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Dissipation production in a closed two-level quantum system as a test of the irreversibility
of the dynamics
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Irreversible behavior in open stochastic dynamical systems is quantified by stochastic entropy production,
a property that measures the difference in likelihoods of forward and subsequent backward system evolution.
But for a closed system, governed by deterministic dynamics, such an approach is not appropriate. Instead,
we can consider the difference in likelihoods of forward and “obverse” behavior: the latter being a backward
trajectory initiated at the same time as the forward trajectory. Such a comparison allows us to define “dissipation
production,” an analog of stochastic entropy production. It quantifies the breakage of a property of the evolution
termed “obversibility” just as stochastic entropy production quantifies a breakage of reversibility. Both are
manifestations of irreversibility. In this study we discuss dissipation production in a quantum system. We
consider a simple, deterministic, two-level quantum system characterized by a statistical ensemble of state
vectors, and we provide numerical results to illustrate the ideas. We consider cases that both do and do not satisfy
an Evans-Searles Fluctuation Theorem for the dissipation production, and hence identify conditions under which
the system displays time-asymmetric average behavior: an arrow of time.
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I. INTRODUCTION

Irreversible behavior, such as the melting of an ice cube,
is ubiquitous in everyday life. Such behavior is traditionally
characterized by a monotonic rise in entropy in accordance
with the second law of thermodynamics [1]. This allows the
past to be distinguished from the present, characterizing the
future as the direction of time in which entropy increases [2].

However, given that the laws governing microscopic
motion are time-reversal symmetric, we require a satis-
factory understanding of the emergence of macroscopic
irreversibility, as did Boltzmann at the advent of the study of
thermodynamics. One proposed explanation is known as the
Past Hypothesis, which posits that entropy increases globally
because the universe started from a state of low entropy,
making it likely that all conceivable evolutions lead to its
increase. Irreversibility would then ultimately depend on the
initial conditions taken by a system. The persistent impact of
initial conditions may have philosophical, as well as physical,
consequences, which can be explored [3].

Recent developments in nonequilibrium statistical me-
chanics offer the possibility of quantifying irreversibility
given an initial state and a specification of the dynamics,
namely, to evaluate the degree to which a process manifests
an arrow of time. However, rather different approaches need
to be taken for open and closed systems.
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Mean stochastic entropy production [4] has been developed
as a measure of irreversibility for open systems. It is inti-
mately connected to the development of subjective uncertainty
and loss of information [5] brought about by underspecified
environmental interactions. It explores a failure of mechanical
reversibility, namely, a distinction between the likelihoods
of forward and subsequent backward evolution trajectories
under suitable preparation. A connection can be established
with thermodynamic entropy change. Progress has been made
within this framework in understanding entropy production in
open classical dynamical systems, as well as in studying the
average [6] and single realization quantum entropy production
in quantum systems in the weak coupling limit [7,8]. Recently,
stochastic entropy production in open quantum systems has
received further attention within a framework of quantum
state diffusion [9,10].

However, for systems that are closed and dynamically de-
terministic, the rate of change of mean stochastic entropy
production is zero, making this quantity unsuitable as a mea-
sure of irreversibility. Nevertheless, distinctively irreversible
behavior can emerge even in closed systems, so an alternative
approach to its quantification needs to be employed. Total
correlation [11–13] has been considered, though a proof of its
second law-like behavior is lacking. The quantity that has re-
ceived most attention as a measure of irreversibility in closed
dynamical systems is the dissipation function [14–16], which
can be shown to increase in time in a manner that resembles
entropy. The purpose of this study is to extend the use of this
approach to a closed quantum system.

