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a b s t r a c t

This paper provides a concise description of the free energy principle, starting from a
formulation of random dynamical systems in terms of a Langevin equation and ending
with a Bayesian mechanics that can be read as a physics of sentience. It rehearses the key
steps using standard results from statistical physics. These steps entail (i) establishing
a particular partition of states based upon conditional independencies that inherit from
sparsely coupled dynamics, (ii) unpacking the implications of this partition in terms of
Bayesian inference and (iii) describing the paths of particular states with a variational
principle of least action. Teleologically, the free energy principle offers a normative
account of self-organisation in terms of optimal Bayesian design and decision-making, in
the sense of maximising marginal likelihood or Bayesian model evidence. In summary,
starting from a description of the world in terms of random dynamical systems, we end
up with a description of self-organisation as sentient behaviour that can be interpreted
as self-evidencing; namely, self-assembly, autopoiesis or active inference.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It is said that the free energy principle is difficult to understand. This is ironic on three counts. First, the free energy
rinciple (FEP) is so simple that it is (almost) tautological. Indeed, philosophical accounts compare its explanandum to a
esert landscape, in the sense of Quine [1]. Second, a tenet of the FEP is that everything must provide an accurate account
f things that is as simple as possible—including itself. Finally, the FEP rests on straightforward results from statistical
hysics. This review tries to present the free energy principle as simply as possible but without sacrificing too much
echnical detail. It steps through the formal arguments that lead from a description of the world as a random dynamical
ystem [2,3] to a description of self-organisation in terms of active inference and self-evidencing [4]. The evidence in
uestion is Bayesian model evidence, which speaks to the Bayesian mechanics on offer [5]. These mechanics have the
ame starting point as quantum, statistical and classical mechanics. The only difference is that careful attention is paid to
he way that the internal states of something couple to its external states.

To make the following account accessible, we use a conversational style, explaining the meaning of key mathematical
xpressions intuitively. Accordingly, simplifying notation and assumptions are used to foreground the basic ideas. Before
tarting, it might help to clarify what the free energy principle is—and why it is useful. Many theories in the biological
ciences are answers to the question: ‘‘what must things do, in order to exist?’’ The FEP turns this question on its head
nd asks: ‘‘if things exist, what must they do?’’ More formally, if we can define what it means to be something, can we
dentify the physics or dynamics that a thing must possess? To answer this question, the FEP calls on some mathematical
ruisms that follow from each other. Much like Hamilton’s principle of least action,1 it is not a falsifiable theory about
the way ‘things’ behave—it is a general description of ‘things’ that are defined in a particular way. As such, the FEP is not
falsifiable as a mathematical statement, but its postulates may be falsifiable to the extent that they refer to a specific class
of empirical phenomena that the principle aims to describe.

Is such a description useful? In itself, the answer is probably no—in the sense that the principle of least action does
not tell you how to throw a ball. However, the principle of least action furnishes everything we need to know to simulate
the trajectory of a ball in a particular instance. In the same sense, the FEP allows one to simulate and predict the sentient
behaviour of a particle, person, artefact or agent (i.e., some ‘thing’). This allows one to build sentient artefacts or use
simulations as observation models of particles (or people). These simulations rest upon specifying a generative model that
s apt to describe the behaviour of the particle (or person) at hand. At this point, committing to a specific generative
odel can be taken as a commitment to a specific—and falsifiable—theory. Later, we will see some examples of these
imulations.
The remaining sections describe the FEP. Each section focuses on an equation—or set of equations—used in subsequent

ections. The ensuing narrative is meant to be concise, taking us from the beginning to the end as succinctly as possible.
o avoid disrupting the narrative, we use footnotes to address questions that are commonly asked at each step. We also
se figure legends to supplement the narrative with examples from neurobiology. Most of the following can be found in
he literature [5,7,8]; however, there are a few simplifications that replace earlier accounts.

. Systems, states and fluctuations

We start by describing the world with a stochastic differential equation [9]. So why start here? The principal reason is
hat we want a description that is consistent with physics. This follows because things like the Schrödinger equation in
uantum mechanics, fluctuation theorems in statistical mechanics and the Lagrangian formulation of classical mechanics
an all be derived from this starting point [10]. In short, if one wants a physics of sentience, this is the place to start.
We are interested in systems that have characteristic states. Technically, this means the system has a pullback attractor;

amely, a set of states a system will come to occupy from any initial state [2,11]. Such systems can be described with
tochastic differential equations, such as the Langevin equation describing the rate of change of some states x(τ ), in terms

1 Perhaps a better analogy would be Noether’s theorem (Beren Millidge—personal communication) [6].
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f their flow f (x), and random fluctuations ω(τ ). The fluctuations are usually assumed to be a normally distributed (white
oise) process, with a covariance of 2Γ :

ẋ(τ ) = f (x) + ω(τ )
p(ω | x) = N (ω; 0, 2Γ ) ⇒ p(ẋ | x) = N (ẋ; f , 2Γ )

p(x) =?
(1)

The dot notation denotes a derivative with respect to time.2 This means that time and causality are baked into everything
that follows, in the sense that states cause their motion. The Langevin equation is itself an approximation to a simpler
mapping from some variables to changes in those variables with time. This follows from the separation into states
and random fluctuations implicit in (1), where states change slowly in relation to fast fluctuations. This (adiabatic)
approximation is ubiquitous in physics [13–15]. In brief, it means we can ignore temporal correlations in the fast
fluctuations and assume—by the central limit theorem—that they have a Gaussian distribution. This equips the fluctuations
with a probability density, which means we know their statistical behaviour but not their trajectory or path, which itself
is a random variable [2,3,9].

The next step, shared by all physics, is to ask whether anything can be said about the probability density over the
states—the ‘?’ in (1). A lot can be said about this probability density, which can be expressed in two complementary ways;
namely, as density dynamics using the Fokker–Planck equation (a.k.a. the forward Kolmogorov equation) or in terms of
the probability of a path through state–space using the path-integral formulation. The Fokker–Planck equation describes
the change in the density due to random fluctuations and the flow of states through state–space [9,16]:

ṗ(x, τ ) = ∇ · (Γ ∇ − f (x))p(x, τ ) (2)

The Fokker–Planck equation describes our stochastic process in terms of deterministic density dynamics—instead of
specific realisations—where the density in question is over states x(τ ) = xτ . Conversely, the path-integral formulation
onsiders the probability of a trajectory or path x[τ ] ≜ [x(t) : 0 ≤ t ≤ τ ] in terms of its action A (omitting additive
onstants here and throughout)3:

A(x[τ ]) = − ln p (x[τ ] | x0)

=
τ
2 ln |(4π )nΓ | +

∫ τ

0
dtL(x, ẋ)

L(x, ẋ) =
1
2

[
(ẋ − f ) ·

1
2Γ (ẋ − f ) + ∇ · f

] (3)

Both the Fokker–Planck and path-integral formulations inherit their functional form from assumptions about the
statistics of random fluctuations in (1). For example, the most likely path—or path of least action—is the path taken when
the fluctuations take their most likely value of zero. This means that variations away from this path always increase the
action. This is expressed mathematically by saying that its variation is zero when the action is minimised.4

x[τ ] = argmin
x[τ ]

A(x[τ ])

⇔ δxA(x[τ ]) = 0
⇔ ẋ(τ ) = f (x)

(4)

In short, the motion on the path of least action is just the flow without random fluctuations. Paths of least action
will figure prominently below; especially, when considering systems that behave in a precise or predictable way. We will
denote the most likely states and paths with a bold typeface.

Although equivalent, the Fokker–Planck and path-integral formalisms provide complementary perspectives on dynam-
ics. The former deals with time-dependent probability densities over states, while the latter considers time-independent
densities over paths. The density over n states at any particular time is the time-marginal of the density over trajectories.
These probabilities can be conveniently quantified in terms of their negative logarithms (or potentials) leading to surprisal

2 Question: why is the flow in (1) not a function of time? Many treatments of stochastic thermodynamics allow for time-dependent flows when
coupling one system (e.g., an idealised gas) to another (e.g., a heat reservoir), where it is assumed that the other system changes very slowly,
e.g., [10,12]. However, the ambition of the FEP is to describe this coupling under a partition of states. In this setting, separation of temporal scales
is an emergent property, where (1) holds at any given temporal scale. See [5] for a treatment using the apparatus of the renormalisation group.
3 Question: where does the divergence in the third equality come from? This term arises from the implicit use of Stratonovich path integrals [10].

Note that we have assumed that the amplitude of random fluctuations is state—and therefore path—independent in (1), which means we can place
it outside the integral in the second equality.
4 Omitting the contribution of the divergence term in the Lagrangian to obtain the expression for the path of least action for simplicity, cf. [17].

Taking this simplification at face value means that we are either: 1) considering a description on a short time-scale as the flow can be approximated
by a linear function with impunity (e.g., linear response theory, see [9]); or 2) we are considering the limit where random fluctuations have
vanishingly small amplitude (e.g., precise particles, see Sections 7 and 8).
3
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nd action, respectively (omitting the divergence of the flow in the last line for simplicity):

ℑ(x, τ ) ≜ − ln p(x, τ )
A(x[τ ]) ≜ − ln p (x[τ ] | x0)

H[p(x, τ )] = E[ℑ(x, τ )]
H [p (x[τ ] | x0)] = E[A(x[τ ])]

=
τ
2 ln

[
(4π )n|Γ |

]
+

∫ τ

0
dt 1

2Ep(ω)
[
ω(t) ·

1
2Γ ω(t)

]
=

τ
2 ln

[
(4πe)n|Γ |

]
(5)

The second set of equalities shows that the uncertainty (or entropy) about states and their paths is the expected
urprisal and action, respectively. Perhaps counterintuitively, the entropy of paths is easier to specify than the entropy
f states. This follows because the only source of uncertainty about paths—given an initial state—are the random
luctuations [9,10], whose probability density does not change with time. The last pair of equalities in (5) show that the
mplitude of random fluctuations determines the entropy of paths. Intuitively, if the fluctuations are large, then many
istinct paths become equally plausible, and the entropy of paths increases.5

. Solutions, steady-states and nonequilibria

So far, we have equations that describe the relationship between the dynamics of a system and probability densities
ver fluctuations, states and their paths. This is sufficient to elaborate most physics. For example, we can use the
okker–Planck or path-integral formalism to derive quantum mechanics, where the Fokker–Planck equation becomes the
chrödinger wave equation [18]. We could focus on systems that comprise statistical ensembles of similar states to derive
tochastic and statistical mechanics in terms of fluctuation theorems [10]. Finally, we could consider large systems—in
hich the fluctuations are averaged away—to derive classical mechanics such as electromagnetism and—with a suitable
hoice of potential functions—general relativity [19,20]. All of these mechanics require some boundary conditions: for
xample, a Schrödinger potential in quantum mechanics, a heat bath or reservoir in statistical mechanics and a classical
otential for Lagrangian mechanics. At this point, the FEP steps back and asks, where do these boundary conditions come
rom? Indeed, this was implicit in Schrodinger’s question:

‘‘How can the events in space and time which take place within the spatial boundary of a living organism be accounted for
y physics and chemistry?’’ [21].
We read a boundary in a statistical sense as a Markov boundary [22].6 Why? Because the only thing we have at hand

s a probabilistic description of the system. And the only way to separate the states of something from its boundary states
s in terms of probabilistic independencies—in this instance, conditional independencies.7 This means we need to identify
partition of states that assigns a subset to a ‘thing’ or particle and another subset to the boundary that separates the

hing from some ‘thing’ else. In short, one has to define ‘thingness’ in terms of conditional independencies.
However, if things are defined in terms of conditional independencies and conditional independencies are attributes of

probability density, where does the density come from? The Fokker–Planck equation shows that the density over states
epends upon time, even if the flow does not. This means that if we predicate ‘thingness’ on a probability density, it may
nly exist for a vanishingly small amount of time. This simple observation compels us to consider probability densities
hat do not change with time, namely: (i) steady-state solutions to the Fokker–Planck equation or (ii) the density over
aths. We will start with the (slightly more delicate) treatment of steady-state solutions and then show that the (slightly
ore straightforward) treatment of densities over paths leads to the same notion of ‘thingness’.
The existence of things over a particular timescale implies the density in (2) does not change over that timescale. This

s what is meant by a steady-state solution to the Fokker–Planck equation. The ensuing density is known as a steady-state
ensity and, in random dynamical systems, implies the existence of a pullback attractor [2,3]. The notion of an attractor
s helpful here, in the sense that it comprises a set of characteristic states, to which the system is attracted over time.8 In
hort, to talk about ‘things’, we are implicitly talking about a partition of states in a random dynamical system that has an
ttracting set—i.e., a steady-state solution to the Fokker–Planck equation. In short, we consider systems that self-organise
owards a steady-state density.9 This solution is also known as a nonequilibrium steady-state (NESS) density, where the
nonequilibrium’ aspect rests upon solenoidal flow, as we will see next.

