ(G)
c } − {Φ(G)}||2)

is minimized.
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4. Solution to the dWFS problem

4.1. Vector and matrix rearrangement

In order to solve a dWFS problem a partition of the space-time domain Ω must be done, which
will create a grid of finite points according to definition 5. Then a division of the resulting
finite set of the grid points into two subsets Ω1 and Ω2 must be applied. An example of such
partition and division of an orthogonal grid is displayed in figure 3.
According to this division and based on the results of Appendix A, the entries of the vectors
{Φ(G)} and {F (G)} and the matrix [KG×G] of equation 6 can be separated as follows.
If the base points of region S (points of the first frame in figure 2) are P then the first P
entries of the vectors {Φ} and {F} will refer to the first P values of the field and the source
function at the first frame. The next P to the second frame etc. Now lets assume that B of
the P base points refer to the boundary of the base and I of the P base points refer to the
inner points of the base, as figure 2 displays. Then clearly P = B + I. If now region S1 has
I1 inner points and region S2, I2 then the sum of the inner points of the two regions must be
equal to the total inner points of the base, namely I1 + I2 = I. Therefore for the base points
of the first frame it must be: I1 + I2 + B = P . By applying appropriate labeling in the points
of the first frame, the first I1 inner points of the first frame which also are inner points of the
first region S1 will refer to the first I1 entries of the vectors {Φ} and {F}. Following the same
idea the next I2 inner points of the first frame which are also the inner points of the second
region will refer to the next I2 entries of the vectors {Φ} and {F}. Finally the remaining B
boundary points of the first frame will refer to the next B entries of the vectors {Φ} and {F}.
Following this method the remaining entries of the vectors {Φ} and {F} will be associated
with the respective points of the second, third,...,F frame. Figure 4 refers to such arrangement.

Then if the entries in the two previous vectors are rearranged in a way that the first
FI1 entries refer to region S1 for all the frames and the next FI2 refer to S2 for all the
frames and the last FB refer to the boundary points for all the frames, then the source
vector {F} = {f1, ..., fG}, G = FP will obtain a form that is displayed in figure 5 (The
rearrangement for the field vector {Φ} follows the same pattern):

The new form of system (6) after the rearrangement of the vectors {Φ(G)} and {F (G)} will
include also rearrangement of rows and columns of the [KG×G] matrix:




K11 K12 K1B

K21 K22 K2B

KB1 KB2 KBB








Φ1

Φ2

ΦB



 +





F1

F2

FB



 = 0 (15)

The sub matrices K11 and K22 refer to the inner points of the sub-domains Ω1 and Ω2

and they have dimensions I1F × I1F and I2F × I2F respectively, while the sub-matrices K12

and K21 refer to the boundary between the previous two sub-domains and have dimensions
I1F ×I2F and I2F ×I1F respectively. The sub-matrix KBB refers to the boundary points and
has dimension BF ×BF . Finally, the sub-matrices K1B , K2B , KB1 and KB2 have dimensions
I1F × BF , I2F × BF , BF × I1F and BF × I2F respectively. The association between this
matrix, vector division and the domain division is displayed in figure 6.

Part of the previous system that refers to the inner points of the domain Ω can be written
as:
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f1

fI1

fP -I -I1 2

…

…

fI +11

Frame 1
Inner Points of
Region 1

Frame 1
Inner Points of
Region 2

fP+1

fP+I1

…

Frame 2
Inner Points of
Region 1

{ }F

fP -I -I +11 2
…

fP

Frame 1
Boundary Points

f1

fI1

fP -I -I1 2

…

…

fI +11

Frame 1
Inner Points of
Region 1

Frame 1
Inner Points of
Region 2

fP+1

fP+I1

…

Frame 2
Inner Points of
Region 1

{F}

fP -I -I +11 2
…

fP

… …

Frame 1
Boundary Points

`

Figure 4. Initial arrangement of source and field vectors

[
K11 K12

K21 K22

] {
Φ1

Φ2

}
+

{
F1 + [K1B ]{ΦB}
F2 + [K2B ]{ΦB}

}
= 0 (16)

The part that is left refers to the boundary points and can be written as:

[KB1]{Φ1}+ [KB2]{Φ2}+ [KBB ]{ΦB}+ {FB} = 0 (17)

System 16 refers to the inner points of the sub-domains Ω1 and Ω2 since we exclude all the
boundary points.

The main reasons why the boundary points are excluded are the following:

• The matrices [K11] and [K22] are non-singular and therefore good for any matrix
operations.

• Many problems refer to synthesis of wave fields in a region that doesn’t have any
boundary points and therefore the values of the field at these points are not very
important.

Equations like (16) can be written also for the constrained source Fc and the field it creates
Φc given that the constrained source at the inner points of the domain Ω2 is zero (equivalently
Fc2 = 0). Therefore:

[
K11 K12

K21 K22

] {
Φc1

Φc2

}
+

{
Fc1 + [K1B ]{ΦcB}
0 + [K2B ]{ΦcB}

}
= 0 (18)
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Figure 5. Rearrangement of source vector

with boundary equation:

[KB1]{Φc1}+ [KB2]{Φc2}+ [KBB ]{ΦcB}+ {FcB} = 0 (19)

Taking the difference of the systems (16) and (18) yields:

[
K11 K12

K21 K22

]{
Φ1 − Φc1

Φ2 − Φc2

}
+

{
F1 − Fc1 + [K1B ]{ΦB − ΦcB}

F2 + [K2B ]{ΦB − ΦcB}
}

= 0

or

[K11]{Φ1 − Φc1}+ [K12]{Φ2 − Φc2} = {Fc1} − {F1} − [K1B ]{ΦB − ΦcB}
[K21]{Φ1 − Φc1}+ [K22]{Φ2 − Φc2} = −{F2} − [K2B ]{ΦB − ΦcB}

For the boundary points:
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Figure 6. Matrix, vector and domain division

[KB1]{Φ1 − Φc1}+ [KB2]{Φ2 − Φc2}+ [KBB ]{ΦB − ΦcB} = {FcB} − {FB} (20)

4.2. Least squares error method

Now in order to solve the previous system for the constrained source vector {Fc1} the following
optimization technique can be applied:

Step 1. We define the error vectors {e1}, {e2} and {eB}, between the field vector {Φ} and
the constrained field vector {Φc} at the inner points of the sub-domains Ω1 and Ω2 and at the
boundary points, respectively as:

{e1} = {Φ1} − {Φc1} {e2} = {Φ2} − {Φc2} {eB} = {ΦB} − {ΦcB} (21)

Based on this, the total square error in the inner space-time points of the whole domain Ω
can be defined as:

E = {e1}T {e1}+ {e2}T {e2}
E = [{Φ1} − {Φc1}]T [{Φ1} − {Φc1}] + [{Φ2} − {Φc2}]T [{Φ2} − {Φc2}]

(22)

Step 2. After the definitions of the error vectors the system (20) becomes:

[K11]{e1}+ [K12]{e2} = {Fc1} − {F1} − [K1B ]{eB}
[K21]{e1}+ [K22]{e2} = −{F2} − [K2B ]{eB}

(23)

Now since we have the freedom of choosing the values of the constrain source at the
boundaries ({FcB}) we can force the boundary error vector to take zero values ({eB} = 0).
Then utilizing (20) we can calculate the required constrained source values at the boundary:
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{FcB} = [KB1]{e1}+ [KB2]{e2}+ {FB} (24)