To this end, we consider a measure of irreversibility that
derives from a difference in likelihoods of a forward and
a so-called obverse trajectory (to be defined) under deter-
ministic, mechanically reversible dynamics. To distinguish
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this from the stochastic entropy production that tests the
reversibility, we call this a test of the obversibility of the
dynamics, a concept that has previously been investigated
in classical situations [16,17]. In the next section we pro-
vide a definition of obversibility and quantify its failure
using dissipation production (or, less succinctly, the time-
integrated modified dissipation function [17], a generalization
of the time-integrated dissipation function [14]). We evalu-
ate dissipation production and explore some of its properties
for a simple two-level quantum system. We demonstrate
that dissipation production may be computed for individ-
ual realizations of the system dynamics, that its average
over all possible realizations is never negative, and that
in certain situations its probability density function (PDF)
can satisfy a symmetry known as the Evans-Searles Fluc-
tuation Theorem (ESFT). This property of the dissipation
function played an important role in motivating its use as
a measure of irreversibility. The ESFT is the “original”
fluctuation relation, a set of statements about probability
distributions that have found wide use in nonequilibrium
statistical physics [18]. We identify the conditions under
which the ESFT is satisfied. When it is violated, situa-
tions emerge where the expected dissipation production of
the system as it evolves into the future differs from its ex-
pected evolution into the past, thus providing an arrow of
time.

II. METHODS

A. Measures of irreversibility

Classically, the forward trajectory taken by a system is
simply the path it follows from an initial configuration de-
fined by a point in the coordinate phase space, �A, to a final
configuration, �B, after a time t . In a quantum setting, the con-
figurations might correspond to initial and final state vectors
ψA and ψB, specified by a collection of complex amplitudes
�̃A and �̃B, respectively, with reference to a chosen basis
set.

In order to proceed, we require an inversion operator MT

which has the effect of transforming the final configuration
reached at the end of the forward trajectory into an appro-
priate starting point from which the backward trajectory can
commence under the time-reversed dynamics, those designed
to return the system after a further time t to an inverted version
of the starting configuration for the forward trajectory. In a
classical situation, this transformation is velocity inversion,
v → MT v = −v [17]. However, the equivalent inversion in
the quantum case (for a spin zero particle) is complex conjuga-
tion of the wave function, ψ → ψ∗, as this sets up conditions
for a time-reversed solution to the Schrödinger equation with
the appropriately time-reversed Hamiltonian [19]. We asso-
ciate a set of amplitudes �̃∗ with each ψ∗ and define MT such
that MT �̃ = �̃∗.

Thus, starting from �B in the classical or �̃B in the quantum
case, the application of an inversion operator MT followed by
(time-)reversed dynamics over a further time period t returns
a system to the inverted form of the original state �A or �̃A,
if the dynamics are mechanically reversible. The red and blue
trajectories in Fig. 1 illustrate this.
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FIG. 1. Trajectories in configuration space. Stochastic entropy
production is derived from the probabilities of the forward and back-
ward trajectories (red and blue, respectively). Dissipation production
depends in a similar way on probabilities for the forward and obverse
trajectories (red and green, respectively). The operator MT corre-
sponds to a time-reversal transformation.

For open systems with indeterminate dynamics, such that
the evolution is represented in terms of probabilities, a return
to the starting configuration is not assured, and the degree of
failure of reversibility can be quantified using the stochastic
entropy production �st for the forward trajectory, defined as

�st = ln
p(�̃A, 0)d�̃A T (�̃A → �̃B)

p(�̃B, t )d�̃B PI (�̃B → �̃∗
B) T (�̃∗

B → �̃∗
A)

(1)

in notation suitable for a quantum setting. Replacing �̃A,B

with �A,B gives the appropriate expression for the classical
stochastic entropy production. In Eq. (1), p(�̃, τ ) is the PDF
of the quantum amplitudes, �̃, at time τ , such that p(�̃, τ )d�̃

is the probability that the configuration of the system lies in
the region of phase space d�̃ about �̃. p(�̃, τ ) in this context
is essentially the classical probability density of selecting a
certain quantum state vector from an ensemble of possibilities.
Each quantum state vector is itself associated with probabil-
ities for obtaining one outcome or another upon projective
measurement of observables, though we restrict ourselves
here to considering deterministic quantum evolution without
measurement.

T (�̃ → �̃′) is the probability for a transition from �̃ to �̃′
according to the dynamics in a time interval of length t . The
probability for the inversion PI (�̃B → �̃∗

B) in the denomina-
tor of Eq. (1) might be omitted since it is unity, though its
presence makes more apparent the precise nature of the two
processes that are being compared. The inversion operation is
taken to act instantaneously. The idea of Eq. (1) is to compare
the probability of a forward path from �̃A to �̃B, in a time
interval of length t , with the probability of starting from a
configuration �̃B at time t , conditioned on evolution from
t = 0, inverting it, and then having it evolve to configuration
�̃∗

A under the dynamics for a further time t . For stochastic
dynamics, the ratio of initial to final increments d�̃A/d�̃B is
unity and can be omitted.