5 From a thermodynamic perspective, uncertainty about paths increases with temperature. For example, the Einstein–Smoluchowski relation
relates the amplitude of random fluctuations to a mobility coefficient times the temperature Γ = µmkBT .
6 A Markov boundary is a subset of states of the system that renders the states of a ‘thing’ or particle conditionally independent from all other

tates [23].
7 Noting that if two subsets of states were independent, as opposed to being conditionally independent, we would be describing two separate

ystems.
8 More precisely, the time-dependent solutions to the Fokker–Planck equation will tend towards the stationary solution, or steady-state. In other
ords, the steady-state density becomes a point attractor in the space of probability densities.
9 At this point, the formalism applies equally to steady-states with a high or low entropy, as we have not committed to a particular form of

he steady-state density. Later, we will specialise to steady-states with a low entropy to characterise the sort of self-organisation that describes
iological systems, e.g., swarming or flocking [14,24].
4



K. Friston, L. Da Costa, N. Sajid et al. Physics Reports 1024 (2023) 1–29

r

b
p
f
a

3

c
I
a

4

s
d
e
o
t
s

T
c
H
o
t
a

The existence of a solution to the Fokker–Planck equation—i.e., the existence of something—means that we can
express the flow of states in terms of the steady-state density (or corresponding surprisal) using a generalisation of
the Helmholtz decomposition. This decomposes the flow into conservative (rotational, divergence-free) and dissipative
(irrotational, curl-free) components—with respect to the steady-state density—referred to as solenoidal and gradient flows,
espectively [9,25–30]:

ṗ(x) = 0 ⇔ f (x) = Ω(x)∇ℑ(x) − Λ(x) = Q (x)∇ℑ(x)  
Solenoidal flow

− Γ ∇ℑ(x)  
Gradient flow

−Λ(x)

ℑ(x) = − ln p(x), Q = −Q T , Λi ≜
∑

j

∂Ωij

∂xj
=

∑
j

∂Qij

∂xj
.

(6)

This can be understood intuitively as a decomposition of the flow into two parts. The first (conservative) part of the
flow is a solenoidal circulation on the isocontours of the steady-state density (or surprisal). This component breaks detailed
alance and renders the steady-state density a nonequilibrium steady-state density [31,32]. The second (dissipative)
art performs a (natural) gradient descent on the steady-state surprisal and depends upon the amplitude of random
luctuations [33,34]. The final term, Λ, can be regarded as a correction term, which is neither curl-free nor divergence-free,
nd which ensures that the probability density remains constant over time [30].

.1. Summary

We now have a probabilistic description of a system in terms of a (NESS) density that admits conditional independen-
ies among states. These conditional independencies are necessary to separate the states of things from their boundaries.
n the next step, we will see how conditional independencies inherit from sparse coupling among states—and how they
re used to establish a particular partition of states.

. Particles, partitions and things

In associating some (stochastic differential) equations of motion with a unique (NESS) density, we have a somewhat
pecial setup, in which the influences entailed by the equations of motion place constraints on the conditional indepen-
encies of the NESS density: these conditional independencies can be used to identify a particular partition of states into
xternal, sensory, active and internal states as summarised below. This is an important move because it separates the states
f a particle (i.e., internal states and their sensory and active states) from the remaining (i.e., external) states. However,
o do this we have to establish how the causal dynamics in (1) underwrite conditional independencies. This can be done
imply by using the curvature (Hessian) of surprisal as follows:

(xu ⊥ xv) | b ⇔ p(x) = p (xu | b) p (xv | b) p(b)

⇔ ℑ(x) = ℑ (xu | b) + ℑ (xv | b) + ℑ(b) ⇔
∂2

ℑ

∂xu∂xv

= Huv = Hvu = 0.
(7)

his says that if the uth state is conditionally independent of the vth state, given the remaining states b, then the
orresponding element of the curvature—or Hessian matrix—of surprisal must be zero. Conversely, a zero entry in the
essian implies conditional independence. In sum, any two states are conditionally independent if, and only if, the change
f surprisal with one state does not depend on the other. We can now use the Helmholtz decomposition (6) to express
he Jacobian—i.e., the (linear) coupling—of the flow in terms of the Hessian—that entails conditional independencies (with
slight abuse of the dot product notation):

f (x) = Ω∇ℑ − Λ

⇒ J = ΩH + ∇Ω · ∇ℑ − ∇Λ

⇒ Juv =
∂ fu
∂xv

=

∑
i

ΩuiHiv +

∑
i

∂Ωui

∂xv

∂ℑ

∂xi
−

∑
i

∂2Ωui

∂xi∂xv

.

(8)

We can now define sparse coupling as a solution to this equation, in which all the terms are identically zero10:

QuiHiv
ΓuHuv
∂Ωui/∂xv

}
= 0 : ∀i ⇒ J(x)uv = 0. (9)

Sparse coupling means that the Jacobian coupling states u and v is zero, i.e., an absence of coupling from one state to
another. This definition precludes solenoidal coupling with u that depends on v. Because H(x)vv and Γu are positive

10 This implicitly precludes edge cases, in which some non-zero terms cancel.
5
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efinite, sparse coupling requires associated elements of the solenoidal operator and Hessian to vanish at every point
n state–space, which in turn, implies conditional independence:

QuvHvv = 0 ⇒ Quv = −Qvu = 0
ΓuHuv = 0 ⇒ Huv = Hvu = 0 ⇔ (xu ⊥ xv) | b.

(10)

In short, sparse coupling means that any two states are conditionally independent if one state does not influence
the other. This is an important observation; namely, that sparse coupling implies a NESS density with conditional
independencies. In turn, this means any dynamical influence graph with absent or directed edges admits a Markov blanket
(the states b above). These independencies can now be used to build a particular partition as follows:

• The Markov boundary a ⊂ x of a set of internal states µ ⊂ x is the minimal set of states for which there exists a
nonzero Hessian submatrix: Haµ ̸= 0. In other words, the internal states are independent of the remaining states,
when conditioned upon their Markov boundary, called active states. The combination of active and internal states
will be referred to as autonomous states: α = (a, µ).

• The Markov boundary s ⊂ x of autonomous states is the minimal set of states for which there exists a nonzero
Hessian submatrix: Hsα ̸= 0. In other words, the autonomous states are independent of the remaining states, when
conditioned upon their Markov boundary, called sensory states. The combination of active and sensory (i.e., boundary)
states constitute blanket states: b = (s, a). The internal and blanket states will be referred to as particular states:
π = (s, α) = (b, µ).

• The remaining states constitute external states: x = (η, π ).

The names of active and sensory (i.e., blanket) states inherit from the literature, where they are often associated with
biotic systems that act on—and sense—their external milieu.11 In this setting, one can regard external states as influencing
internal states via sensory states (directly or through active states). And internal states influence external states via
active states (directly or through sensory states12). We will see later how this implies a synchronisation between internal
and external states, in the sense that internal states can be seen as actively inferring external states [7,8]. The ensuing
conditional independencies implied by a particular partition can be summarised as follows:

Jµη = 0 ⇒ Hµη = 0 ⇔ (µ ⊥ η) | b
Jaη = 0 ⇒ Haη = 0 ⇔ (a ⊥ η) | s, µ
Jsµ = 0 ⇒ Hsµ = 0 ⇔ (s ⊥ µ) | a, η

(11)

A normal form for the flow and Jacobian of a particular partition—with sparse coupling—can be expressed as follows,
where α = (a, µ) and β = (η, s):

f (x) = Ω∇ℑ − Λ⎡⎢⎣ fη(η, b)
fs(η, b)
fa(b, µ)
fµ(b, µ)

⎤⎥⎦ =

⎡⎢⎣
Qηη − Γη Qηs

−Q T
ηs Qss − Γs

Qaa − Γa Qaµ
−Q T

aµ Qµµ − Γµ

⎤⎥⎦
⎡⎢⎣ ∇ηℑ(η | b)

∇sℑ(b | η)
∇aℑ(b | µ)
∇µℑ(µ | b)

⎤⎥⎦− Λ

J(x) = ΩH + ∇Ω · ∇ℑ − ∇Λ⎡⎢⎣ Jηηη Jηs Jηa
Jsη Jss Jsa

Jas Jaa Jaµ
Jµs Jµa Jµµ

⎤⎥⎦ =

⎡⎢⎣
Qηη − Γη Qηs

−Q T
ηs Qss − Γs

Qaa − Γa Qaµ
−Q T

aµ Qµµ − Γµ

⎤⎥⎦
⎡⎢⎢⎣

Hηη Hηs
HT

ηs Hss Hsa

HT
sa Haa Haµ

HT
aµ Hµµ

⎤⎥⎥⎦
+ ∇Ω · ∇ℑ − ∇Λ

∇ηΩαα = 0, ∇µΩββ = 0, ∇ηΛα = 0, ∇µΛβ = 0

(12)

This normal form means that particular partitions can be defined in terms of sparse coupling. Perhaps the simplest
efinition—that guarantees a Markov blanket.13—is as follows: external states only influence sensory states and internal
tates only influence active states This means that sensory states are not influenced by internal states and active states are

11 Question: why does a particular partition comprises four sets of states? In other words, why does a particular partition consider two Markov
boundaries; namely, sensory and active states? The reason is that this is the minimal partition that allows for directed coupling with blanket
states. For example, sensory states can influence internal states—and active states can influence external states—without destroying the conditional
independencies of the particular partition (these directed influences are illustrated in the upper panel of Fig. 1 as dotted arrows).
12 Question: does this mean that I can act on my world through my sense organs? Yes: much of biotic action is mediated by (active) motile
cytoskeletal filaments, muscles and secretory organs that lie beneath (sensory) epithelia, such as receptors on the skin or a cell surface.
13 In the absence of solenoidal coupling between autonomous and non-autonomous states, and constraints on the partial derivatives of the
solenoidal coupling in (12); i.e., solenoidal coupling among autonomous states does not depend upon external states. Similarly, for non-autonomous
and internal states.
6
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ot influenced by external states,⎡⎢⎣ η̇(τ )
ṡ(τ )
ȧ(τ )
µ̇(τ )