After setting {eB} = 0 and solving system (23) for the vectors {e1} and {e2} will yield:

{e1} = [A]{Fc1}+ {b}
{e2} = [C]{Fc1}+ {d}
[A] = [[K11]− [K12][K22]−1[K21]]−1 {b} = [A][[K12][K22]−1{F2} − {F1}]
[C] = −[K22]−1[K21][A] {d} = −[K22]−1[{F2}+ [K21]{b}]

(25)

Step 3 Now utilizing (25)) and (22) we are able to express E as a function of the vector
{Fc1}:

E = {Fc1}T [H]{Fc1}+ {Fc1}T {L}+ {L}T {Fc1}+ m

[H] = [A]T [A] + [C]T [C]
{L} = [A]T {b}+ [C]T {d} (26)

Since the expression for E is convex with respect to {Fc1} and since we want to minimize
it, a straightforward approach is to look for {Fc1}∗ such that:

∂E

∂{Fc1}
∣∣
{Fc1}={Fc1}∗ = 0 (27)

After forcing the above derivative to be zero we calculate:

{Fc1}∗ = −[H]−1{L} = −[[A]T [A] + [C]T [C]]−1[[A]T {b}+ [C]T {d}] (28)

4.3. Variable weights

In the previous approach a minimization of the sum of the square error E at each inner space-
time point was attempted. However, in some applications we can allow to have bigger errors
at some space-time nodes while at others we want to be more accurate or have less error.
Therefore instead of trying to minimize a simple error sum given by (22) we can minimize a
weighted error expression given by:

E′ = {e′1}T {e′1}+ {e′2}T {e′2} {e′1} = {w1}T {e1} {e′2} = {w2}T {e2} (29)

It is very easy to show that the analysis remains the same by replacing the matrices [A], [C]
and the vectors {b}, {d} with:

[A′] = {w1}[A] [C ′] = {w2}[C] {b′} = {w1}T {b} {d′} = {w2}T {d} (30)

where {w1} are {w2} weighting vectors satisfying:

|w1|∑

i=1

w1(i) +
|w2|∑

i=1

w2(i) = |w1|+ |w2| wk(i) ≥ 0 k = 1, 2 i = 1, ..., |wk| (31)
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Therefore, the solution for the constrained source vector will be given by:

{Fc1}∗ = −[H ′]−1{L′} = −[[A′]T [A′] + [C ′]T [C ′]]−1[[A′]T {b′}+ [C ′]T {d′}] (32)

4.4. Error quantification

From the above analysis we can clearly express the relationship between source function values
and the field values at specific space-time nodal points. Furthermore, a linear interpolation
for both source function and field function must be used in order to find out the values of
these functions at any other space-time points apart from the grid space-time points. These
interpolations, introduce error which cannot be avoided since we have not complete knowledge
of the field and the source function at any given space-time point. For one time instant and for
a square elemental domain with “space” sides ∆X = ∆Y = α, the interpolation is illustrated
by figure 7.

F

a

a

DW
(n)

f
g

(x y )g, g

(x,y)

Figure 7. Linear interpolation of the field values at one time instant at a specific elemental domain

As we see the error is introduced by the difference between the curved surface created by the
values of the scalar field and the plane surfaces passing through the points (xg, yg) defined by
the heights φg. These heights are equal to the values of the field at the points (xg, yg). Assuming
that the scalar field function Φ is continuous with respect to x and y and by choosing the sides
of the square elemental domains small enough we can argue that the previously described
error can be diminished. A complete analysis of this error as a function of the spectrum of a
continuous field function Φ can be found in Appendix B.

5. Numerical results

5.1. Code validation

Conceptually, all the examples considered in this section refer to 2D regions S like the ones
displayed in figure 2 which are divided in two subregions S1 and S2. The various geometries of
the regions that were analyzed are that of a circle, an ellipse and a square. Both homogeneous
and non-homogeneous media are studied. For all these problems the domain of interest Ω
is governed by the geometry of the region S and by a time interval [0, T ]. This domain is
partitioned using linear 3D cubic finite elements. Therefore a finite set of space-time points is
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defined. A sinusoidal signal is applied at the center of the two dimensional partitioned region
S with period 15 time units. The field evolution is solved via a finite difference scheme. The
resulting field is sampled both in space and time at the space-time points defined by the
apexes of the cubic domains and the samples are used as inputs to the model illustrated in
the previous sections.
Lets consider a circular two dimensional region. A snapshot of a field generated by a central
sinusoidal signal and calculated using a finite difference numerical scheme, is displayed in figure
8(a). By collecting all the sampled field values generated by this finite difference scheme in a
vector {Φ} and solving directly equation 6 for {F}, the source producing the sampled field
is reconstructed. A snapshot of this ”revealed” source is displayed in figure. 8(b). Since the
characteristics of this ”revealed” source much with the characteristics of the initially imposed
central sinusoidal source, a first indication of the validity of the algorithm is obtained. This
source which produces the sampled field is called direct source.
The next step is to divide the domain Ω into two sub-domains. One that will be the support
of the distributed source function (Ω1) and another that will be the null set of the distributed
source function (Ω2) and in which the desired sampled field must be synthesized accurately.
The values of the distributed constrained source function {Fc1} are specified utilizing the
aforementioned least squares optimization technique. This distributed constrained source
synthesizes the sampled field with minimum error. A snapshot of this constrained source is
displayed in figure 8(c). Finally, a snapshot of the field, generated by this constrained source
is displayed in figure 8(d).

The main performance measures of this synthesis algorithm is the mean absolute error µ(|ε|)
between the initially sampled field and the generated by the constrained source field and its
standard deviation σ(|ε|). These performance measures are evaluated for the whole domain Ω
and for the sub-domains Ω1 and Ω2. The results are presented in the next tables, for various
geometries, material properties and region dimensions.
In all the setups studied, cubic elements of side one unit in both space and time (∆X = ∆Y =
∆T = 1) were used.
Unless stated, the propagation velocity of the wave cn inside each elemental domain ∆Ω(n)

was chosen to be cn =
√

kn

ρn
=
√

2. This was done by forcing kn = 2 and ρn = 1. For simplicity
and in order to study the effectiveness of the algorithm in media with different propagation
velocities the material density was kept ρn = 1 while the modulus of elasticity kn was varied.
(For the coefficients kn and ρn refer to equation (5)).

5.2. Problem-1: Circular region

A standard circular 2 dimensional region was studied first. A circular disk of radius 10 units
containing an inner circular region of radius 4 units, was considered. Figure 9 displays this
setup.