However, for closed systems with deterministic dynamics,
�st vanishes since the transition probabilities T are replaced
by deterministic mappings of the state, taken with unit proba-
bility. The evolution of �̃A to �̃B might be represented by the
operation St , the backward trajectory by S∗

t , and, including the
inversions, the reversibility of the dynamics corresponds to
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TABLE I. Comparison of measures of irreversibility. For simplicity, and a more compact expression, we assume that the deterministic
dynamics conserve increments in configuration space. p(�̃, t ) is the PDF describing an ensemble of sets of probability amplitudes �̃ that
define the state vector and T is a transition probability under stochastic dynamics.

Procedure Compare likelihood of forward
then backward paths

Compare likelihood of forward
or obverse paths

Concept tested Reversibility Obversibility
Quantifying property Stochastic entropy production

�st = ln p(�̃A,0)T (�̃A→�̃B )
p(�̃B,t )T (�̃∗

B→�̃∗
A )

Dissipation production

ωt = ln p(�̃A,0)
p(�̃B,0)

Measure of irreversibility for Open systems Closed systems

MT S∗
t MT St �̃A = �̃A. By conservation of probability we have

p(�̃B, t )d�̃B = p(�̃A, 0)d�̃A and hence �st = 0. There is no
stochastic entropy production since there is no change in the
subjective uncertainty of the adopted state brought about by
the passage of time.

For closed, deterministic systems we therefore need a
different quantity with which to measure irreversibility. A
suitable quantity called the dissipation production has been
employed in classical situations [17], developing earlier work
by Evans et al. [14]. Rather than comparing the likelihoods
of the forward and (subsequent) backward trajectories to
quantify irreversibility through stochastic entropy production,
dissipation production compares the likelihoods of the for-
ward and obverse trajectories. In the quantum situation, the
obverse trajectory takes the inverted final configuration, �̃∗

B,
via the reversed dynamics, S∗

t , to the inverted initial configura-
tion �̃∗

A, but the reverse evolution is started at time zero, rather
than at time t , which distinguishes it from the backward trajec-
tory, which is the reversal of a previous forward trajectory. The
ideas are illustrated by the red and green trajectories in Fig. 1.
We assume that the probability density at t = 0 is nonvan-
ishing for all possible final configurations. By comparing the
likelihood that a system adopts configuration �̃A at t = 0 with
the likelihood that it adopts �̃B, we can quantify the failure of
obversibility, a counterpart to the reversibility that is tested by
the stochastic entropy production. Such failure is necessarily
and sufficiently a consequence of the properties of the initial
probability density over the configuration space, rather than of
the dynamics.

The dissipation production is therefore defined as ωt =
ln[p(�̃A, 0)d�̃A/p(�̃B, 0)d�̃B], where �̃A and �̃B are related
by the mapping �̃B = St �̃A. To make a more exact parallel
with the definition of stochastic entropy production in Eq. (1),
dissipation production could be written less concisely as

ωt = ln
p(�̃A, 0)d�̃A T̃ (�̃A → �̃B)

p(�̃B, 0)d�̃B PI (�̃B → �̃∗
B) T̃ (�̃∗

B → �̃∗
A)

, (2)

where the transition probabilities T̃ are unity since we are con-
sidering deterministic dynamics under which �̃A inevitably
evolves into �̃B, and �̃∗

B into �̃∗
A (the latter under reversed

dynamics). Hence the T̃ can be omitted, together with the
inversion probability PI (�̃B → �̃∗

B) in the denominator.
Unlike stochastic entropy production, which compares the

likelihood of a system evolving forward and then subsequently
evolving backward, dissipation production is a comparison of
the probabilities of one event or another. The evolution under
St taking �̃A to �̃B and the evolution under S∗

t taking �̃∗
B to �̃∗

A

are considered in the same time interval. A comparison of the
tests for reversibility and obversibility is made in Table I.