⎤⎥⎦ =

⎡⎢⎣ fη(η, s, a) + ωη(τ )
fs(η, s, a) + ωs(τ )
fa(s, a, µ) + ωa(τ )
fµ(s, a, µ) + ωµ(τ )

⎤⎥⎦ (13)

nd the noise processes ωi(τ ), i ∈ {η, s, a, µ} are independent. Under this sparse coupling, it is simple to show that not
nly are internal and external states conditionally independent, but their paths are conditionally independent, given initial
tates, using the path integral formulation.
The uncertainty (i.e., entropy) over paths derives from random fluctuations. This means that if we knew all the

nfluences on the flow at every point in time, we can evaluate the entropy of external and internal paths from (5):

H [p (η[τ ] | b[τ ], x0)] =
τ
2 ln

[
(4πe)nη

⏐⏐Γη

⏐⏐]
H [p (µ[τ ] | b[τ ], x0)] =

τ
2 ln

[
(4πe)nµ

⏐⏐Γµ

⏐⏐]
⇒

H [p (η[τ ] | b[τ ], x0)] = H [p (η[τ ] | µ[τ ], b[τ ], x0)] ⇒ (µ[τ ] ⊥ η[τ ]) | b[τ ], x0
H [p (µ[τ ] | b[τ ], x0)] = H [p (µ[τ ] | η[τ ], b[τ ], x0)] ⇒ (µ[τ ] ⊥ η[τ ]) | b[τ ], x0

(14)

The final equalities say that the uncertainty about external (resp., internal) paths does not change when we know
he internal (resp., external) path because external (resp., internal) states do not influence internal (resp., external)
low. This means the external and internal paths do not share any mutual information and are therefore independent
hen conditioned on blanket paths (and initial states). From (11), the initial external and internal states are themselves

ndependent, when conditioned on blanket states.
Note that the conditional independence of paths inherits directly from the sparse coupling, without any reference to

he NESS density or Helmholtz decomposition. This can be seen clearly by replacing the partial derivatives in (7) with
unctional derivatives and noting, from (12), that there are no flows that depend on both internal and external states:

∂2f
∂η∂µ

= 0 ⇒
∂2L

∂η∂µ
=

∂2L
∂η∂µ̇

=
∂2L

∂η̇∂µ
=

∂2L
∂η̇∂µ̇

= 0

⇒
δ2A(x[τ ])
δη[t]δµ[t]

= 0 ⇔ (µ[τ ] ⊥ η[τ ]) | b[τ ], x0

δA(x[τ ])
δµ[t]

=

∫
dt ′
(

∂L
∂µ [t ′]

δµ
[
t ′
]

δµ[t]
+

∂L
∂µ̇ [t ′]

d
dt ′

δµ
[
t ′
]

δµ[t]
+ · · ·

)
δ2A(x[τ ])
δη[t]δµ[t]

=

∫
dt ′dt ′′

(
δη
[
t ′′
]

δη[t]
∂2L

∂η∂µ

δµ
[
t ′
]

δµ[t]
+

δη
[
t ′′
]

δη[t]
∂2L

∂η∂µ̇

d
dt ′

δµ
[
t ′
]

δµ[t]
+ · · ·

)
(15)

hese expressions mean that the probability of an internal path, given a blanket path (and initial states), does not depend
n the external path and vice versa.

.1. Summary

In summary, the internal dynamics (i.e., paths) of some ‘thing’ are conditionally independent of external paths if, and
nly if, the flow of internal states does not depend on external states and vice versa (given initial states). We take this as
necessary and sufficient condition for something to exist, in the sense that it can be distinguished from everything else.
hen the initial states are sampled from the NESS density, the internal states are conditionally independent of external

tates (given blanket states), under certain constraints on solenoidal flow. Fig. 1 illustrates the ensuing particular partition.
ote that the edges in this graph represent the influence of one state on another, as opposed to conditional dependencies.
his is important because directed influences admit conditional independence. These conditional independencies are
anifest as zero entries in the Hessian matrices, which inherit from the sparse, directed coupling of the dynamics.

. From self-organisation to self-evidencing

Equipped with a particular partition, we can now talk about things in terms of their internal states and Markov
oundary; namely autonomous states. And we can talk about autonomous states and their Markov boundary; namely,
articular states—the states of a particle. The next step is to characterise the flow of the autonomous states (of a particle,
lant or person) in relation to external states. In other words, we consider the nature of the coupling between the outside
nd inside of a particle, across its Markov blanket. It is at this point that we move towards a (Bayesian) mechanics that
s the special provenance of systems with particular partitions.
7
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Fig. 1. Markov blankets. This influence diagram illustrates a particular partition of states into internal states (blue) and external states (cyan) that
re separated by a Markov blanket comprising sensory (green) and active states (red). The edges in this graph represent the influence of one state on
nother, as opposed to conditional dependencies. The diagram shows this partition as it would be applied to a single-cell organism, where internal
tates are associated with intracellular states, the sensory states become the surface states or cell membrane overlying active states (e.g., the actin
ilaments of the cytoskeleton). The dotted lines indicate allowable directed influences from sensory (resp., active) to internal (resp., external) states.
articular states constitute a particle; namely, autonomous and sensory states—or blanket and internal states.

The existence of a particular partition means that—given sensory states—one can stipulatively define the conditional
ensity over external states as being parameterised by the most likely internal state [7].14 We will call this a variational
ensity parameterised by the internal mode µ(τ )15:

qµ(η) ≜ p(η | s)
α(τ ) = (a(τ ), µ(τ ))
α(τ ) = argmin

α
ℑ(α(τ ) | s(τ )) ⇒

α[τ ] = argmin
α

A(α[τ ] | s[τ ]) ⇒

α̇(τ ) = fα(s, α)

(16)

As with the paths of least action, we will use bold typeface to denote a mode or most likely state, given all the states
necessary to specify its likelihood. For autonomous states, we only need the sensory states, because the autonomous states
are conditionally independent of external states.

Inducing the variational density is an important move. It means that for every sensory state there is a corresponding
active mode and an internal mode (or an autonomous mode in the joint space of active and internal states). The active
a(τ ), internal µ(τ ) and autonomous α(τ ) modes evolve on active, internal and autonomous manifolds,16 respectively, whose
dimensionality is the same as the sensory states.17 We will see later that these manifolds play the role of centre manifolds;
namely, manifolds on which dynamics do not diverge (or converge) exponentially fast [13].

Crucially, the internal manifold is also a statistical manifold because its states are sufficient statistics for the variational
density. In turn, this means that it is equipped with a metric and implicit information geometry [39–41]. Indeed, the Fisher
information metric tensor, which measures changes in the Kullback–Leibler (KL) divergence resulting from infinitesimal
changes in the internal mode, is a Riemannian metric that yields an information distance [42, Appendix B]. This means
we can interpret dynamics on the internal manifold as updating Bayesian beliefs about external states. This interpretation
can be unpacked in terms of Bayesian inference as follows.

Eq. (16) means that for every sensory state there is a conditional density over external states and a corresponding
internal mode with the smallest surprisal. This mode specifies the variational density, where—by definition—the KL
divergence between the variational density and the conditional density over external states is zero.18 This means we

14 In other words, the internal mode supplies the sufficient statistics of the conditional density over external states.
15 Question: what if the conditional densities are not well-behaved, e.g., what if there are no unique modes? The answer is that well-behaved
densities are generally guaranteed when increasing the dimensionality of state–spaces using generalised coordinates of motion [35–37]. In other
words, instead of just dealing with states, we consider states and their generalised motion to arbitrarily high order. We will see examples of this
later.
16 A manifold is a topological (state-) space where each state has a neighbourhood that is homeomorphic to a portion of an Euclidean space of
the same dimension [38]. Intuitively, it is a curved space, such as a smooth surface, in a possibly large but finite number of dimensions. In this
instance, the states are conditional modes.
17 The dimensionality of the active, internal and autonomous manifolds corresponds to the number of sensory states. This means that both the
number of active and internal states must be greater than the number of sensory states. In turn, this limits the straightforward application of the
free energy principle to particular partitions where the number of active states—and the number of internal states—exceeds the number of sensory
states. In other words, the FEP applies to large particles with a nontrivial internal dynamics.
18 Since the variational and conditional densities over external states are equal, any divergence between them will vanish, see [43, Section 3.2].
8
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an express the autonomous flow as a gradient flow on a free energy functional of the variational density.19 From (12)⎡⎢⎣ fη(x)
fs(x)
fa(π )
fµ(π )

⎤⎥⎦ = Ω

⎡⎢⎣ ∇ηℑ(x)
∇sℑ(x)
∇aF (π )
∇µF (π )

⎤⎥⎦− Λ, (17)

here the free energy in question is (an upper bound on) the surprisal of particular states:

F (π (τ )) = Eq[ln q(η(τ )) − ln p(η(τ )) − ln p(π (τ ) | η(τ ))] = ℑ(π (τ ))
= Eq[ℑ(η(τ ), π (τ ))]  

Expected energy

−H[q(η(τ ))]  
Entropy

= Eq[ℑ(π (τ ) | η(τ ))]  
-ve Accuracy

+D[q(η(τ )) ∥ p(η(τ ))]  
Complexity

= D[q(η(τ )) ∥ p(η(τ ) | π (τ ))]  
=0

+ℑ(π (τ ))

q = qµ(η) = p(η | s) = p(η | π )
E[F (π )] = E[ℑ(π )] = H[p(π )]

(18)

his variational free energy20 can be rearranged in several ways. First, it can be expressed as expected energy minus the
ntropy of the variational density, which licences the name free energy.21 In this decomposition, minimising variational
ree energy corresponds to the maximum entropy principle, under the constraint that the expected energy is minimised
46,47]. The expected energy is a functional of the NESS density that plays the role of a generative model; namely, a joint
istribution over causes (external states) and their consequences (particular states).22
Second, variational free energy can be decomposed into the (negative) log likelihood of particular states (i.e., negative

accuracy) and the KL divergence between posterior and prior densities (i.e., complexity). Finally, it can be written as the self-
nformation associated with particular states (i.e., surprisal) plus the KL divergence between the variational and conditional
i.e., posterior) density, which—by construction—is zero. In variational Bayesian inference [48], negative surprisal is read
s a log marginal likelihood or model evidence, having marginalised over external states. In this setting, negative free
nergy is an evidence lower bound or ELBO [44,49].
So, in what sense can we interpret (17) in terms of inference? Let us start by considering the response of autonomous

tates to some sensory perturbation: that is, the path of autonomous states conditioned upon sensory states. If sensory
tates change slowly, then the autonomous states will flow towards their most likely value (i.e., their conditional mode)
nd stay there.23 However, if sensory states are changing, the autonomous states will look as if they are trying to hit a
oving target. One can formulate this along the lines of the centre manifold theorem [13,50], where we have a (fast) flow
ff the centre manifold and a (slow) flow of the autonomous mode on the manifold.