The base region for this problem consists of a total of 305 points of which 260 belong to
region S1 and 45 in S2. Also it has 72 boundary points as figure 9 depicts. In order to build
the space time domain we considered 16 frames (including the initial frame) resulting to 4880
total space-time points. These details are illustrated in table 5.2.
The synthesis algorithm was implemented using the wave field generated by a central sinusoidal
signal of period 15 time units acting on a circular area of radius 2 space units for 16 time frames
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(a) (b)

(c) (d)

Figure 8. Homogeneous circular region: (a) Snapshot of the sampled wave field based on a finite
difference scheme (b) Snapshot of the source distribution estimated from the algorithm (c) Snapshot

of the reconstructed wave field by the constrained source (d) Snapshot of the constrained source

Region Total Points Inner Points Boundary Points
Ω 4880 3262 1618
Ω1 4160 2632 1528
Ω2 720 630 90
S 305 233 72
S1 260 188 72
S2 45 45 0

Table I. Circular region: Partition details

(including the initial frame). A snapshot of the obtained error distribution across the circular
region is displayed in figure 10.
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Figure 9. Circular region: Partition

Figure 10. Circular region: Snapshot of the error distribution
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5.3. Geometric effects: Different radii of the inner circular region

The synthesis algorithm was also implemented on the previous circular geometry using the wave
field generated by the same central source signal for different radii of the inner circular region
(S2) ranging from 2 to 8 units. The radius of the outer region was kept constant at 10 space
units. The observed maximum absolute value of the sampled field was max(|Φ|) = 4.5796.
The results regarding the mean absolute error µ(|ε|) and its standard deviation σ(|ε|) are
summarized in table .

Radius of S2 µ(|ε|) in Ω µ(|ε|) in Ω1 µ(|ε|) in Ω2 σ(|ε|) in Ω1 σ(|ε|)in Ω2

8 0.6202 0.5705 0.6308 0.3197 0.5727
7 0.5153 0.2135 0.7005 0.2500 0.6260
6 0.4414 0.0864 0.8485 0.1446 0.6495
5 0.3826 0.0938 1.0731 0.2506 0.6780
4 0.3257 0.1289 1.1526 0.3845 0.6573
3 0.2074 0.1823 0.4177 0.3915 0.5708
2 0.0566 0.0402 0.4654 0.1828 0.3252

Table II. Circular region: Mean absolute error µ(|ε|) and its standard deviation σ(|ε|) in Ω, Ω1 and
Ω2, as a function of the radius of the inner circular region.

Based on the above table we see that both the mean errors in Ω and Ω1 are reduced as the
size of the inner region is reduced. This fact is expected. The constrained source is allowed to
reside in more points as the inner region becomes smaller and therefore the synthesis results
are better.

5.4. Variable weights

The synthesis algorithm was also applied minimizing a weighted total square error and using
the wave field generated by the same central sinusoidal signal. Initially, a weight vector for
error of the inner points of Ω1 was formed w1 = {w, ..., w}. Then, a weight vector for the error
of the inner points of Ω2 was calculated as w2 = {s, ..., s} with s = |w1|(1−w)+|w2|

|w2| according
to 31, (|x| refers to the number of elements of vector x). The parameter w was varied from 0.1
to 1. The obtained results are displayed in table III.

Based on table III we observe that as the weight of the inner points of the domain Ω1

decreases, the mean absolute error in the domain Ω2 decreases while the standard deviation
remains approximately constant.

5.5. Problem-2: Elliptical region

The next examined geometry was an elliptical two dimensional region which is displayed in
figure 11. Its characteristics are presented in table IV.
The synthesis algorithm was implemented, using the wave field generated by a sinusoidal
central signal of period 15 time units, acting on an circular area of radius 1 space unit for
16 time frames (including the initial frame). Figure 12 shows a snapshot of the resulted error
distribution.
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Weight w of Ω1 max(|Φ|) µ(|ε|) in Ω µ(|ε|) in Ω1 µ(|ε|) in Ω2 σ(|ε|) in Ω1 σ(|ε|) in Ω2

0.1 4.5796 0.8516 0.8503 0.8570 2.4913 0.6737
0.2 4.5796 0.7377 0.7036 0.8803 2.1069 0.6506
0.3 4.5796 0.6029 0.5286 0.9131 1.6129 0.6293
0.4 4.5796 0.4946 0.3865 0.9459 1.1688 0.6204
0.5 4.5796 0.4127 0.2787 0.9730 0.8611 0.6210
0.6 4.5796 0.3621 0.2108 0.9942 0.6846 0.6238
0.7 4.5796 0.3397 0.1788 1.0120 0.5913 0.6251
0.8 4.5796 0.3325 0.1650 1.0325 0.5333 0.6229
0.9 4.5796 0.3320 0.1555 1.0692 0.4746 0.6203
1.0 4.5796 0.3271 0.1296 1.1526 0.3854 0.6573

Table III. Circular region:Mean absolute error µ(|ε|) and its standard deviation σ(|ε|) in Ω, Ω1 and
Ω2, as a function of the weight coefficient w.

Figure 11. Elliptical region: Partition

Region Total Points Inner Points Boundary Points
Ω 3472 2142 1330
Ω1 2656 1428 1228
Ω2 816 714 102
S 217 153 64
S1 166 102 64
S2 51 51 0

Table IV. Elliptical region: Partition details

5.5.1. Inhomogeneities In the previous elliptical domain, inhomogeneities were introduced by
changing the propagation velocities at the points of the domain Ω2 while keeping the velocities
at the points in Ω1 constant and vice versa. Table V shows how the maximum absolute value
of the initial field, the maximum absolute value of the constrained source and the performance
measure µ(|ε|) change as we change the propagation velocity in one region while keeping it
constant in the other region.
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Figure 12. Elliptical region: Snapshot of the error distribution

c2
2 max(|Φ|) µ(|ε|) max(|F1|) c2

1 max(|Φ|) µ(|ε|) max(|F1|)
0.50 0.4563 0.0252 0.3568 0.50 0.4563 0.0252 0.3568
0.45 0.4561 0.0248 0.3821 0.45 0.4829 0.0249 0.3675
0.40 0.4507 0.0239 0.4144 0.40 0.5072 0.0245 0.3685
0.35 0.4224 0.0224 0.5145 0.35 0.5033 0.0240 0.3578
0.30 0.4363 0.0222 0.5757 0.30 0.5441 0.0233 0.3550
0.25 0.4046 0.0246 0.7304 0.25 0.5431 0.0225 0.3744
0.20 0.3935 0.0226 0.7547 0.20 0.5794 0.0212 0.4923
0.15 0.6108 0.0264 1.0416 0.15 0.6423 0.0193 0.6660
0.10 0.4866 0.0403 3.3841 0.10 0.7626 0.0177 0.8195
0.05 0.8758 0.0685 5.6771 0.05 1.2808 0.0453 1.8382

Table V. Elliptical region: Maximum absolute value of the original field max(|Φ|), mean absolute
error µ(|ε|) in the whole domain Ω and maximum absolute value of the constrained source max(|F1|)
in Ω1, as a function of the propagation velocity in Ω2 (assuming constant velocity in Ω1 c2

1 = 0.5) and
vice versa.