Dissipation production is zero when configurations �̃A and
�̃B are equally likely to be selected at t = 0. In such a case we
say the specific evolution is obversible. If they are not equally
likely, but the evolution interval is short such that �̃B lies
close to �̃A, the dissipation production will be small. However,
�̃∗

B will typically be distant from �̃A even after a short time
interval. This is why it is important to define dissipation pro-
duction in terms of a ratio of p(�̃A, 0) to p(�̃B, 0) rather than
to p(�̃∗

B, 0), in order that it should vanish for a time interval of
zero duration.

B. Bloch sphere representation

We consider a two-level quantum system characterized by
a general state vector written in ket notation as

|ψ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉, (3)

where cos(θ/2) and eiφ sin(θ/2) are the amplitudes specify-
ing the associated configuration �̃. We can use θ and φ or
Cartesian coordinates defined as

x = sin θ cos φ, y = sin θ sin φ, z = cos θ (4)

to represent system configurations as points on the surface of
a Bloch sphere [20]. Trajectories are then paths from an initial
point on the Bloch sphere to another point representing the
evolved configuration.

Unitary evolutions of a two-level quantum system, repre-
sented by the mapping St , generate continuous paths on the
Bloch sphere, by analogy with a classical trajectory through
coordinate phase space. Without loss of generality, we con-
sider the mapping of |ψ〉 from an initial to a final state to be a
rotation with unitary

St (n̂, α(t )) = I cos(α/2) − in̂ · σ̂ sin(α/2), (5)

where n̂ is the (normalized) axis of rotation, α is the angle
of rotation, and σ̂ is the vector of Pauli matrices. The angle of
rotation depends on the duration of the evolution. Forward and
obverse trajectories created by such a mapping are illustrated
in Fig. 2. For a time-independent Hamiltonian, the trajectories
are precisely rotations on the Bloch sphere, with the angle
rotated proportional to elapsed time, but the mapping under
Eq. (5) can also represent the final outcome of motion under
a Hamiltonian that is time-dependent. As we are consider-
ing only deterministic evolution, no measurement process is
involved, as this would introduce uncertainty of eigenstate
projection into the dynamics.
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FIG. 2. Forward (�̃A to �̃B) and obverse (�̃∗
B to �̃∗

A) trajectories
shown on the Bloch sphere, shown in black and white, respectively.
The coloration of the sphere denotes the probability density of the
initial configuration (red is high, blue low). The forward and ob-
verse trajectories are produced by rotations about the n̂ and n̂′ axes,
respectively.

In the Bloch sphere representation, the inversion operation,
complex conjugation, is the transformation φ → −φ. Further-
more, the dynamics conserve areas on the surface of the Bloch
sphere, in the sense that a patch of size d�̃A is mapped under
rotation to an equal size patch d�̃B. We shall therefore be able
to omit these increments in the definition of the dissipation
production.

The choice of basis used to specify the ensemble of quan-
tum state vectors is arbitrary, determining only which states
are located at the poles of the Bloch sphere. As unitary trans-
formations are rotations on the Bloch sphere, a change of
basis merely alters the reference axes but not any feature such
as the PDF displayed upon it. As the dissipation production
is defined in terms of this PDF, the particular choice of basis
will therefore not affect the values of ωt .

C. Mathematical properties of dissipation production

1. Nonnegativity of mean dissipation production

It can be shown that the mean or expectation value of
dissipation production is never negative. This property indi-
cates that, just like stochastic entropy production, dissipation
production satisfies a second law-like relation: it is expected
to increase as time passes [21].

To prove the nonnegativity of the mean dissipation produc-
tion, we start with the expression for the mean, which is

〈ωt 〉 =
∫

p(�̃, 0)ln
p(�̃, 0)

p(�̃t , 0)
d�̃, (6)

where �̃ and �̃t = St �̃ are configurations and p(�̃, τ ) is the
PDF over configurations at time τ . Angled brackets repre-
sent an average. Note that this expression takes the form of
a Kullback-Leibler (KL) divergence DKL [22] between two
PDFs, which is never negative. Formally, we could define

q(�̃, 0) = p(�̃t , 0) such that 〈ωt 〉 = DKL(p||q). Note that this
differs from a KL divergence between the initial and final
PDFs p(�̃, 0) and p(�̃, t ), which can correspond to the mean
stochastic entropy production in certain circumstances.