α(τ ) = ε(τ )
Off manifold

+ α(τ )
On manifold

ε(τ ) ≜ α(τ ) − α(τ )
(20)

19 A functional is a function of a function, here, the free energy is a function of a conditional density parameterised by the internal mode.
20 Question: why is this functional called variational free energy? More generally (for instance in engineering applications where the free energy in
uestion is also called an evidence lower bound [44]) the free energy is a functional of an approximate posterior density q that is an approximation
o the Bayesian posterior, as follows:

qµ(η) ≈ p(η | π ) ⇒ F [q] = D[q(η(τ )) ∥ p(η(τ ) | π (τ ))]  
≥0

+ℑ(π (τ ))
(19)

he variational density considered in this article is the minimiser of (19), and the free energy evaluated at the variational density is the variational
ree energy. The term ‘variational’ inherits from the use of the calculus of variations in variational Bayes (a.k.a., approximate Bayesian inference),
pplied in the context of a mean field approximation or factorised form of the variational density. The term ’free energy’ inherits from Richard
eynman’s path integral formulation, in the setting of quantum electrodynamics.
21 Question: is variational free energy the same kind of free energy found in statistical mechanics? The answer is no: the entropy term in the
ariational free energy is the entropy of a variational density—over external states—parameterised by internal states. This entropy is distinct from
he entropy of internal states. Minimising variational free energy increases the entropy of the variational density and, usually, reduces the entropy of
nternal states (see [45] for an example). Mathematically, we can express the different kind of entropies as H[q(η(τ ))] ̸= H[p(µ(τ ))].
22 Question: in practical applications, variational free energy is usually a function of data or observed (sensory) states. So, why is variational free
energy a function of particular states? Later, we will see that practical applications correspond to Bayesian filtering, under the assumption that
particular dynamics are very precise. This means that there is no uncertainty about autonomous paths given sensory paths, and the action of a
particular path is the action of a sensory path. In generalised coordinates of motion—used in Bayesian filtering—the action of a path becomes the
surprisal of a state. In this setting, the variational free energy of particular states is the same as the variational free energy of sensory states.
23 Or, at least in the vicinity, if there are random fluctuations on its motion.
9
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In effect, this is a decomposition in a frame of reference that moves with the autonomous mode, whose path lies
on the centre manifold. We further describe the off manifold flow using a Taylor expansion around the (time-varying)
autonomous mode24

ε̇(τ ) = α̇(τ ) − α̇(τ ) = fε(0) +
∂ fε
∂ε

· ε + · · · =
∂ fα
∂α

· ε + · · ·

⇒

α̇(τ ) − α̇(τ )  
Off manifold flow

= Jα · (α − α) + · · ·

= − (Γα∇ααF) · (α − α)  
Flow to centre manifold

+ (Qαα∇ααF) · (α − α)  
Flow parallel to the manifold

+ · · ·

(21)

This means that the flow at the expansion point is zero, leaving the second term of the expansion as the first
non-vanishing term. This is the Jacobian of the autonomous flow times the displacement of the current autonomous
state from its corresponding mode. The second-order derivatives of the free energy arise from the Jacobian of the flow,
i.e., substituting (17) into (8). Therefore, the off manifold flow has a component that flows towards the centre manifold,25

fforded by the gradient flow, and a component that is parallel to the manifold, afforded by the solenoidal flow, cf. (6).
Taken together, this means that the autonomous states flow in ever-decreasing circles towards the centre manifold, as
illustrated in Fig. 2.

But what about the flow on the centre manifold? We know from (17) that the flow of the autonomous mode can be
expressed in terms of free energy gradients:

α̇(τ ) = (Qαα − Γα) ∇αF (s, α) + · · ·

= (Qαα − Γα) ∇αEq[ℑ(s, α | η)]  
-ve Accuracy

+ (Qαα − Γα) ∇αD
[
qµ(η) ∥ p(η)

]  
Complexity

+ · · · (22)

This expression unpacks the centre manifold flow in terms of the accuracy and complexity parts of free energy, where
the accuracy part depends upon the sensory states, while the complexity part is a function of, and only of, autonomous
states. In short, the flow on the centre manifold will look as if it is trying to maximise the accuracy of its predictions,
while complying with prior (Bayesian) beliefs.26 Here, predictions are read as the expected sensory states, under posterior
(Bayesian) beliefs about their causes afforded by the variational density over external states.

5.1. Summary

In summary, a particular partition of a nonequilibrium steady-state density implies that autonomous dynamics can be
interpreted as performing a particular kind of inference. This entails a fast flow towards an autonomous centre manifold
and a slow flow on the centre manifold. The centre manifold flow can be interpreted as Bayesian belief updating, where
posterior (Bayesian) beliefs are encoded by points on an internal (statistical) manifold. In other words, for every point on
the statistical manifold, there is a corresponding variational density or Bayesian belief over external states. We are now
in a position to express this belief updating as a variational principle of least action:

α[τ ] = argmin
α[τ ]

A(α[τ ] | s[τ ])

⇔ δαA(α[τ ] | s[τ ]) = 0
⇔

ȧ(τ ) = fa(s, α) = (Qaa − Γa) ∇aF (s, α) + · · ·

µ̇(τ ) = fµ(s, α) =
(
Qµµ − Γµ

)
∇µF (s, α) + · · ·

(23)

This is a basis of the free energy principle. Put simply, it means that the internal states of a particular partition can be
cast as encoding conditional or posterior Bayesian beliefs about external states. Equivalently, the autonomous path of least
action can be expressed as a gradient flow on a variational free energy that can be read as log evidence. This licences a

24 Note that we are performing a Taylor expansion of a (generally rough) stochastic process ε, see [51, Chapter 5]. Alternatively, it may be possible
o instead consider motion in generalised coordinates to introduce smooth random fluctuations (see next Section), so that ε becomes smooth and
he usual Taylor expansion applies.
25 We know that the flow must be towards the centre manifold because the covariance of random fluctuations is positive definite, and the
urvature of the free energy is positive definite at its minima: i.e., around the expansion point.
26 The covariance of random fluctuations Γα is positive definite and the solenoidal matrix field Qαα is skew-symmetric, therefore the flow in (22)
will seek to minimise complexity minus accuracy.
10
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Fig. 2. Autonomous flows and Bayesian filters. This figure shows two components of the autonomous flow; namely, a (fast) flow α̇(τ ) − α̇(τ ) off
he (centre) manifold, and a (slow) flow α̇(τ ) on the manifold. The manifold here is the set of autonomous modes α(τ ) given sensory states s(τ ) for
ll time τ , see (16). The decomposition into fast and slow flows means that the manifold can be thought of as a centre manifold. The left panel
hows two components of the fast flow off the manifold; namely, a flow towards the centre manifold and a flow parallel to the manifold, see (21).
his decomposition rests upon a first-order Taylor expansion of the off manifold flow. The right panel plots the external mode as a function of the
utonomous mode—what is known as a synchronisation manifold—as a black curvilinear line. The Gaussian (blue and red) distributions show possible
ariations in (external and autonomous) conditional modes due to variations in the sensory states. The arrows represent the centre manifold flow

˙ (τ ) in the context of this synchronisation manifold, where the tangent vectors represent possible directions of the flow.

omewhat poetic description of self-organisation as self-evidencing [4], in the sense that the surprisal or self-information
s known as log model evidence or marginal likelihood in Bayesian statistics.27

Interestingly, because of the symmetric setup of the Markov blanket, it would be possible to repeat everything above
but switch the labels of internal and external states—and active and sensory states—and tell the same story about external
states tracking internal states. This evinces a form of generalised synchrony [7,53–55], where internal and external states
track each other. Technically, if we consider the (internal and external) manifolds in the joint space of internal and external
states, we have something called a synchronisation manifold that offers another perspective on the coupling between the
inside and outside [7,39,56].

These teleological interpretations cast particular paths of least action as an optimisation process, where different
readings of free energy link nicely to various normative (i.e., optimisation) theories of sentient behaviour. Some cardinal
examples are summarised in Fig. 3; see [5,57–59] for some formal accounts of these relationships. Because internal states
do not influence sensory (or external) states, they will look as if they are concerned purely with inference, in the sense
that they parameterise the variational density over external states. However, active states influence sensory (and external)
states and will look as if they play an active role in configuring (and causing) the sensory states that underwrite inference.
In the neurosciences, this is known as active inference [60–62].

The link between optimisation and inference is simply that inference is belief optimisation. However, it is worth
unpacking the gradients that ‘drive’ this optimisation. In statistics, variational free energy is used to score the divergence
between a variational density and the conditional density over external (i.e., hidden) states, given blanket states [49].
Unlike the definition in (18), these densities are not assumed to be equivalent. Variational inference proceeds by
optimising the variational density such that it minimises free energy—often using the gradient flows in (17). However,
there is a subtle difference between the dynamics of (17) and variational inference. In the former, there is no contribution
from the KL-divergence as it is stipulated to be zero. In the latter, it is only the divergence term that contributes to free
energy gradients. So, is it tenable to interpret gradient flows on variational free energy as variational inference, or is this
just teleological window-dressing? The next section addresses this question through the lens of Bayesian filtering. In brief,
we will see that the autonomous paths of least action—implied by a particular partition—are the paths of least action of
a Bayesian filter. This takes us beyond ‘as if’ arguments by establishing a formal connection between particular dynamics
and variational inference.

6. Lagrangians, generalised states and Bayesian filtering

Now, say we wanted to emulate or simulate active inference. Given some equations of motion and statistics of
random fluctuations, we could find the stationary solution to the Fokker Planck equation and accompanying Helmholtz
decomposition. We could then solve (23) for the autonomous paths of least action that characterise the expected behaviour

27 Question: this Bayesian mechanics seems apt for inference but what about learning over time? We have been dealing with states in a generic
sense. However, one can have states that change over different timescales. One can read slowly changing states as special states that play the role
of parameters; either parameters of the flow or, implicitly, the generative model. In mathematical and numerical analyses, states and parameters
are usually treated identically; i.e., as minimising variational free energy. Indeed, in practical applications of Bayesian filtering schemes that learn,
the parameters are treated as slowly changing states. See [36,52] for worked examples.
11
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Fig. 3. Markov blankets and self-evidencing. This schematic illustrates various points of contact between minimising variational free energy and
other normative theories of optimal behaviour. The existence of a Markov blanket entails a certain lack of influences among internal, blanket and
external states. These have an important consequence—internal and active states are not influenced by external states, which means their dynamics
(i.e., perception and action) are a function of, and only of, particular states, given by a variational (free energy) bound on surprisal. This has a
number of interesting interpretations. Given surprisal is the negative log probability of finding a particle or creature in a particular state, minimising
surprise corresponds to maximising the value of that state. This interpretation is licensed by the fact that the states with a high probability are, by
definition, characteristic of the particle in question. On this view, one could relate this to dynamics in reinforcement learning [63], optimal control
theory [64] and, in economics, expected utility theory [65,66]. Gradient flows that minimise surprisal (i.e., self-information) lead to a series of
influential accounts of neuronal dynamics; including the principle of maximum mutual information [67,68], the principles of minimum redundancy
and maximum efficiency [69] and the free energy principle [70]. Crucially, the average or expected surprise (over time of particular states) corresponds
to entropy. This means that action and perception look as if they are bounding the entropy of particular states. This links nicely with theories of
self-organisation, such as synergetics in physics [14,24,71] or homoeostasis in physiology [72–74]. Finally, the probability of a particular state, is,
on a statistical view, model evidence or marginal likelihood [75,76], marginalising over the causes of particular states (i.e., external states). This
means that all the above formulations are internally consistent with things like the Bayesian brain hypothesis, evidence accumulation and predictive
coding [57,58,77]. Most of these formulations inherit from Helmholtz’s motion of unconscious inference [78], later unpacked in terms of perception
as hypothesis testing in psychology [79] and machine learning [80]. Although not depicted here, the minimisation of complexity—inherent in the
minimisation of free energy—enables thermodynamic and metabolic efficiency via Landauer’s principle [81].

of this kind of particle, and obtain realisations of synchronisation and inference. See [8] for a worked example using a
system of coupled Lorentz attractors.