5.5.2. Geometric effects: Scaling of inner elliptical region As we did in the circular geometry,
the algorithm was implemented considering different dimensions of the inner elliptical region
(S2) and using the wave field generated by the same central sinusoidal signal (Radius: 1 space
unit, Period: 15 time units) for 16 time frames (including the initial frame). The lengths
of the minor and the major axis of the outer elliptical region were 6 and 12 space units
respectively. The lengths of the axes of the inner elliptical region were varied keeping their
ratio constant. The results are presented in table VI as a function of the minor and the major
axis lengths of the inner elliptical region. The maximum absolute value of the sampled field
was max(|Φ|) = 0.4563.
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Minor/Major Axis max(|F1|) µ(|ε|)in Ω µ(|ε|)in Ω1 µ(|ε|)in Ω2 σ(|ε|)in Ω1 σ(|ε|)in Ω2

1 / 2 0.4710 0.0030 0.0018 0.0612 0.0084 0.0788
2 / 4 0.4786 0.0042 0.0028 0.0346 0.0105 0.0568
3 / 6 0.4473 0.0144 0.0100 0.0333 0.0271 0.0387
4 / 8 0.4330 0.0165 0.0121 0.0284 0.0280 0.0348
5 / 10 0.3566 0.0300 0.0182 0.0411 0.0288 0.0372

Table VI. Elliptical region: Maximum value of the distributed source max(|F1|), mean absolute
error µ(|ε|) and its standard deviation σ(|ε|) in the domains Ω,Ω1 and Ω2 as a function of the lengths

of the minor and the major axis of the inner elliptical region.

5.6. Problem-3: Square Region

The last considered geometry was a square two dimensional region displayed in figure 13 with
characteristics summarized in table VII.

Figure 13. Square region: Partition

The synthesis algorithm was applied using the wave field generated by a central sinusoidal
source acting on an circular area of radius 2 space units with period 15 time units for 16 time
frames (including the initial frame). A snapshot of the obtained error distribution is displayed
in figure 14.

5.6.1. Inhomogeneities Inhomogeneities were also considered in the square region. The
synthesis algorithm was implemented using the wave field generated by the same central
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Region Total Points Inner Points Boundary Points
Ω 3600 2366 1234
Ω1 2816 1680 1136
Ω2 784 686 98
S 225 169 56
S1 176 120 56
S2 49 49 0

Table VII. Square region: Partition details

Figure 14. Square region: Snapshot of the error distribution

sinusoidal signal (Radius: 2 space units, Period: 15 time units) and changing the propagation
velocities c1 and c2 of the two domains Ω1 and Ω2 respectively. The total considered time
duration was again 16 time frames (including the initial frame). Table VIII displays the
obtained results.

5.6.2. Geometric effects: Different sides of the inner square region The algorithm was also
implemented for different side lengths of the inner square region (S2) keeping the side length
of the outer square region constant at 15 space units. The wave field generated by the same
central sinusoidal signal (Radius: 2 space units, Period: 15 time units) for 16 time frames
(including the initial frame) was used here again. The obtained results are summarized in
table IX.

As we observed in the previous examples, in this case also the smaller the inner region is,
the better the synthesis results are (smaller mean absolute error).

5.6.3. Variable attenuation coefficient Finally a change in the attenuation coefficient α was
attempted. The coefficient was varied from 0 to 0.5 with step 0.05. The wave field used for
the synthesis algorithm was the same field used in the previous considered cases of the square

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



24

c2
2 max(|Φ|) µ(|ε|) in Ω max(|F1|) c2

1 max(|Φ|) µ(|ε|) in Ω max(|F1|)
0.50 2.2335 0.1940 1.6575 0.50 2.2335 0.1940 1.6575
0.45 2.1025 0.1831 1.6265 0.45 2.3585 0.1938 1.7016
0.40 2.0057 0.1688 1.5836 0.40 2.4898 0.1933 1.7075
0.35 1.9357 0.1520 1.8902 0.35 2.6210 0.1923 1.8598
0.30 1.9845 0.1357 2.6321 0.30 2.8039 0.1904 2.5016
0.25 2.1743 0.1220 3.9645 0.25 3.0475 0.1871 3.2449
0.20 2.7449 0.1210 7.1798 0.20 3.4500 0.1811 3.8363
0.15 2.3202 0.1916 13.2381 0.15 4.0989 0.1701 4.8138
0.10 1.3067 0.1075 11.4450 0.10 5.3899 0.1494 11.7534
0.05 3.3350 0.3391 57.7813 0.05 10.1976 0.1677 21.8417

Table VIII. Square region: Maximum absolute value of the original field max(|Φ|), mean absolute
error µ(|ε|) in the whole domain Ω and maximum value of the constrained source max(|F1|) in Ω1,
as a function of the propagation velocity in Ω2 (assuming constant velocity in Ω1 c2

1 = 0.5) and vice
versa.

Side max(|F1|) µ(|ε|) in Ω µ(|ε|) in Ω1 µ(|ε|) in Ω2 σ(|ε|) in Ω1 σ(|ε|) in Ω2

4 2.9199 0.0420 0.0331 0.2003 0.1182 0.2200
6 4.9576 0.1316 0.1181 0.2097 0.1833 0.2559
8 1.6575 0.1940 0.0766 0.4816 0.1796 0.2869
10 2.9633 0.2448 0.1751 0.3205 0.1435 0.2441
12 3.0932 0.2924 0.2253 0.3190 0.1789 0.2582

Table IX. Square region: Maximum absolute value of the distributed source max(|F1|), the mean
absolute error µ(|ε|) and its standard deviation σ(|ε|) in Ω, Ω1 and Ω2, as a function of the side length

of the inner square region.

region. The results are presented in table X.

α max(|Φ|) µ(|ε|) in Ω µ(|ε|) in Ω1 µ(|ε|) in Ω2 σ(|ε|) in Ω1 σ(|ε|) in Ω2 max(|F1|)
0.00 2.2335 0.1940 0.0766 0.4816 0.1796 0.2869 1.6575
0.05 2.1695 0.1857 0.0725 0.4631 0.1679 0.2730 1.5546
0.10 2.1172 0.1787 0.0689 0.4476 0.1578 0.2621 1.4608
0.15 2.0717 0.1725 0.0657 0.4343 0.1487 0.2536 1.3747
0.20 2.0353 0.1669 0.0626 0.4223 0.1406 0.2472 1.2959
0.25 1.9983 0.1617 0.0596 0.4117 0.1333 0.2417 1.2242
0.30 1.9614 0.1568 0.0567 0.4018 0.1265 0.2374 1.1637
0.35 1.9250 0.1522 0.0540 0.3929 0.1201 0.2331 1.1086
0.40 1.8891 0.1477 0.0513 0.3840 0.1141 0.2299 1.0580
0.45 1.8539 0.1434 0.0487 0.3751 0.1085 0.2278 1.0578
0.50 1.8193 0.1390 0.0462 0.3663 0.1031 0.2261 1.0940

Table X. Square region: Maximum absolute value of the original field max(|Φ|) in Ω, mean absolute
error µ(|ε|) in Ω, Ω1 and Ω2 and maximum absolute value of the constrained source max(|F1|) as a

function of different attenuation coefficients of the medium α.
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6. Concluding Remarks

A formulation of distributed wave field synthesis with and without source constrains, in
reference to a two dimensional medium has been developed. Material inhomogeneities and
other non-linearities like dissipation are shown to be quite easy to handle in this formulation.

Also, a fully finite element scheme compared with a hybrid finite element in space and
finite difference in time model, appears to be computationally easier when it is used to solve
wave field synthesis problems. The main reason is that the knowledge of the field we want to
synthesize before hand as vector {Φ} in space and time, constrains the required computations
to be linear matrix calculations. Also, in such a scheme, the final solution is provided as a
vector both in time and space.