Alternatively, it can be shown that the mean dissipation
production is a nonnegative quantity by considering the av-
erage of its negative exponential:

〈e−ωt 〉 =
∫

p(�̃, 0)
p(�̃t , 0)

p(�̃, 0)
d�̃ =

∫
p(�̃t , 0) d�̃. (7)

Since p(�̃t , 0) is a normalized PDF, and the transformation
�̃ → �̃t has a Jacobian of unity, we can write 〈e−ωt 〉 = 1.
Since e−z � 1 − z, z ∈ R, it follows that 〈e−ωt 〉 � 1 − 〈ωt 〉
allowing us to conclude that 〈ωt 〉 � 0. It should be noted that
this emerges for both positive and negative t , namely, evolu-
tion into the future and into the past relative to the starting
condition.

2. The Evans-Searles fluctuation theorem

A fluctuation relation [14,16,23] quantifies the extent
to which a property such as stochastic entropy production
evolves in a direction counter to that dictated by the second
law of thermodynamics, recognizing that the latter holds only
on average. The implication of such a relation is that fluctu-
ations that “break” the second law are exponentially unlikely
and are never apparent on a macroscopic scale.

Stochastic entropy production is known to obey a number
of fluctuation relations [24]. Similarly, the dissipation pro-
duction ωt can satisfy a result known as the Evans-Searles
Fluctuation Theorem (ESFT) in certain situations. Indeed, the
ESFT provided the model and template for the later develop-
ment of fluctuation relations.

The (rather abstract) requirements for deriving the ESFT
[16,17] are that the probabilities of a pair of starting con-
figurations, related by a mapping MR, should be equal (i.e.,
a symmetry of the PDF exists), and there are trajectories
yielding equal and opposite dissipation productions whose
starting points are also related by MR. These conditions can
be expressed as

p(MR�̃, 0) = p(�̃, 0) (8)

and

ωt (�̃) = −ωt (M
R�̃t ). (9)

MR is a transformation that can be more general than the
inversion map MT used in Sec. II. Recall that �̃t = St �̃ is the
configuration to which �̃ evolves after time t . Given these two
conditions, the derivation of the ESFT proceeds as follows.
The PDF of dissipation production is

P(ω) =
∫

d�̃p(�̃, 0)δ[ωt (�̃) − ω], (10)

and we use the definition of ωt from Sec. II to write

P(ω) =
∫

d�̃p(�̃, 0)eωt (�̃) p(�̃t , 0)

p(�̃, 0)
δ[ωt (�̃) − ω]

= eω

∫
d�̃p(�̃t , 0)δ[ωt (�̃) − ω]. (11)
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FIG. 3. Cross section of the Bloch sphere, looking down
the rotation axis of the dynamics, geometrically illustrating that
MRSt MRSt = I. To see this, consider a point a on the surface of the
Bloch sphere, with its position specified by angle θ̂ . Application of
evolution operator St will rotate this point to b: θ̂ → θ̂ + α. Then
MR will map b to c: θ̂ + α → 2π − (θ̂ + α). Applying St again
sends c to d: 2π − (θ̂ + α) → 2π − (θ̂ + α) + α = 2π − θ̂ . A final
application of MR returns d to a.

Now we use the condition given in Eq. (9) to obtain

P(ω) = eω

∫
d�̃t p(�̃t , 0)δ[−ωt (M

R�̃t ) − ω]. (12)

Finally, Eq. (8) and a transformation of the integration mea-
sure give

P(ω) = eω

∫
d (MR�̃t )p(MR�̃t , 0)δ[ωt (M

R�̃t ) + ω]

= eωP(−ω). (13)

This is the ESFT. Proofs in the literature employ a transfor-
mation that time inverts the evolved state, namely, an MR

given by MT , but the result can clearly hold in more general
circumstances. With MR = MT we can employ the identity
MT S∗

t MT St = I to show that condition (9) follows from (8),
as long as the protocol of the dynamics is symmetric over the
interval, i.e., S∗

t = St . The ESFT has previously been consid-
ered to arise in the complicated circumstances where the latter
holds and the initial PDF is symmetric in the time-reversal
operation.