In this section, we take a somewhat pragmatic excursion to suggest a simpler way to recover the paths of least action;
namely, as the solution to a generic (Bayesian) filtering scheme that is widely used in the engineering literature.

6.1. Dynamics in generalised coordinates of motion

Let us go back to the Langevin equation governing our system

ẋ(τ ) = f (x) + ω(τ ). (24)

In this section, we assume that the random fluctuations driving the motion have smooth (analytic) sample paths; thus,
the Langevin equation considered in the rest of the article can be seen as the limit of (24) as the fluctuations become
rough [82]. This setup speaks nicely to the fact that, in biology, fluctuations are often smooth up to a certain order—
contrariwise to thermal (white noise) fluctuations—as they are the output of other random dynamical systems. As before,
we assume that the fluctuations are state-independent, and a stationary Gaussian process, e.g., the smoothing of white
noise fluctuations with a Gaussian kernel. Just like in the case of white noise, Gaussianity can be motivated by the central
limit theorem—fluctuations should be normally distributed at each point in time.

We denote the autocovariance of fluctuations by Γh =
1
2E[ω(τ )⊗ ω(τ + h)]. The underlying dynamical systems giving

ise to this generic type of smooth noise can be recovered through a procedure known as stochastic realisation [7,83,84].
he solution to the Langevin Eq. (24) can be approximated, on a suitably small interval of time, by a linear Langevin
12
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quation in generalised coordinates of motion x⃗ =
(
x, x′, x′′, . . .

)
[85, Section 4]2829:

ẋ = x′
= ∇f · x + ω

ẋ′
= x′′

= ∇f · x′
+ ω′

ẋ′′
= x′′′

= ∇f · x′′
+ ω′′

...

⎫⎪⎪⎬⎪⎪⎭ ⇔

˙⃗x = f(x⃗) + ω⃗

Dx⃗ = Jx⃗ + ω⃗

p(ω⃗(τ )) = N (ω⃗(τ ); 0, 2Γ )

D =

⎡⎢⎢⎢⎢⎣
0 1

0 1

0
. . .

. . .

⎤⎥⎥⎥⎥⎦ , J =

⎡⎢⎢⎣
∇f

∇f
∇f

. . .

⎤⎥⎥⎦ , Γ =

⎡⎢⎢⎣
Γ0 Γ ′′

0
− Γ ′′

0 −Γ ′′′′

0
Γ ′′

0 Γ ′′′′

0

− Γ ′′′′

0
. . .

⎤⎥⎥⎦
(25)

Here, the different variables x⃗ =
(
x, x′, x′′, . . . , x(n), . . .

)
can be seen as the position, velocity, acceleration, jerk, and

igher orders of motion of the process, which are treated as separate (generalised) states that are coupled through the
acobian J. These are driven by smooth fluctuations ω⃗ (i.e., the serial derivatives of ω) whose covariance 2Γ can be
expressed in terms of the serial derivatives of the autocovariance [88, Appendix A.5.3].

The generalised states are the coefficients of a Taylor series expansion of the solution to the Langevin Eq. (24):

x(τ ) = x(0) + x′(0)τ +
x′′(0)
2

τ 2
+ · · · +

x(n)(0)
n!

τ n
+ · · · , (26)

here (26) holds, typically, only on a small time-interval to which we restrict ourselves henceforth. In other words, the
eneralised states at any time-point determine the system’s trajectory, and vice versa; that is, there is an isomorphism
etween generalised states and paths.
This line of reasoning has two advantages. First, it means one can relax white noise assumptions on the random

luctuations and deal with smooth or analytic fluctuations. Second, the linear expansion in generalised coordinates of
otion (25) means that the distribution of generalised states has a simple Gaussian form

L(x⃗(τ )) ≜ − ln p(x⃗(τ )) =
1
2 x⃗(τ ) · Mx⃗(τ )

M = (D − J) ·
1

2Γ (D − J).
(27)

ere, M can be read as a mass matrix. This suggests that precise particles, with low amplitude random fluctuations,
ehave like massive bodies. Furthermore, (27) is seen as the Lagrangian in generalised coordinates of motion, due to its
ormal similarity with (3). Under the isomorphism between points and paths in generalised coordinates, the Lagrangian
s equivalent to the action; it scores the likelihood of paths of (24), as a path corresponds to a point in generalised
oordinates of motion.30 We will reason about the trajectories of the system by analysing the Lagrangian of generalised
tates henceforth.
The path of least action corresponds to the minimiser of the Lagrangian, which can be expressed as follows:

x⃗(τ ) = argmin
x⃗(τ )

L(x⃗(τ ))

⇔ ∇L(x⃗(τ )) = 0 ∀τ .
(28)

We can recover the path of least action by solving the following equation of motion

˙⃗x(τ ) = Dx⃗ − ∇L(x⃗)
∇ · Dx⃗ = 0.

(29)

ndeed, this motion can be interpreted as a gradient descent on the Lagrangian, in a frame of reference that moves with
he mode of the distribution of generalised states [36]. Thus, the convexity of the Lagrangian means that any solution
o (29) converges to the path of least action. In this setting, the divergence-free flow (i.e., the first term) is known as a
rediction of the generalised state based upon generalised motion, while the curl-free, gradient flow (i.e., the second term)
s called an update.

28 The expansion (25) is a linear approximation of (24) [86], obtained by recursively differentiating (24) and ignoring the contribution of the
derivatives of the flow of order higher than one. In other words, the expansion is exact when the flow is linear, and it is accurate on a short
time-scale when the flow is non-linear.
29 The curvature (i.e., second derivative) of the autocovariance Γ ′′

0 is a ubiquitous measure of roughness of a stochastic process [87]. Note that in
he limit where the fluctuations ω are uncorrelated (e.g., white noise fluctuations), Γ ′′

0 (and higher derivatives) become infinitely large.
30 Question: how can a point be a path? The generalised states (i.e., temporal derivatives) approximate the path of the solution to (24) on a
suitably small time interval because they are the coefficients of a Taylor expansion of the path as a function of time (26).
13
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.2. Particular partitions in generalised coordinates of motion

We now reintroduce the distinction between internal, external, sensory and active states x = (η, s, a, µ). Briefly, as
efore, we assume that the Langevin Eq. (24) is sparsely coupled as in (13). This implies that the trajectories internal
nd external to the particle are conditionally independent given the trajectories of the blanket (15). The same sparse
oupling structure carries through the expansion in generalised coordinates (25) so that the motion of generalised states
ntails trajectories with the same conditional independencies. Since paths correspond to generalised states, this yields
onditional independence between generalised states, as follows:

(µ⃗ ⊥ η⃗) | b⃗ ⇐⇒ L(x⃗) = L(η⃗ | b⃗) + L(µ⃗ | b⃗) + L(b⃗). (30)

We can now recover paths of least action of the particle by equating the Lagrangian with the variational free energy of
eneralised states. This allows us to express the internal path of least action as a gradient flow on variational free energy,
hich can itself be expressed in terms of generalised prediction errors. From (29), we have

˙⃗µ(τ ) = Dµ⃗ − ∇µ⃗L(x⃗) = Dµ⃗ − ∇µ⃗L(µ⃗ | b⃗)
= Dµ⃗ − ∇µ⃗L(π⃗ ) = Dµ⃗ − ∇µ⃗F (π⃗ ),

(31)

here the free energy of generalised states is analogous to (18)

F (s⃗, a⃗, µ⃗) = Eq[L(η⃗, π⃗ )]  
Expected energy

−H[q(η⃗)]  
Entropy

= Eq[L(π⃗ | η⃗)]  
Accuracy

+D[q(η⃗) ∥ p(η⃗)]  
Complexity

= D[q(η⃗) ∥ p(η⃗ | π⃗ )] + L(π⃗ )

qµ⃗(η⃗) = N (η⃗; µ⃗, Σ(µ⃗)) = p(η⃗ | π⃗ ) = p(η⃗ | b⃗)

L(η⃗, π⃗ ) = εη⃗ ·
1

4Γ η
εη⃗ + εs⃗ ·

1
4Γ s

εs⃗ + · · ·

εη⃗ ≜ Dη⃗ − fη⃗(η⃗, s⃗)
εs⃗ ≜ Ds⃗ − fs⃗(η⃗, s⃗).

(32)

he variational free energy of generalised states is easy to evaluate, given a generative model in the form of a
tate–space model [36]; that is, the generalised flow of external and sensory states fη⃗, fs⃗, and the covariance of their
generalised fluctuations Γ η,Γ s. Note that the parameterisation of the variational density is very simple: the internal
states parameterise the expected external states. Furthermore, the quadratic form of the Lagrangian means that the
variational density over the generalised motion of external states is Gaussian.31 This licenses a ubiquitous assumption
n variational Bayes called the Laplace assumption. Please see [89] for a discussion of the simplifications afforded by the
aplace assumption.
Crucially, in the absence of active states, the dynamic in (31) coincides with a generalised Bayesian filter. Generalised

iltering is a generic Bayesian filtering scheme for nonlinear state–space models formulated in generalised coordinates
f motion [36]; special cases include variational filtering [90], dynamic expectation maximisation [91], extended Kalman
iltering [92], and generalised predictive coding.

Furthermore, if the autonomous paths are conditionally independent from external paths, given sensory paths,32 the
utonomous paths of least action can be recovered from a generalised gradient descent on variational free energy:

˙⃗α(τ ) = Dα⃗ − ∇α⃗L(x⃗) = Dα⃗ − ∇α⃗L(α⃗ | s⃗)
= Dα⃗ − ∇α⃗L(π⃗ ) = Dα⃗ − ∇α⃗F (π⃗ ).

(33)

In this case, the most likely paths of both internal and active states can be recovered by a gradient descent on variational
free energy, and one can simulate active inference using generalisations of linear quadratic control or model predictive
control [93,94]:⎡⎢⎢⎢⎢⎣

˙⃗η(τ )
˙⃗s(τ )
˙⃗a(τ )
˙⃗µ(τ )

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
fη⃗(η⃗, s⃗, a⃗) + ω⃗η(τ )
fs⃗(η⃗, s⃗, a⃗) + ω⃗s(τ )
Da⃗ − ∇a⃗F (s⃗, a⃗, µ⃗)
Dµ⃗ − ∇µ⃗F (s⃗, a⃗, µ⃗)

⎤⎥⎥⎦ (34)

This is effectively a (generalised) version of the particular dynamics in (23).

31 Question: why is the covariance of the variational density only a function of the internal mode? This follows from the quadratic Lagrangian
that furnishes an analytic solution to the free energy minimum. Please see [89] for details.
32 This is the case for precise particles, which are defined by particular fluctuations of infinitesimally small amplitude—see next Section and [37].
14
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.3. Summary

This section has taken a somewhat pragmatic excursion from the FEP narrative to consider generalised coordinates of
otion. This excursion is important because it suggests that the gradient flows in systems with attracting sets are the
aths of least action in Bayesian filters used to assimilate data in statistics [92] and, indeed, control theory [95].
Working in generalised coordinates of motion is effectively working with paths and the path integral formulation.

ractically, this is useful because one can use the density over paths directly to evaluate the requisite free energy gradients,
s opposed to solving the Fokker–Planck equation to find the NESS density. Effectively, the generative model becomes
state–space model, specified with flows and the statistics of random fluctuations: see (32). These are the sufficient

tatistics of the joint density over external and sensory paths.
Hitherto, we have largely ignored random fluctuations in the motion of particular states to focus on the underlying

lows. Are these flows ever realised or does the principle of least action in (23) only apply to the most likely autonomous
aths? In what follows, we will consider a special class of systems, where we suppress particular fluctuations to recover
he behaviour of particles that show a precise or predictable response to external states. For this kind of particle, the
articular paths are always the paths of least action.