Wave field synthesis has broad applications and involves extensive experimentation and
cost. We presented a numerical approach based on inverse formulation with FEM [10],[11] to
alleviate some of these concerns. The original signal corresponding to a given acoustic wave
field distribution has been generated quite accurately with this scheme for both homogenous
and non-homogeneous 2-D media. The method is straightforward to be extended to 3-D media
with dissipation. The mesh size needed to capture the source distribution with a reasonable
accuracy does indeed depend on the frequency and propagation velocity of the medium as
one would expect. Finally, its essential to use various sparse algorithms [28] for the solution
of the resultant linear system of equations as is done for this work here. The MATLAB code
used to produce the results of the problems with the various geometries can be found at:
http://cn.ece.cornell.edu/publications/papers/20060130/
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8. Appendix A

8.1. Derivation of the matrix form of the wave PDE

Given the definitions postulated in section 2, consider the Lagrange quantity L inside an
arbitrary elemental domain ∆Ω(n) as a function of the field Φ and its partial derivatives in
space and time as:

L(Φ, Φx,Φy,Φt) =
1
2
ρnΦ2

t + anΦtΦ− 1
2
kn[Φ2

x + Φ2
y] + FΦ (33)

Consider the function Φc(x, y, t) satisfying (5) and an arbitrary function Φ(x, y, t), such that
(x, y, t) ∈ ∆Ω(n). The deviation of Φ(x, y, t) from the function Φc(x, y, t), and its derivatives
are given by:

∆Φ(x, y, t) = Φ(x, y, t)− Φc(x, y, t) ∆Φt(x, y, t) = Φt(x, y, t)− Φct(x, y, t)
∆Φx(x, y, t) = Φx(x, y, t)− Φcx(x, y, t) ∆Φy(x, y, t) = Φy(x, y, t)− Φcy(x, y, t)

(34)

Since L is a function of Φ, Φx,Φy,Φt we can define the deviation of L as follows,

∆L = L(Φ, Φx,Φy, Φt)− L(Φc, Φcx, Φcy, Φct) (35)

From (33),(34) and (35) we can write compactly the deviation:

∆L = ρnΦct∆Φt + anΦct∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ + E

E =
ρn

2
∆Φ2

t + αnΦ∆Φt − kn

2
[∆Φ2

x + ∆Φ2
y] (36)

Integrating both sides of the previous equation within the elemental domain ∆Ω(n) we obtain:

∫

∆Ω(n)
∆Ldω =

∫

∆Ω(n)
{ρnΦct∆Φt+anΦct∆Φ−kn[Φcx∆Φx+Φcy∆Φy]+F∆Φ}dω+

∫

∆Ω(n)
Edω

(37)
Next we use integration by parts, and the fact that integrand functions are continuous and
therefore the order of integration can be interchanged. Hence, by applying the integration by
parts principle on the part that involves only partial derivatives of x we obtain:

∫

∆Ω(n)
∆ΦxΦcxdω =

∫ tn+∆T

t=tn

∫ yn+∆Y

y=yn

[
∫ xn+∆X

x=xn

∂∆Φ
∂x

Φcxdx]dydt =

∫ tn+∆T

t=tn

∫ yn+∆Y

y=yn

[∆Φ(Φcx)]
∣∣xn+∆X

x=xn
dydt−

∫

∆Ω(n)
∆Φ

∂

∂x
[Φcx]dω (38)

In more compact form and form definition 3 the previous equation can be written as:

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:1–6
Prepared using nmeauth.cls



28

∫

∆Ω(n)
∆ΦxΦcxdω =

∫

∆S
(n)
+x

[∆Φ(Φcx)]dydt−
∫

∆S
(n)
−x

[∆Φ(Φcx)]dydt−
∫

∆Ω(n)
∆Φ

∂

∂x
[Φcx]dω

(39)
Applying the previous property for the terms that include partial derivatives over y and t,
collecting the resulting relations and combining them with (37) results to:

∫

∆Ω(n)
∆Ldω =

∫

∆Ω(n)
[∆Φ(F + anΦct + kn[

∂

∂x
(Φcx) +

∂

∂y
(Φcy)]− ρn

∂

∂t
(Φct))]dω+

kn[
∫

∆S
(n)
+x

[∆Φ(Φcx)]dydt−
∫

∆S
(n)
−x

[∆Φ(Φcx)]dydt+

∫

∆S
(n)
+y

[∆Φ(Φcy)]dxdt−
∫

∆S
(n)
−y

[∆Φ(Φcy)]dxdt]+

ρn[
∫

∆S
(n)
+t

[∆Φ(Φct)]dxdy −
∫

∆S
(n)
−t

[∆Φ(Φct)]dxdy] +
∫

∆Ω(n)
Edω (40)

We know that for Φ = Φc equation (5) is satisfied, therefore the volume integral in the second
part of the last equation vanishes, leading to a simpler expression:

∫

∆Ω(n)
∆Ldω =

kn[
∫

∆S
(n)
+x

[∆Φ(Φcx)]dydt−
∫

∆S
(n)
−x

[∆Φ(Φcx)]dydt +
∫

∆S
(n)
+y

[∆Φ(Φcy)]dxdt−
∫

∆S
(n)
−y

[∆Φ(Φcy)]dxdt]+

ρn[
∫

∆S
(n)
+t

[∆Φ(Φct)]dxdy −
∫

∆S
(n)
−t

[∆Φ(Φct)]dxdy] +
∫

∆Ω(n)
Edω (41)

Finally utilizing (37)

∫

∆Ω

{ρnΦct∆Φt + anΦt∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ}dω =

kn[
∫

∆S
(n)
+x

[∆Φ(Φcx)]dydt−
∫

∆S
(n)
−x

[∆Φ(Φcx)]dydt +
∫

∆S
(n)
+y

[∆Φ(Φcy)]dxdt−
∫

∆S
(n)
−y

[∆Φ(Φcy)]dxdt]+

ρn[
∫

∆S
(n)
+t

[∆Φ(Φct)]dxdy −
∫

∆S
(n)
−t

[∆Φ(Φct)]dxdy] (42)

Equation (42) is the “weak” form of the 2 dimensional wave equation at the element level.

For example in the simple partition of the figure 15 we can write linear equations similar to
(42) for each one of the elements n = 1, 2, 3, 4. If we sum the four equations for each element
the intermediate surface integrals that appear in the second part will eliminate each other
resulting to:
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(t= T)D

(0,0,0)

(0, Y,0)D

( X,0,0)D (2 X,0,0)D

(0,0, )DT

(0,2 Y,0)D

Figure 15. Partition into 4 elements

4∑
n=1

∫

∆Ω(n)
{ρnΦct∆Φt + anΦct∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ}dω =

∫ 2∆X

x=0

∫ 2∆Y

y=0

ρn[∆Φ[Φct]]
∣∣∆T

t=0
dydx−

∫ 2∆Y

y=0

∫ ∆T

t=0

kn[∆Φ[Φcx]]
∣∣2∆X

x=0
dtdy

−
∫ 2∆X

x=0

∫ ∆T

t=0

kn[∆Φ[Φcy]]
∣∣2∆y

y=0
dtdx (43)

We see that the second part of the previous equation contains surface integrals that refer
to boundary surfaces of the partition and belong to only one element. Therefore to obtain a
general expression for the partition

⋃4
n=1 ∆Ω(n) we have to identify the subset of elements that

have surfaces that do not belong to any other element in the partition. This kind of surfaces
will contribute a surface integral after the assembly process in the second part of (43).