We anticipate that the ESFT emerges in more general cir-
cumstances if the relation MRSt MRSt = I holds. This places a
requirement on MR: in our system the operation it represents
must be a reflection in the plane containing the axis of rotation
of the transformation St that implements the dynamics of
the evolution. The requirement p(MR�̃, 0) = p(�̃, 0) further
enforces a more stringent restriction that MR is also a reflec-
tion in the plane of symmetry of the PDF. To see this, we
can associate the operations as rotations about the axis and
reflections in the plane as illustrated in Fig. 3.

In short, in situations where the rotation axis representing
the evolution St lies in a plane of symmetry of the PDF of the
initial state of the system, we shall observe an ESFT.

It is worth commenting on why the ESFT is of interest.
When it holds, Eq. (13) shows clearly that the probability
of a negative dissipation production is exponentially lower
than the probability of a positive dissipation production of
the same magnitude. Even though positive mean dissipation

production holds quite generally, second law-like behavior
of dissipation production becomes very apparent when the
ESFT is satisfied. Second, the ESFT can be used to derive
a symmetry in dissipation production into the past and future,
to which we now turn.

3. Symmetry of mean dissipation production into future and past

Provided that the conditions for obtaining an ESFT are met,
specifically that MRSt MRSt = I and p(MR�̃, 0) = p(�̃, 0),
we can show that the mean dissipation production is the same
for evolution into the past and the future. Starting from the
mean dissipation production for evolution into the past:

〈ω−t 〉 =
∫

p(�̃, 0)ln
p(�̃, 0)

p(S−t �̃, 0)
d�̃, (14)

we recast as

〈ω−t 〉 =
∫

p(MR�̃, 0)ln
p(MR�̃, 0)

p(S−t MR�̃, 0)
dMR�̃, (15)

and apply S−t MR = MRSt and Eq. (8) to get

〈ω−t 〉 =
∫

p(MR�̃, 0)ln
p(MR�̃, 0)

p(MRSt �̃, 0)
dMR�̃

=
∫

p(�̃, 0)ln
p(�̃, 0)

p(St �̃, 0)
d�̃, (16)

and hence 〈ω−t 〉 is equal to the mean dissipation production
for forward evolution, 〈ωt 〉. However, in situations in which
the ESFT is violated, we do not expect this result to hold,
the implication being that the initial ensemble will exhibit
different mean dissipation productions into the past and the
future: a time asymmetry in expected failure of obversibility.

III. RESULTS

In order to demonstrate the range of behavior of dissipa-
tion production, we restrict ourselves to considering simple
evolutions of the system represented by rotation matrices

S jk (n̂, t ) =
{

cos2 t
2 + sin2 t

2

(
2n̂2

j − 1
)
, if j = k

2n̂ j n̂k sin2 t
2 − ε jkl n̂l sin t if j �= k

, (17)

where ε jkl is the Levi-Civita symbol, the rotation angle α is
equal to the elapsed time, t, and (n̂x, n̂y, n̂z ) is the rotation
axis.

We consider four initial probability density functions over
the Bloch sphere, specified using a combination of spherical
polar and Cartesian coordinates:

Case 1: p(θ, φ, t = 0) = (4π )−1(1 + z) which is rotation-
ally symmetric about the z axis.

Case 2a: p(θ, φ, 0) = (4π )−1(1 + cos θ )(1 + cos φ),
which is symmetric with respect to the transformation
φ → −φ and hence has mirror symmetry in the xz plane.

Case 2b: p(θ, φ, 0) = (4π )−1(1 + cos θ )[1 + cos(φ +
π/4)], which is not symmetric with respect to the
transformation φ → −φ but does have a plane of
symmetry which passes through the z axis.
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Case 3: p(θ, φ, 0) = (8π )−1(1 + cos θ )(2 + cos φ +
sin 2φ), which is not symmetric with respect to the
transformation φ → −φ and has no planes of symmetry.

Case 1 and Cases 2a and 2b are illustrated in Fig. 4, while
the fully asymmetric Case 3 is shown later in this paper in
Fig. 8.