. From statistical to classical particles

So far, we have a Bayesian mechanics that would be apt to describe a particle or person with a pullback attractor.
ut what is the difference between a particle and a person? This question speaks to distinct classes of things to which
he free energy principle could apply; e.g., molecular versus biological. Here, we associate biotic self-organisation with
he precise and predictable dynamics of large particles. Thanks to the Helmholtz decomposition (6), it is known that
hen random fluctuations are large, dissipative flow dominates conservative flow, and we have ensembles described
y statistical mechanics (i.e., small particles). Conversely, when random fluctuations have a low amplitude, solenoidal
low33 dominates and we have classical mechanics and deterministic chaos (i.e., of heavenly and n-body problems). Here,
e consider the distinction between statistical and classical mechanics in the setting of a particular partition.
It is often said that the free energy principle explains why biological systems resist the second law and a natural

endency to dissipation and disorder [96]. However, this is disingenuous on two counts. First, the second law only applies
o closed systems, while the free energy principle describes open systems in which internal states are exposed to—and
xchange with—external states through blanket states. Second, there is nothing, so far, to suggest that the entropy of
articular states or paths is small. Everything we have done would apply equally to particles with high and low entropy
ensities. So, what distinguishes between high and low entropy systems (e.g., between candle flames and concierges),
espectively?

One answer can be found in the path-integral formulation: from (5), we can associate the entropy of a path (i.e., history
r trajectory of particular states) with the amplitude of random fluctuations. This licences the notion of precise particles
hat are characterised by low or vanishing random fluctuations.34 In essence, precise particles are simply ‘things’ that
re subject to the classical laws of nature; i.e., Lagrangian mechanics. In the accompanying limit of small fluctuations on
articular states, every autonomous trajectory is a path of least action. From (5) and (23) this can be expressed as follows:

lim
Γπ →0

α̇(τ ) = fα(π (τ )) ⇔ δαA(α[τ ] | s[τ ]) = 0 ⇔ α[τ ] = α[τ ]

⇒

ȧ(τ ) = ȧ(τ ) = (Qaa − Γa) ∇aF (π ) + · · ·

µ̇(τ ) = µ̇(τ ) =
(
Qµµ − Γµ

)
∇µF (π ) + · · ·

(35)

This suggests that precise particles—such as you and me—will respond to environmental flows and fluctuations in a
recise and predictable fashion. Fig. 4 illustrates the difference between generic and precise particles using an information
iagram. Note that for precise particles, there is no uncertainty about autonomous states, given sensory states. This follows
ecause the flow of autonomous states depends only on sensory states and themselves. Is the behaviour of precise particles
sufficient description of sentient behaviour?
On one reading, perhaps: one can reproduce biological behaviour by numerically integrating (23) or (34) under a

uitable generative (state–space) model specifying the motion of external and sensory states.35 Fig. 5 illustrates the

33 And its accompanying correction term Λ, see (6).
34 Question: but surely my neurons are noisy? There is a substantial literature that refers to neuronal and synaptic noise: e.g., [100]. However,
the population dynamics of neuronal ensembles or assemblies are virtually noiseless by the central limit theorem (because they comprise thousands
of neurons), when averaged over suitable spatial and temporal scales. For example, in electrophysiology, averaging several fluctuating single trial
responses yields surprisingly stable and reproducible event-related potentials. From the perspective of the FEP, studying single neurons (or trials) is
like studying single molecules to characterise fluid dynamics.
35 A generative model can be specified through the flow of external or sensory states, and the random fluctuations of their motion; that is, the
first two lines of (34). Observing that the free energy (31) is only a function of these flows and the covariance of fluctuations, it is sufficient to
specify those covariances, rather than the whole structure of the fluctuations.
15
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Fig. 4. Generic and precise particles. These information diagrams depict the entropy of external, sensory and autonomous paths, where intersections
orrespond to shared or mutual information. A conditional entropy corresponds to an area that is outside the variable upon which the entropy is
onditioned. The diagram on the left shows the generic case, in which uncertainty about paths inherits from random fluctuations that determine the
onditional entropies of paths. When the amplitude of random fluctuations on the motion of particular states is very small, we have precise particles
n which there is no uncertainty about autonomous paths, given sensory paths (the right information diagram). Similarly, there is no uncertainty
bout sensory paths given external and autonomous paths. Note that because we are dealing with continuous states, we are implicitly interpreting
he entropies as the limiting density of discrete points (LDDP), which have a lower bound of zero [46]. (LDDP is an adjustment to differential
ntropy which ensures that entropy is lower bounded by zero. LDDP equals the negative KL-divergence between the density in question and a
niform density). Two relative entropies (information gain and risk) are highlighted as areas of intersection. These will play an important role later,
hen decomposing the action (i.e., expected free energy) of autonomous paths.

mplicit computational architecture used to simulate sentient behaviour by integrating (23). This scheme allows one to
imulate the internal and active states through sensory states caused by external dynamics. Fig. 6 showcases an example
rom the active inference literature, that integrates (34) under a suitably specified generative model, to simulate sentient
ehaviour that looks like handwriting. The details of the simulation and the details of the generative model are not relevant
ere but are summarised in the figure legend; what is important is to get a sense of the kind of behaviour that can be
eproduced by integrating (34).

The example in Fig. 6 illustrates an application of the free energy principle. Here, instead of describing a system
y deriving its NESS density, we have specified some equations of motion (and covariance of random fluctuations) to
ealise particular dynamics using (32) and (34). In effect, we have simulated self-evidencing, starting from a definition
i.e., state–space generative model) of paths that characterise this kind of particle.36

These simulations speak to a key aspect in the applications of the FEP. Hitherto, we have simply defined the
variational density as the conditional density over external states given a sensory state. However, when simulating
precise particles through a gradient flow on variational free energy, as in (23) or (34), the requisite gradients have
to be evaluated. In turn, this requires the functional form of the variational density or posterior distribution, which
may be difficult to compute exactly.37 In this case, we take a variational density that approximates the true posterior,
whence the variational free energy becomes an upper bound on surprisal: see (19). From the perspective of Bayesian
inference, this takes us from (computationally costly) exact Bayesian inference to (computationally cheap) approximate
ayesian inference [48,49,104]. On one reading of its inception, this is why variational free energy was introduced [105];
amely, to convert a computationally expensive marginalisation problem into a computationally manageable optimisation
roblem. Note that when using generalised coordinates to realise active inference; i.e., (34), we are generally employing
pproximate Bayesian inference: the functional form of the variational density inherits directly from Gaussian assumptions
bout random fluctuations, however the expansion in generalised coordinates on which it is based upon (29) is generally
n approximation to the underlying dynamic (cf. 28).

36 The example in Eq. (6) used (34) with generalised coordinates of motion up to fourth order. Numerical analyses suggest that simulating
generalised motion up to order six (i.e., ignoring all subsequent orders of motions) is sufficient in most circumstances [91].
37 In Bayesian inference, it is well-known that computing the posterior distribution given data and a generative model p(η | π ) = p(η, π )/p(π ) is
computationally costly as it involves computing a (typically) high-dimensional integral p(π ) =

∫
p(η, π )dη (i.e., a partition function).
16
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Fig. 5. Bayesian mechanics and active inference. This graphic summarises the belief updating implicit in gradient flows on variational free energy.
These are the paths taken by a precise particle or the paths of least action of a generic particle. It illustrates a simple form of (active) inference
that has been used in a variety of applications and simulations; ranging from handwriting and action observation [97], through to birdsong and
generalised synchrony in communication [56]. In brief, sensory states furnish free energy gradients (often expressed as prediction errors), under
some generative model. Neuronal dynamics are simulated as a flow on the resulting gradients to produce internal states that parameterise posterior
beliefs about external states. Similarly, active states are simulated as a flow on free energy gradients that generally play the role of prediction errors.
In other words, active states mediate motor or autonomic reflexes [98,99]. An example of this kind of active inference is provided in the next figure.

7.1. Summary

Precise particles, immersed in an imprecise world, respond (almost) deterministically to external fluctuations.38
his means, given a generative model (i.e., NESS density), one can solve the equations of motion in (34) to predict
ow autonomous states evolve as they pursue their path of least action. So, why might this limiting behaviour be
haracteristically biological?
Precise particles may be the kind of particles that show lifelike or biotic behaviour, in the sense they respond pre-

ictably, given their initial states and the history of external influences. The distinction between imprecise (e.g., statistical)
nd precise (e.g., classical) particles rests on the relative contribution of dissipative and conservative flow to their path
hrough state–space, where solenoidal flow predominates in the precise setting. This means precise particles exhibit
olenoidal behaviour such as oscillatory and (quasi) periodic orbits—and an accompanying loss of detailed balance,
.e., turbulent and time-irreversible dynamics [30,106,107]. On this view, one might associate precise particles with living
ystems with characteristic biorhythms [108–111]; ranging from gamma oscillations in neuronal populations, through
lower respiratory and diurnal cycles to, perhaps, lifecycles per se. Turning this on its head, one can argue that living
ystems are a certain kind of particle that, in virtue of being precise, evince conservative dynamics, biorhythms and time
rreversibility.

One might ask if solenoidal flow confounds the gradient flows that underwrite self-evidencing. In fact, solenoidal flow
enerally augments gradient flows—or at least this is what it looks like. In brief, the mixing afforded by solenoidal flow can
ender gradient descent more efficient [112–116]. An intuitive example is stirring sugar into coffee. The mixing afforded
y the solenoidal stirring facilitates the dispersion of the sugar molecules down their concentration gradients. On this

38 Question: does the absence of random fluctuations preclude dissipative gradient flows? No, because the gradients can increase with the precision
of random fluctuations. In the limit of no random fluctuations, the steady-state density tends towards a delta function (i.e., a fixed-point attractor)
and the dissipative gradients tend towards infinity.
17
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Fig. 6. Sentient behaviour and action observation. This figure illustrates a simulation of active inference (here, writing) evinced by a precise
particle, in terms of inferences about external states of the world, consequent predictions about sensory input, and ensuing action. The autonomous
dynamics that underwrite this behaviour rest upon a generative model of sensory states in the form of Lotka–Volterra dynamics; see sample sensory
trajectories as (arbitrarily) coloured lines in the upper left inset. The generative model defines the joint density under which internal trajectories
can be seen as parameterising external states. This model is not a description of the true external states (which here are simply the positions of
the joints in the simulated arm—with dynamics given by simple Newtonian rules). In this generative model, external trajectories are assumed to
follow predator–prey like dynamics such that a succession of peaks are generated for a subset of external states (or coordinates) in turn. Each
coordinate is associated with a location in Euclidean space that attracts the agent’s finger (the active states); i.e., with a trajectory towards that
attracting point. The resulting attracting point is thus a weighted sum of each possible attracting point weighted by the coordinates following the
Lotka–Volterra trajectory. In turn, the internal states supply predictions of what sensory states should register if the agent’s beliefs were true. Active
states (i.e., the forces driving changes in the angular velocities of the limb joints) try to suppress the ensuing prediction error by adjusting expected
changes in sensed angular velocity, through exerting forces on the agent’s joints (not shown). The subsequent movement of the arm is traced out in
the lower-left panel. This trajectory has been plotted in a moving frame of reference so that it looks like handwriting (e.g., a succession of ‘j’ and ‘a’
letters). The lower right panels show the activity of one internal state during distinct phases of ‘action’, and ‘action-observation’. During the action
phase, sensory states register the visual and proprioceptive consequences of movement, while under action observation, only visual sensations are
available—as if the agent was watching another agent. The red dots correspond to the times during which this internal state exceeded an arbitrary
threshold. The key thing to note here is that this internal state responds preferentially when, and only when, the motor trajectory produces a
down-stroke, but not an up-stroke—evincing a cardinal feature of neuronal responses, namely, their functional selectivity. Furthermore, with a slight
delay, this internal state responds during action and action observation. From a biological perspective, this is interesting because it speaks to an
empirical phenomenon known as mirror neuron activity [101–103]. Please see [97] for further details.

view, the solenoidal flow can be regarded as circumnavigating the contours of the steady-state density to find a path of
steepest descent.