For each boundary element there is at least one boundary surface referring to it. Since we
refer to 3 dimensions (two space and one time), we have 6 kinds of boundary surfaces (two
per dimension). For example in x axis, there are boundary surfaces with their normal vector
pointing out of the domain in either positive or negative direction.

From definition 6 the sets N+x, N−xN+yN−yN+tN−t are the sets of elemental domains
which contain boundary surfaces that belong to only on elemental domain which is a boundary
elemental domain. In a general partition

⋃N
n=1 ∆Ω(n) the surfaces that belong to these sets

will contribute with one surface integral after the summation of all the equations like (42).

After summing equations like (42) written for every elemental domain one can conclude that:
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N∑
n=1

∫

∆Ω(n)
{ρnΦct∆Φt + anΦct∆Φ− kn[Φcx∆Φx + Φcy∆Φy] + F∆Φ}dω =

∑

n∈N+t

∫

∆S
(n)
+t

ρn[∆Φ[Φct]]dydx−
∑

n∈N−t

∫

∆S
(n)
−t

ρn[∆Φ[Φct]]dydx +

∑

n∈N+x

∫

∆S
(n)
+x

kn[∆Φ[Φcx]]dtdy −
∑

n∈N−x

∫

∆S
(n)
−x

kn[∆Φ[Φcx]]dtdy +

∑

n∈N+y

∫

∆S
(n)
+y

kn[∆Φ[Φcy]]dtdx−
∑

n∈N−y

∫

∆S
(n)
−y

kn[∆Φ[Φcy]]dtdx (44)

8.2. Element Approximations

For the purpose of our investigation consider local coordinates (ξ, η, ζ) inside the elemental
domain ∆Ω(n) satisfying (ξ, η, ζ) ∈ [−1, 1]× [−1, 1]× [−1, 1] and

x(ξ) = xn +
ξ + 1

2
∆X y(η) = yn +

η + 1
2

∆Y t(ζ) = tn +
ζ + 1

2
∆T (45)

Therefore linear approximations of Φ(x, y, t),Φc(x, y, t) and ∆Φ(x, y, t) both in space and time
can be defined by:

Φ(ξ, η, ζ) =
8∑

k=1

φ
(n)
k N

(n)
k (ξ, η, ζ) Φc(ξ, η, ζ) =

8∑

k=1

φ
(n)
ck N

(n)
k (ξ, η, ζ)

∆Φ(ξ, η, ζ) =
8∑

k=1

∆φ
(n)
k N

(n)
k (ξ, η, ζ) ∆φ

(n)
k = φ

(n)
k − φ

(n)
ck (46)

with φ
(n)
k being the values of the field Φ at the apexes of the domain ∆Ω(n) as figure 16

displays. The notation N
(n)
k (ξ, η, ζ) is used for the standard hexahedral interpolation functions

[11]. Assuming ki to be the ith digit of the dyadic expansion of the integer number k − 1 the
values φ

(n)
k and the functions N

(n)
k (ξ, η, ζ) can be written as:

φ
(n)
k = Φ(xn + k1∆X, yn + k2∆Y, tn + k3∆T ) k ∈ {1, ..., 8}

N
(n)
k (ξ, η, ζ) =

1
8
[1 + (−1)k1+1ξ][1 + (−1)k2+1η][1 + (−1)k3+1ζ] (47)

Based on the previous approximations we can write the partial derivatives of the field Φ and
the partial derivatives of the difference ∆Φ as:
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(X + ,Y ,t + T)n n n DDX
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Figure 16. Cubic elemental domain

Φx =
8∑

k=1

φ
(n)
k

∂N
(n)
k

∂x
∆Φx =

8∑

k=1

∆φ
(n)
k

∂N
(n)
k

∂x

Φy =
8∑

k=1

φ
(n)
k

∂N
(n)
k

∂y
∆Φy =

8∑

k=1

∆φ
(n)
k

∂N
(n)
k

∂y

Φt =
8∑

k=1

φ
(n)
k

∂N
(n)
k

∂t
∆Φt =

8∑

k=1

∆φ
(n)
k

∂N
(n)
k

∂t
(48)

Additionally we approximate the source function F (ξ, η, ζ) by a constant inside the elemental
domain ∆Ω(n):

F (ξ, η, ζ) = f (n) ∀(ξ, η, ζ) ∈ ∆Ω(n) (49)

The next goal is to evaluate the integrals of the interpolation functions and their derivatives
in order to write (44) in a matrix form, given the approximations of (46),(48) and (49).
In order to do that, the following notation is introduced.
Given a positive integer number k we denote:
With di(k) the i-th digit of the dyadic expansion of the integer k-1.
With Di(k) the dyadic expansion of the integer k-1 without the i-th digit.
With the symbol “⊕ ” the bitwise XOR operation between dyadic expansions.
For example: 110⊕ 001 = 3.

Utilizing (47) and the transformations of (45) the integrals of the interpolation functions and
their derivatives can be written as:
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∫

∆Ω(n)
N (n)

m dω =
1
8
∆Ω

∫

∆Ω(n)

∂N
(n)
m

∂x

∂N
(n)
k

∂x
dω =

(−1)d1(m)+d1(k)

322D1(m)⊕D1(k)

∆Ω
∆X2

∫

∆Ω(n)

∂N
(n)
m

∂y

∂N
(n)
k

∂y
dω =

(−1)d2(m)+d2(k)

322D2(m)⊕D2(k)

∆Ω
∆Y 2

∫

∆Ω(n)

∂N
(n)
m

∂t

∂N
(n)
k

∂t
dω =

(−1)d3(m)+d3(k)

322D3(m)⊕D3(k)

∆Ω
∆T 2

∫

∆Ω(n)
N (n)

m

∂N
(n)
k

∂t
dω =

(−1)d3(k)+1

322D3(m)⊕D3(k)+1
∆X∆Y

∫

∆S
(n)
+x

[N (n)
m

∂N
(n)
k

∂x
]dydt−

∫

∆S
(n)
−x

[N (n)
m

∂N
(n)
k

∂x
]dydt =

(−1)d1(m)+d1(k)

322D1(m)⊕D1(k)

∆Y ∆T

∆X

∫

∆S
(n)
+y

[N (n)
m

∂N
(n)
k

∂y
]dxdt−

∫

∆S
(n)
−y

[N (n)
m

∂N
(n)
k

∂y
]dxdt =

(−1)d2(m)+d2(k)

322D2(m)⊕D2(k)

∆X∆T

∆Y

∫

∆S
(n)
+t

[N (n)
m

∂N
(n)
k

∂t
]dxdy −

∫

∆S
(n)
−t

[N (n)
m

∂N
(n)
k

∂t
]dxdy =

(−1)d3(m)+d3(k)

322D3(m)⊕D3(k)

∆X∆Y

∆T
(50)

In the approximations of (46),(48) and (49), the notation φ
(n)
k is used for the field values and

the notation ∆φ
(n)
m for the variations of these values. The superscript (n) refer to the index of

the element and the subscript m or k to the local (in the element) index of the specific point.
Since different indices in (44) sometimes refer to the same space-time point it is useful to
define a mapping function between the local indices of the points in the elements and the
global indices of these points in the whole domain.
Let us consider a generic domain of a total of G global space-time points. Assume also in this
domain, that there are N total elements. Then a mapping function can be defined as:

T : {1, ..., 8} × {1, .., N} → {1, ..., G} (51)

Under the above mapping and based on the “volume” integrals that appear in (44) and the
integrals of (50), a global matrix [A(G)] can be constructed as:

[A(G)
ij ] =

N∑
n=1

8∑
m=1

8∑

k=1

I(T (m, n) = i)I(T (k, n) = j)[A(n)
mk]

[A(n)
mk] = ρn

(−1)d3(m)+d3(k)

322D3(m)⊕D3(k)

∆Ω
∆T 2

+ an
(−1)d3(k)+1

322D3(m)⊕D3(k)+1
∆X∆Y−

kn[
(−1)d1(m)+d1(k)

322D1(m)⊕D1(k)

∆Ω
∆X2

+
(−1)d2(m)+d2(k)

322D2(m)⊕D2(k)

∆Ω
∆Y 2

]

where I is the identity function.
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Based on the “surface” integrals that appear in (44) and the integrals of (50), a global matrix
[B(G)] can be also constructed.