In Fig. 5 we show PDFs of the dissipation production, ωt ,
for Case 1, using rotations about the x axis through various
angles to represent the transformation St over various times.
The shape of the PDFs in Case 1 broadens as the elapsed time
increases. These can be used to compute the logarithm of the
ratio of probabilities of equal and opposite values of ωt , and
if a plot of this quantity against ωt gives a straight line with
unit gradient, then an ESFT holds. Since the PDF in Case 1
has rotational symmetry about the z axis, any axis of rotation
defining St will lie in a plane of symmetry of the PDF, meeting
the requirements for an ESFT described earlier. The inset in
Fig. 5 demonstrates an ESFT for an example rotation of 2.1
radians about the x axis (i.e., t = 2.1).

To confirm further the conditions required to obtain an
ESFT, we consider the more complicated Case 2a, which
involves more structure in the initial PDF. For three evolutions
consisting of rotation by 2π/3 about each of the Cartesian
axes, we generate Fig. 6. An ESFT holds for rotations about
the x and z axes, which lie in the plane of symmetry of the
PDF on the Bloch sphere, but it fails for rotation about the y
axis which does not.

We also consider Case 2b, which is a rotated version of
the PDF in Case 2a. It can be demonstrated numerically that
an ESFT is satisfied for evolution corresponding to rotation
about the z axis and remains violated for rotation about the
y axis, but in contrast with Case 2a, an ESFT does not now
hold for rotation about the x axis as this axis does not lie in
the plane of symmetry of the Case 2b initial PDF.

When we observe an ESFT, we also expect symmetric be-
havior for the mean dissipation production for evolution into
the future and the past, as discussed in Sec. II C 3. Figure 7,
depicting 〈ωt 〉 in Cases 2a and 2b for rotations about the z
axis, illustrates this. Notice that mean dissipation production
is nonnegative for the entire range of the rotation angle. Small
angles of rotation give a small mean dissipation production,
since in these instances there is little difference between the
two configurations being compared.

The nonnegativity is universal and independent of choice
of axis or Bloch sphere PDF, but the time-symmetric behav-
ior accompanies only situations which satisfy an ESFT. We
verify this by investigating Bloch sphere PDF Case 3, which
has no planes of symmetry, and hence cannot give an ESFT,
regardless of evolution rotation axis. Figure 8 demonstrates
the associated time asymmetry in mean dissipation production
for an example rotation about the z axis.

These considerations allow us to identify initial ensembles
of quantum states which will exhibit time-asymmetric average
behavior under a reversible unitary evolution. The dynamics
are time-reversal symmetric, but the initial condition is not.

Table II specifies which combinations of PDF and rotation
lead to the emergence of an ESFT. The results confirm that an
ESFT depends on the relationship between the chosen rotation

FIG. 4. Color denotes the magnitude of the PDF describing the
initial ensemble at points on the Bloch sphere as viewed from the
positive z direction: red is high, blue is low. Case 1: PDF with
rotational symmetry about the z axis. Case 2a: PDF symmetric in
the xz plane. Case 2b: PDF symmetric in plane passing through the z
axis.
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FIG. 5. Dissipation production for Case 1 depicted as PDFs for
various elapsed times (i.e., rotations about the x axis). The inset
confirms that an Evans-Searles Fluctuation Theorem (ESFT) holds
for t = 2.1.

axis and the symmetry of the PDF on the Bloch sphere: when
the rotation axis lies in a plane of symmetry of the PDF, the
ESFT is upheld. The message is that the ESFT is by no means
a universal feature.

IV. CONCLUSIONS

In quantum systems undergoing deterministic evolution,
the statistical ensemble that represents subjective uncertainty
with regard to the initial state vector can be used to spec-
ify the likelihood of observing a particular trajectory and
its “obverse” counterpart, the latter being a reversal of the
events of the forward trajectory, but starting at the same time.
We test for irreversibility of behavior through the failure of
obversibility (a property distinct from, but closely related to,
reversibility), which we quantify with dissipation production.
This first study of dissipation production in a quantum system
extends the use of the concepts beyond the classical realm
previously considered [17]. In particular, we are able to de-
termine whether a system with a particular PDF describing

FIG. 6. The ESFT states that a PDF of dissipation production
should satisfy ln[P(ωt )/P(−ωt )] = ωt . Case 2a violates the ESFT
for evolution consisting of a rotation about the y axis, which does
not lie in the plane of symmetry of the PDF, while it is satisfied for
rotations about the other Cartesian axes, through which the plane of
symmetry does pass.