The emerging picture here is that biotic systems feature solenoidal flow, in virtue of being sufficiently large to average
away random fluctuations, when coarse-graining their dynamics [5]. From the perspective of the information geometry
induced by the FEP, this means biological behaviour may be characterised by internal solenoidal flows that do not change
variational free energy—or surprisal—and yet move on the internal (statistical) manifold to continually update Bayesian
beliefs about external states. Biologically, this may be a description of central pattern generators [110,117] that underwrite
rhythmical activity (e.g., walking and talking) that is characteristic of biological systems [118]. The example in Fig. 6
was chosen to showcase the role of solenoidal flows in Bayesian mechanics that—in this example—arise from the use of
Lotka–Volterra dynamics in the generative model. In psychology, this kind of conservative active inference may be the
homologue of being in a ‘flow state’ [119].
18
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In short, precise particles may be the kind of particles we associate with living systems. And precise particles have
low entropy paths. If so, the question now becomes: what long-term behaviour does this class of particle show? In other
words, instead of asking which behaviours lead to low entropy dynamics, we can now ask which behaviours follow from
ow entropy dynamics? We will see next that precise particles appear to plan their actions and, perhaps more interestingly,
how information and goal-seeking behaviour.

. Path integrals, planning and curious particles

While the handwriting example in Fig. 6 offers a compelling simulation of self-evidencing—in the sense of an artefact
reating its own sensorium—there is something missing as a complete account of sentient behaviour. This is because we
ave only considered the response of autonomous states to sensory states over limited periods of time. To disclose a
eeper Bayesian mechanics, we need to consider the paths of autonomous states over extended periods. This takes us to
he final step and back to the path-integral formulation.

In the previous section, we focused on linking dynamics to densities over (generalised) states. In brief, we saw that
nternal states can be construed as parameterising (Bayesian) beliefs about external states at any point in time. In what
ollows, we move from densities over states to densities over paths—to characterise the behaviour of particles in terms of
their trajectories.

In what follows, we will be dealing with predictive posterior densities over external and particular paths, given (initial)
particular states, which can be expressed in terms of the variational density parameterised by the current (initial) internal
state39:

q (η[τ ], π[τ ] | π0) ≜ Eqµ [p (η[τ ], π[τ ] | η0, π0)] = p (η[τ ], π[τ ] | π0)

qµ (η0) = p (η0 | π0) .
(36)

All this equation says is that, given the initial particular states, we can evaluate the joint density over external and
articular paths, because we know the density over the initial external states, which is parameterised by the initial internal
tate.
We are interested in characterising autonomous responses to initial particular states. This is given by the action

f autonomous paths as a function of particular states. In other words, we seek an expression for the probability of
n autonomous path that (i) furnishes a teleological description of self-organisation and (ii) allows us to simulate the
entient trajectories of particles, given their sensory streams. Getting from the action of particular paths to the action of
utonomous paths requires a marginalisation over sensory paths. This is where the precise particle assumption comes
n: it allows us to eschew this (computationally costly) marginalisation by expressing the action of particular paths as an
xpected free energy.
Recall that when random fluctuations on the motion of particular states vanish, there is no uncertainty about

utonomous paths, given external and sensory paths. And there is no uncertainty about sensory paths given external and
utonomous paths. If we interpret entropies as the limiting density of discrete points (see Fig. 4), then the uncertainty
bout particular, autonomous and sensory paths, given external paths, become interchangeable:

lim
Γπ →0

H [p (π [τ ] | η[τ ], π0)] = H [p (α[τ ] | η[τ ], s[τ ], π0)]  
=0

+H [p (s[τ ] | η[τ ], π0)]

= H [p (s[τ ] | η[τ ], α[τ ], π0)]  
=0

+H [p (α[τ ] | η[τ ], π0)]

⇒

Eq [ln p (π [τ ] | η[τ ], π0)] = Eq [ln p (s[τ ] | η[τ ], π0)] = Eq [ln p (α[τ ] | η[τ ], π0)]

(37)

e can leverage this exchangeability to express the action of autonomous paths in terms of an expected free energy.
rom (36) and (37), we have (dropping the conditioning on initial states for clarity):

0 = Eq

[
ln

p(η[τ ], α[τ ])
q(η[τ ], α[τ ])

]
= Eq

[
ln

p(α[τ ] | η[τ ])p(η[τ ])
q(η[τ ] | α[τ ])q(α[τ ])

]
= Eq

[
ln

p(s[τ ] | η[τ ])p(η[τ ])
q(η[τ ] | α[τ ])

− ln q(α[τ ])
]

= Eq(α[τ ])[A(α[τ ]) − G(α[τ ])]

= D
[
q(α[τ ]) ∥ e−G]

⇒ G(α[τ ]) = A(α[τ ])

G(α[τ ]) = Eq(η[τ ],s[τ ]α[τ ])[

Risk  
ln q(η[τ ] | α[τ ]) − ln p(η[τ ])  

Expected complexity

Ambiguity  
− ln p(s[τ ] | η[τ ])  

Expected accuracy

]

(38)

39 Question: Why is the variational density parameterised by the initial internal state rather than the initial internal mode? The answer is that
in precise particles, the absence of fluctuations on particular dynamics means that the internal states always coincides with the internal mode.
19



K. Friston, L. Da Costa, N. Sajid et al. Physics Reports 1024 (2023) 1–29
Fig. 7. Expected free energy and active inference. This figure illustrates active inference, and highlights various points of contact with other accounts
of sentient, purposeful or intelligent behaviour. The upper panel casts action and perception as the minimisation of expected and variational free
energy, respectively. Crucially, the path integral formulation of active inference introduces posterior beliefs over autonomous paths (i.e., policies)
that entail a description of planning as inference [120–122]. When simulating active inference, posterior beliefs about external paths, under plausible
policies, are optimised by a gradient flow on the variational (free energy) bound on log evidence—as in Fig. 3. These beliefs are then used to evaluate
the expected free energy of allowable policies, from which actions can be selected [123–125]. Crucially, expected free energy contains terms that
arise in various formulations of optimal behaviour that predominate in cognitive science, engineering and economics. These terms are disclosed when
one removes certain sources of uncertainty. For example, if we remove ambiguity, decision-making minimises risk, which corresponds to aligning
predictions with preferences about the external course of events. This underwrites prospect theory of human choice behaviour in economics [126]
and modern approaches to control as inference [127–129], variously known as Kalman duality [94,130], KL control [131] and maximum entropy
reinforcement learning [132]. If we further remove preferences, decision-making maximises the entropy of external trajectories. This maximum
entropy principle [46,47] can be interpreted as least committing to a presupposed external trajectory and therefore keeping options open [133]. If
we reintroduce ambiguity, but ignore preferences, decision-making maximises intrinsic value or expected information gain [76]. This underwrites
Bayesian experimental design [134] and active learning in statistics [135], intrinsic motivation and artificial curiosity in machine learning and
robotics [136–140]. This is mathematically equivalent to optimising expected Bayesian surprise and mutual information, which underwrites visual
search [141,142] and the organisation of our visual apparatus [67–69]. Lastly, if we remove intrinsic value, we are left with maximising extrinsic
value or expected utility, which underwrites expected utility theory [66], game theory, optimal control [143,144] and reinforcement learning [63].
Bayesian formulations of maximising expected utility under uncertainty are also known as Bayesian decision theory [145]. The expressions for
variational and expected free energy are arranged to illustrate the relationship between complexity and accuracy, which become risk and ambiguity
in the path integral formulation. This suggests that risk-averse policies minimise expected complexity or computational cost [137].

All we have done here is to exchange the density over autonomous paths, conditioned on external paths, with the
corresponding density over sensory paths (in the second line) thanks to the precise particle assumption. By gathering
terms into a functional of autonomous paths, we recover autonomous action as an expected free energy.

By analogy with the expression for variational free energy (18), the expressions for the expected free energy in (38)
suggest that accuracy becomes ambiguity, while complexity becomes risk. So why have we called these terms ambiguity
and risk? Ambiguity is just the expected precision or conditional uncertainty about sensory states given external states.
A heuristic example of an imprecise likelihood mapping—between external and sensory paths—would be a dark room,
where there is no precise information at hand. Indeed, according to (38), sensory paths into dark rooms should be highly
unlikely. However, this is not the complete story, in the sense that the risk puts certain constraints on any manifest
tendency to minimise ambiguity.
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Here, risk is simply the divergence between external paths given an autonomous path (i.e., policy or plan), relative
to external states of affairs. The marginal density over external paths is often referred to in terms of prior preferences,
ecause they constitute the priors of the generative model characterising the particle’s behaviour [146]. In short, the
xpression for expected free energy, suggests that particles will look as if they are (i) minimising the risk of incurring
xternal trajectories that diverge from prior preferences, while (ii) resolving ambiguity in response to external events.
n this formulation, autonomous paths play the dual role of registering the influences of external events (via ambiguity),
hile also causing those events (via risk).
The autonomous path with the least expected free energy is the most likely path taken by the autonomous

tates.

G(α[τ ]) = A(α[τ ])
⇒ α[τ ] = argmin

α[τ ]

G(α[τ ])

⇒ δαG(α[τ ]) = 0
E[G(α[τ ])] = E[A(α[τ ])] = H[p(α[τ ])]

(39)

In short, expected free energy scores the autonomous action of particles that do not admit noisy dynamics. Expected
free energy has a specific form that inherits from the assumption that the amplitude of particular fluctuations is small,
which is the case for precise articles by definition. Although variational and expected free energy are formally similar,
they are fundamentally different kinds of functionals: variational free energy is a functional of a density over states,
while expected free energy is a functional of a density over paths. Variational free energy can also be read as a function
of particular states, while expected free energy is a function of an autonomous path. Finally, variational free energy is a
bound on surprisal, while expected free energy is not a bound—it is the action of autonomous trajectories.

Expected free energy plays a definitive role in active inference, where it can be regarded as a fairly universal objective
function for selecting autonomous paths of least action. Fig. 7 shows that the expected free energy contains terms
that arise in various formulations of optimal behaviour; ranging from optimal Bayesian design [134] through to control
as inference [127,132]. We refer the reader to [147–151] for formal investigations of the relationship between these
formulations.

Equipped with a specification of the most likely autonomous path—in terms of expected free energy—we can
simulate fairly lifelike behaviour, given a suitable generative model. An example is provided in Fig. 9—relying upon
the computational architecture in Fig. 8—which illustrates the ambiguity resolving part of the expected free energy in
a simulation of visual epistemic foraging.