[B(G)
ij ] =

N∑
n=1

8∑
m=1

8∑

k=1

I(T (m,n) = i)I(T (k, n) = j)B(n)
mk

B
(n)
mk =

I(n ∈ N+x)[B(n)
(+x)mk]− I(n ∈ N−x)[B(n)

(−x)mk]+

I(n ∈ N+y)[B(n)
(+y)mk]− I(n ∈ N−y)[B(n)

(−y)mk]+

I(n ∈ N+t)[B
(n)
(+t)mk]− I(n ∈ N−t)[B

(n)
(−t)mk]

[B(n)
(+x)mk] = I(d1(m) = 1)kn

(−1)d1(k)+1

322D1(m)⊕D1(k)

∆Y ∆T

∆X

[B(n)
(−x)mk] = I(d1(m) = 0)kn

(−1)d1(k)+1

322D1(m)⊕D1(k)

∆Y ∆T

∆X

[B(n)
(+y)mk] = I(d2(m) = 1)kn

(−1)d2(k)+1

322D2(m)⊕D2(k)

∆X∆T

∆Y

[B(n)
(−y)mk] = I(d2(m) = 0)kn

(−1)d2(k)+1

322D2(m)⊕D2(k)

∆X∆T

∆Y

[B(n)
(+t)mk] = I(d3(m) = 1)ρn

(−1)d3(k)+1

322D3(m)⊕D3(k)

∆X∆Y

∆T

[B(n)
(−t)mk] = I(d3(m) = 0)ρn

(−1)d3(k)+1

322D3(m)⊕D3(k)

∆X∆Y

∆T

Under the same principles the global source vector {F (G)
i } can be constructed as:

{F (G)
i } =

N∑
n=1

8∑
m=1

I[T (m,n) = i]{F (n)
m } {F (n)

m } = f (n)

∫

∆Ω(n)
N (n)

m dω =
f (n)∆Ω

8

Finally the field vector and its variance will take the form of:

{Φ(G)} = [φ1, ..., φG]T {∆Φ(G)} = [∆φ1, ..., ∆φG]T

Our next step is to sabstitute (48),(49),(46) in (44) and interchange the summations of
equations (48),(49),(46) with the integrations of (44). Then, using the calculated integrals
of (50), equation (44) can be written in a more compact form as:

{∆Φ(G)}T {[K(G)]{Φ(G)}+ {F (G)}} = {0} [K(G)] = [A(G)]− [B(G)]

Note that the differences ∆φg (g = 1, ..., G) “extracted” in {∆Φ(G)} come from either the
term ∆Φ or the terms ∆Φx, ∆Φy, ∆Φt, appearing in (44).
The last equation must hold for every small variations of ∆φg, therefore the final matrix form
can be obtained as:

[K(G)]{Φ(G)}+ {F (G)} = {0} (52)
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9. Appendix B

9.1. Linear interpolation error

Consider a continuous square integrable function F : S × [0, T ] → R, where S is a two
dimensional region and [0, T ] is a predefined time interval, like the one in figure 2. Given the
region S there is always a rectangular cover of dimensions Lx, Ly encompassing the region S.
Similarly we can define a cover ΩE for the domain Ω. Both covers are displayed in figure 17
and their dimensions are chosen to be multiples of the dimensions ∆X,∆X and ∆Y of the
elemental domains ∆Ω(n). In this way the cover ΩE can be partitioned into a finite number of
elemental domains ∆Ω(n) displayed also in figure 17.

Figure 17. Region and domain cover

Based on the domain cover we can define a family of basis functions N(x, y, t) as follows:

N
(nmp)
k = [k1 cos(

nπx

Lx
) + k̄1 sin(

nπx

Lx
)][k2 cos(

mπy

Ly
) + k̄2 sin(

mπy

Ly
)][k3 cos(

pπt

T
) + k̄3 sin(

pπt

T
)]

(53)
where again k ∈ {1, 2, ..., 8} and ki, i = 1, 2, 3 is the ith digit of the dyadic expansion of the
integer k − 1 and k̄i its complement. Additionally n,m, p ∈ {1, 2, 3, 4, ...}.

Since the initial function F (x, y, t) is square integrable, it can be expanded as an infinite
linear combination of the above basis functions. Furthermore since Ω ⊂ ΩE we force
F (x, y, t) = 0, ∀(x, y, t) ∈ ΩE − Ω.

If we consider a subset of the initial functions F such that the contribution of the higher
order basis functions (n > N, m > M, p > P ) in this linear combination is negligible then:

F (x, y, t) ≈
8∑

k=1

N,M,P∑
n,m,p=0

c
(nmp)
k N

(nmp)
k (x, y, t)

c
(nmp)
k =

8
LxLyT

∫

ΩE

F (x, y, t)N (nmp)
k (x, y, t)dω (54)

Lets define the operator L which acts on the function F (x, y, t) and gives a linear interpolated
version of this function based in its values at the grid points defined in definition 5. Assume also
for simplicity that the elemental domains have side (∆X = ∆Y = ∆T = a). Since the operator
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is linear and acts on a function F (x, y, t) that can be represented as a linear combination (54)
then clearly:

L[F (x, y, t)] ≈
8∑

k=1

N,M,P∑
n,m,p=0

c
(nmp)
k L[N (nmp)

k (x, y, t)] (55)

Now if we choose the side of the elemental domains a, in a way that the sides of the cover
ΩE are multiples of a then we can write that Lx = a(Q + 1),Ly = a(R + 1) and T = a(S + 1).
In this way the whole cover is partitioned resulting to a total number of Atot = QRS elemental
domains defined by the sets:

∆Ωlqr = [qa, (q + 1)a]× [ra, (r + 1)a]× [sa, (s + 1)a]

with q ∈ {0, ..., Q} r ∈ {0, ..., R} s ∈ {0, ..., S}.

According to equation (47), interpolation functions Gl(qrs)(x, y, t) using global coordinates for
every elemental domain ∆Ωqrs can be developed. Therefore the “action” of the operator L on
the function N

(nmp)
k (x, y, t) can be described by:

L[N (nmp)
k (x, y, t)] =

8∑

l=1

g
(nmp)
l(qrs) Gl(qrs)(x, y, t) ∀(x, y, t) ∈ ∆Ωqrs

g
(nmp)
l(qrs) = N

(nmp)
k (qa + l1a, ra + l2a, sa + l3a) l ∈ {0, ..., 7}

Gl(qrs)(x, y, t) = [l̄1 + (−1)l1+1(
x

a
− q)][l̄2 + (−1)l2+1(

y

a
− r)][l̄3 + (−1)l3+1(

t

a
− s)]

(56)

where l1, l2, l3 are the digits of the dyadic expansion of the integer number l− 1, l ∈ {1, ..., 8}.