FIG. 7. Comparison of 〈ωt 〉 for rotations of angle t about the z
axis in Cases 2a and 2b. As both PDFs have a plane of symmetry
passing through the z axis, there is symmetry in mean dissipation
production for evolution into the future and the past. Furthermore,
〈ωt 〉 is the same for both cases.

the initial ensemble will exhibit time asymmetry in expected
behavior under a particular process.

We have studied a simple two-level system, and our prin-
cipal aim has been to identify conditions under which the
dissipation production satisfies an Evans-Searles Fluctuation
Theorem (ESFT), from which it follows that it evolves on
average into the past in the same way as into the future. The
evolution of states on the Bloch sphere after a given time
interval under deterministic dynamics can be represented by
a rotation about a specified axis, and the criterion for the
validity of the ESFT is that this axis should lie in a plane of
symmetry of the PDF describing the initial ensemble. It is also
straightforward to demonstrate that the average dissipation
production can never be negative, which makes it potentially
a measure of irreversibility.

Obversibility is distinct from reversibility. The latter is
upheld here owing to the deterministic unitary dynamics of
an isolated system. Reversibility is essentially the property
that the effects of carrying out a process can be undone by
inverting velocities, carrying out a reverse process, and then
inverting velocities again (in classical circumstances). Ob-
versibility is the property that a process and its reverse starting
from the same ensemble (its “obverse”) may take place with
equal likelihood [17].

Dissipation production is a consequence of a fail-
ure of obversibility and plays a role that is similar to,

FIG. 8. 〈ωt 〉 for rotations of angle t about the z axis in Case 3,
for which a view of the PDF is shown as an inset. This PDF does not
have a plane of symmetry passing through the rotation axis and an
asymmetry in 〈ωt 〉 for evolution into the future and the past emerges
as a consequence.
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TABLE II. Satisfaction of an ESFT for various cases of Bloch
sphere PDFs when configurations are rotated by the dynamics about
the Cartesian axes.

Axis Case 1 Case 2a Case 2b Case 3

x Yes Yes No No
y Yes No No No
z Yes Yes Yes No

but distinct from, the stochastic entropy production that
arises from a failure of reversibility. In a nonequilib-
rium stationary state, dissipation production and entropy
production are synonymous, but this is not the case in
more general situations. We have therefore broadened our
understanding of quantities that might characterise the ar-
row of development in time. Furthermore, we have been
able to demonstrate that time-asymmetric expected behav-
ior for a closed quantum system can arise from certain
asymmetries in the PDF describing the ensemble of ini-
tial states, a situation analogous to the Past Hypothesis.
Dissipation production depends only on the probabilities
of adopting particular states. It relies on classical uncer-
tainties that reflect a lack of knowledge of the initial
state, rather than quantum uncertainties due to a lack of
predictability with regard to the outcomes of measure-
ment. In any case, we have excluded the latter from our
considerations.

We anticipate that the methods described here are readily
applicable to larger systems, such as two qubits, since the tools

required to calculate dissipation production (namely, PDFs of
the system configuration and appropriate reversal and evolu-
tion operators) can be readily defined. For a general system it
is likely that the ESFT will be upheld only under very special
circumstances. These will always include situations where
the PDF describing the initial ensemble obeys time-reversal
symmetry and the protocol of dynamics is time-symmetric
about its midpoint, as envisaged by Evans [14], but these are,
nevertheless, rather exacting requirements.

We have seen that the failure of obversibility can be used
as an indicator of irreversibility in a closed system where me-
chanical reversibility is respected. Such a failure can also be
used as an indicator of irreversibility in systems that are open
to the environment. The dynamics of such systems are me-
chanically irreversible and characterized by stochastic entropy
production, but we could also compute dissipation production
by inserting appropriate transition probabilities into Eq. (2).
The relationship between reversibility and obversibility needs
to be developed, giving further consideration to the role of
initial conditions in generating time asymmetry of the ir-
reversibility measures. Exploring dissipation production and
obversibility in open quantum situations is hence an avenue
for further research.
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