This epistemic aspect of expected free energy can be seen more clearly if we replace the conditional uncertainty
about sensory paths with conditional uncertainty about particular paths, noting that they are the same by (37).
After rearrangement, we can express expected free energy in terms of expected value and expected information gain
[125,149]:

G(α[τ ]) = Eq(η[τ ],s[τ ]|α[τ ])[ln q(η[τ ] | α[τ ]) − ln p(η[τ ]) − ln p(π [τ ] | η[τ ])]

=

Expected value  
Eq(s[τ ]|α[τ ])[A(π [τ ])]  
Bayes optimal decisions

−

Expected information gain  
Eq(s[τ ]|α[τ ]) [D[p(η[τ ] | s[τ ], α[τ ]) ∥ p(η[τ ] | α[τ ])]]  

Bayes optimal design

(40)

This provides a complementary interpretation of expected free energy. The first term can be construed as expected
cost in the sense it is the expected action of particular paths. This marginal likelihood scores the plausibility of a
particle pursuing this kind of path and is usually interpreted in terms of expected loss (i.e., negative expected reward
or utility) [63,66], and pragmatic affordance [123,153]. The second term corresponds to the expected divergence between
posterior beliefs about external paths, given autonomous paths, with and without sensory paths. In other words, it scores
the resolution of uncertainty or expected information gain afforded by sensory trajectories arising from a commitment to
an autonomous path. In this sense, it is sometimes referred to as epistemic affordance [158].

When simulating the kind of planning and active inference afforded by the path integral formulation, one usually works
with discrete state–spaces and belief updating over discrete epochs of time [123,124]. One can see this as a coarse-graining
of continuous space–time into discrete space and time bins, where trajectories of continuous states become sequences
of discrete states x[τ ] = (x1, . . . , xτ ). In discrete state–spaces, the generative model is usually formulated as a partially
observed Markov decision process [88,124,147,159], in which the paths of autonomous states constitute policies, which
determine transitions among external states. Plausible policies can then be scored with their expected free energy and
21
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Fig. 8. Bayesian mechanics and active inference. This graphic summarises the belief updating implicit in the minimisation of variational and
expected free energy. It describes active inference based upon autonomous paths or policies and has been used in a variety of applications and
simulations; ranging from games in behavioural economics [152] and reinforcement learning [153,154] through to language understanding [155] and
scene construction [156]. In this setup, actions solicit a sensory outcome that informs approximate posterior beliefs about hidden or external states
of the world—via minimisation of variational free energy under a set of plausible policies (i.e., perceptual inference). The approximate posterior
beliefs are then used to evaluate expected free energy and subsequent action (i.e., active inference). A key insight from simulations is that the form
of the generative model can be quite different from the process by which external states generate sensory states. In effect, this enables agents
(i.e., particles) to author their own sensorium in a fashion that has close connections with econiche construction [157]. Please see [124,158] for
technical details and for a heuristic discussion of how the belief updating could be implemented in the brain.

the next action is selected from the most likely policy α = (α0, . . . , ατ )40

a = argmin
a

G(a, µ)

G = EQ
[
lnQµ (η1, . . . , ητ | η0, a) − ln P (η1, . . . , ητ | η0) − ln P (s1, . . . , sτ | η1, . . . , ητ )

]
≈

∑
t>0

EQ
[
lnQµ (ηt | a) − ln P (ηt | η0)

]  
Risk

−EQ [ln P (st | ηt)]  
Ambiguity

µ = argmin
µ

F (s, a, µ)

F =

∑
t<τ

EQ
[
lnQµ (ηt | a) − ln P (ηt+1 | ηt , a) − ln P (ηt | ηt−1, a)

]  
Complexity

−

∑
t≤0

EQ [ln P (st | ηt)]  
Accuracy

.

(41)

he conditional independencies among states implicit in partially observed Markov decision processes entail the above
unctional forms for variational and expected free energies [123,124]. Crucially, the posterior over external states uses
mean-field approximation, in which the joint distribution over current and future states factorises into marginal
istributions at each point in time [this approximation can be finessed by conditioning on previous states, leading to a
ifferent (Bethe) variational free energy [160,161]]. Note that the discrete version of variational free energy is a functional
f a distribution over a sequence of states and can be regarded as the discrete homologue of the variational free energy
f generalised states in (32).
The ensuing minimisation of free energy can be formulated as gradient flows following (17)—between the discrete

rrival of new sensory input—in a way that relates comfortably to neuronal dynamics [42,123,124]. In some simulations,

40 See [88,124] for a derivation of these functional forms in partially observable Markov decision processes.
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Fig. 9. Epistemic foraging. This figure shows the results of a numerical simulation where a face was presented to an agent, whose responses
ere obtained by selecting active states that minimised expected free energy following an eye movement. The agent had three internal images or
ypotheses (i.e., internal states) about the external state she might sample (an upright face (blue), an inverted face (magenta) and a rotated face
green)—shown at the bottom). The agent was presented with sensory samples of an upright face and her variational posterior over the external state
as obtained by descending variational free energy over a 12 ms time bin until the next saccade (i.e., action) was emitted. This perception-action
ycle was repeated eight times. The agent’s eye movements are shown as red dots at the end of each saccade in the upper row. The corresponding
equence of eye movements is shown in the upper-left inset, where the red circles correspond roughly to the proportion of the visual image
ampled. These saccades are driven by the salience maps in the second row, which correspond to the expected free energy as a function of the
olicies; namely, the next saccade or where to look next. As expected free energies are defined in terms of trajectories, it is best to see the locations
f on these salience maps as expressing the expected free energy of a trajectory that ends in that location. Note that these maps change with
uccessive saccades as variational posterior beliefs become progressively more confident about the external state. Note also that salience is depleted
n locations that were foveated in the previous saccade because these locations no longer have epistemic affordance or expected information gain
i.e., the ability to reduce uncertainty in the expected free energy). In neuroscience, this empirical phenomenon is known as inhibition of return.
culomotor responses are shown in the third row in terms of the two oculomotor states corresponding to vertical and horizontal eye movements.
he associated portions of the image sampled (at the end of each saccade) are shown in the fourth row. The fifth row shows the evolution of
ariational posterior beliefs about external (a.k.a. hidden) in terms of the log probability they assign to each possible external state (colour coded)
nd 90% confidence intervals. The key thing to note is that the credence about the true external state supervenes over alternative expectations and, as
result, confidence about the category increases (and confidence intervals shrink to the mode). This illustrates the nature of evidence accumulation
hen selecting a hypothesis or percept that best explains sensory states. Please see [162] for further details.

ne can mix discrete and continuous state–space models by placing the former on top of the latter, to produce deep
enerative models that, through active inference, can be used to simulate many known aspects of computational anatomy
nd physiology in the brain [158].

.1. Summary

In summary, we now have at hand a way of identifying the most likely autonomous trajectory from any initial particular
tate that can be used to simulate the sentient behaviour of precise particles that we have associated with biotic systems.
he expected free energy absorbs two aspects of Bayes optimal behaviour into the same (objective) functional [149]. On
Bayesian reading, the expected information gain is exactly the same quantity that underwrites the principles of optimal
23



K. Friston, L. Da Costa, N. Sajid et al. Physics Reports 1024 (2023) 1–29

B
u
i

a
i
w
I
t
m
c
p

9

o
p
f
c
a
f
f
c
g
a

c
a
o
f
r

s
B
m
o
m
v
c
b
f
r
b
s

A
w
o
m
f
a

D

a

A

t
e

ayesian design [76,134,163]. In other words, the principles that prescribe the best way to solicit evidence that reduces
ncertainty about various hypotheses. The second imperative comes from Bayesian decision theory, where the objective
s to minimise some expected cost function expected under a choice or decision [145,164,165].

Teleologically, it is worth reflecting upon the differences between the generative models that underwrite state-wise
nd path-wise descriptions of Bayesian mechanics, respectively. For the state-wise formulation (23), the generative model
s just a joint density over external and particular states, supplied by—or supplying—the NESS density. For the path-
ise formulation (34), (41), the generative model is a joint distribution over the paths of external and sensory states.

n other words, there is an implicit state–space model of dynamics that can be summarised heuristically as modelling
he consequences of an action on external and sensory dynamics. Because consequences follow causes, the generative
odel acquires a temporal depth [155,166]. This depth required to describe any given particle may, of course, be another
haracteristic that distinguishes different kinds of particles. In short, the path-wise formulation describes particles that
lan, under a proximal or distal horizon.

. Conclusion

There are many points of contact between the variational formulation above and other normative theories of self-
rganisation and purposeful behaviour. However, to focus the narrative we have deliberately suppressed demonstrating
recedents, variants and special cases. Fig. 3 highlights a few relationships between the free energy principle and various
ormulations of self-organisation and sentient behaviour. In brief, this casts things like reinforcement learning and optimal
ontrol theory as optimising the marginal likelihood of particular states, conditioned upon a generative model supplied by
nonequilibrium steady-state density. It could be argued that the link between the free energy principle and established
ormulations is most direct for synergetics [14,167] and related treatments of dissipative structures [168]. There is also a
ormal and direct link to information theoretic formulations and Bayesian statistics. Furthermore, the free energy principle
an be regarded as dual to the constrained maximum entropy principle [169], where the constraints are supplied by the
enerative model. Please see [148,150] for a treatment of things like empowerment [170], information bottleneck [171]
nd predictive information [172,173].
In a similar vein, there are several accounts of optimal behaviour—in both its epistemic and pragmatic aspects—that are

losely related to the path integral formulation of active inference. Some key relationships are highlighted in Fig. 7, such
s intrinsic motivation, artificial curiosity [136–138] and optimal control [93,95,131]. The interesting thing about these
ther theories is that they are predicated on optimising some objective function that can be recovered from expected
ree energy by taking various sources of uncertainty off the table. This discloses things like the objective optimised in
einforcement learning and expected utility theory in behavioural psychology and economics, respectively [65,174].

This paper has focused on a single particle and has largely ignored the (external) context that leads to generalised
ynchrony among internal and external states. This synchronisation goes hand-in-hand with existence per se and the
ayesian mechanics supplied by the free energy principle. The very fact that this mechanics rests upon synchronisation
ay speak to the emergence of synchronisation among formally similar particles; namely, populations or ensembles. In
ther words, an individual member of an ensemble or ecosystem owes its existence to the ensemble of which it is a
ember—at the level of multicellular organisation or indeed its conspecifics in evolutionary biology [175]. In a similar
ein, the context established by supra- and subordinate scales plays an existential role. In brief, particles at one scale
an only exist if there is a nonequilibrium steady-state density at a higher scale that entails Markov blankets of Markov
lankets [176]. Due to a separation of temporal scales, much of the self-evidencing at one scale is absorbed into the
ast, random fluctuations at the scale above. For example, the fast electrophysiological fluctuations of a neuron become,
andom fluctuations from the point of view of neuronal population dynamics and sensory motor coordination in the
rain [177–179]. This follows in a straightforward way from applying the apparatus of the renormalisation group. Please
ee [5] for further discussion.
For brevity and focus, we have not considered applications of the free energy principle and active inference in detail.
brief review of the literature in this area will show that the majority of applications are in the neurosciences [124]
ith some exceptions: e.g., [180,181]. Recently, there has been an increasing focus on active inference in the setting
f machine learning and artificial intelligence [61,147,150,182–185]. Much of this literature deals with simulation and
odelling and, specifically, scaling active inference to real-world problems. These developments speak to the shift in

ocus from the foundational issues addressed in this article to their applications. It is quite possible that the foundational
spects of the free energy principle may also shift as simpler interpretations and perspectives reveal themselves.
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