Denoting ΩE = [0, Lx] × [0, Ly] × [0, T ] as the cover of the domain Ω and assuming that
Lx, Ly, T are all multiples of the side a, a good measure for the error the interpolation
induces, is given by the integral of the square of the difference between each basis function
N

(nmp)
k (x, y, t) and its interpolated version in ΩE .

E =
7∑

k=0

N,M,P∑
n,m,p=0

[c(nmp)
k ]2E(nmp)

k E
(nmp)
k =

∫

ΩE

{N (nmp)
k − L[N (nmp)

k ]}2dω (57)

Each of the E
(nmp)
k is a component of the total square error. We can divide the integral of the

component of the square error E
(nmp)
k in (57) into sums of integrals in the elemental domains

as:

E
(nmp)
k =

QRS∑
q,r,s=0

∫

∆Ωqrs

{N (nmp)
k − L[N (nmp)

k ]}2dω (58)
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Lets concentrate on the integral inside the domain ∆Ωqrs.

The square difference {N (nmp)
k − L[N (nmp)

k ]}2 in the domain ∆Ωqrs can be written as:

{N (nmp)
k − L[N (nmp)

k ]}2 =

= {N (nmp)
k −

8∑

l=1

g
(nmp)
l(qrs) Gl(qrs)}2

= [N (nmp)
k ]2 − 2N

(nmp)
k

8∑

l=1

g
(nmp)
l(qrs) Gl(qrs) +

8∑

l=1

8∑

l′=1

g
(nmp)
l(qrs) g

(nmp)
l′(qrs)Gl(qrs)Gl′(qrs)

(59)

Therefore in order to evaluate the integral of the square of the difference in the domain ∆Ωqrs

we have to evaluate the three following integrals:

A
(nmp)
k(qrs)(a) =

∫

∆Ωqrs

[N (nmp)
k ]2dω

B
(nmp)
kl(qrs)(a) =

∫

∆Ωqrs

[N (nmp)
k Gl(qrs)]dω

Cll′(qrs)(a) =
∫

∆Ωqrs

[Gl(qrs)Gl′(qrs)]dω (60)

In these integrals the integration can be applied separately along the x, y, t axis because the
integrands are functions that can be written as products of functions of x with functions of y
and with functions of t.

Therefore we can write:
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A
(nmp)
k(qrs)(a) = XA

(n)
k(q)Y A

(m)
k(r)TA

(p)
k(s)

XA
(n)
k(q) =

a

2
+

Lx

4nπ
[(k1 − k̄1) sin(

2nπ

Lx
x)](q+1)a

qa

Y A
(m)
k(r) =

a

2
+

Ly

4mπ
[(k2 − k̄2) sin(

2mπ

Ly
y)](r+1)a

ra

TA
(p)
k(s) =

a

2
+

T

4pπ
[(k3 − k̄3) sin(

2pπ

T
t)](s+1)a

sa

B
(nmp)
kl(qrs)(a) = XB

(n)
kl(q)Y B

(m)
kl(r)TB

(p)
kl(s)

XB
(n)
kl(q) =

Lx

nπ
[sin(

nπ

Lx
x)(k1(l̄1 + (−1)l1q − x

(−1)l1

a
)− k̄1

Lx

nπ

(−1)l1

a
)+

cos(
nπ

Lx
x)(k1

Lx

nπ

(−1)l1+1

a
− k̄1(l̄1 + (−1)l1q − x

(−1)l1

a
))](q+1)a

qa

Y B
(m)
kl(r) =

Ly

mπ
[sin(

mπ

Ly
y)(k2(l̄2 + (−1)l2r − y

(−1)l2

a
)− k̄2

Ly

mπ

(−1)l2

a
)+

cos(
mπ

Ly
y)(k2

Ly

mπ

(−1)l2+1

a
− k̄2(l̄2 + (−1)l2r − y

(−1)l2

a
))](r+1)a

ra

TB
(p)
kl(s) =

T

pπ
[sin(

pπ

T
t)(k3(l̄3 + (−1)l3s− t

(−1)l3

a
)− k̄3

T

pπ

(−1)l3

a
)+

cos(
pπ

T
t)(k3

T

pπ

(−1)l3+1

a
− k̄3(l̄3 + (−1)l3s− t

(−1)l3

a
))](s+1)a

sa

Cll′(qrs)(a) =
3∏

i=1

{Alil′ixi
(a) + Blil′ixi

(a) + Clil′ixi
(a)}

Alil′ixi
(a) = (l̄i + (−1)lixi)(l̄′i + (−1)l′ixi)a

Blil′ixi
(a) = [(l̄i + (−1)lixi)(−1)l′i+1 + (l̄′i + (−1)l′ixi)(−1)li+1]

2xi + 1
2

a

Clil′ixi
(a) = (−1)li+l′i

(xi + 1)3 − x3
i

3
aClil′ixi

x1 = q x2 = r x3 = s

(61)

Finally combining equations (57), (58) ,(59) and (60) we conclude that:

E =
N,M,P∑

m,n,p=0

8∑

k=1

{[c(nmp)
k ]2

Q,R,S∑
q,r,s=0

ABC
(nmp)
k(qrs)}

ABC
(nmp)
k(qrs) = A

(nmp)
k(qrs)(a)− 2

8∑

l=1

g
(nmp)
l(qrs) B

(nmp)
kl(qrs)(a) +

8∑

l=1

8∑

l′=1

g
(nmp)
l(qrs) g

(nmp)
l′(qrs)Cll′(qrs)(a) (62)

In order to see how the error components change as the sampling step a and the frequency
(determined by the triplet (n,m, p)) change we consider the case where k = 1 Lx = Ly = T =
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10.

Then we plot the coefficients Enmp for a = 1 (1000 elements), a = 0.5 (8000 elements) and
0.25 (64000 elements).
Since N

(nmp)
k (x, y, t) = cos(nπx

Lx
) cos(mπy

Ly
) cos(pπt

T ) and due to symmetry:

Eiij = Eiji = Ejii therefore for n,m, p ∈ {1, 2, ..., 5} we have to calculate only the components
that appear in table 9.1.

Enmp a = 1 a = 0.5 a = 0.25
E111 0.079300 0.005000 0.000316
E112 0.321200 0.020700 0.001300
E122 0.692700 0.045500 0.002900
E222 1.184100 0.079300 0.005000
E223 2.325000 0.162100 0.010200
E233 3.731500 0.272300 0.017000
E333 5.363700 0.404900 0.025400
E334 8.117200 0.614200 0.040300
E344 11.206800 0.914700 0.058300
E444 14.490400 1.235100 0.079300
E445 19.246600 1.648100 0.111700
E455 24.122600 2.267500 0.149000
E555 29.042400 2.875900 0.191100

Table XI. Error components Enmp as a function of the sampling step a.

By looking in table 9.1 it is clear that as the sampling step reduces to half the component of
the square error is multiplied by 1

16 . Therefore the total error is reduced by 1
4 .
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