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Introduction
DNA methylation is the addition of methyl groups to 
specific bases within DNA, most commonly CpG sites—
cytosines followed by guanines [1]. DNA methylation is 
often associated with changes in gene expression; meth-
ylation in gene promoter regions usually co-occurs with 
silencing and methylation at gene bodies with actively 
transcribed genes [2, 3]. Dysregulated DNA methyla-
tion is an occurrence in every cancer type, is often an 
early event in the tumorigenic process, and can also be 
identified in pre-cancerous lesions [4–7]. As cancer cells 
release DNA into the blood in the form of circulating 
tumour DNA, such modifications have garnered consid-
erable interest in the early cancer detection field due to 
their potential to be used as a non-invasive biomarker 
for cancer risk and early cancer detection [8–11]. How-
ever, despite there being thousands of biomarker studies 
published in the literature, only a few have been trans-
lated into the clinics, partially due to limitations in the 
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Abstract
SETD2-dependent H3 Lysine-36 trimethylation (H3K36me3) has been recently linked to the deposition of de-
novo DNA methylation. SETD2 is frequently mutated in cancer, however, the functional impact of SETD2 loss and 
depletion on DNA methylation across cancer types and tumorigenesis is currently unknown. Here, we perform 
a pan-cancer analysis and show that both SETD2 mutation and reduced expression are associated with DNA 
methylation dysregulation across 21 out of the 24 cancer types tested. In renal cancer, these DNA methylation 
changes are associated with altered gene expression of oncogenes, tumour suppressors, and genes involved in 
neoplasm invasiveness, including TP53, FOXO1, and CDK4. This suggests a new role for SETD2 loss in tumorigenesis 
and cancer aggressiveness through DNA methylation dysregulation. Moreover, using a robust machine learning 
methodology, we develop and validate a 3-CpG methylation signature which is sufficient to predict SETD2 
mutation status with high accuracy and correlates with patient prognosis.
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methods used for biomarker development and subse-
quent validation and testing, resulting in models that are 
not generalizable and so perform poorly on new subse-
quent datasets [12–15].

DNA methylation can crosstalk with other epigenetic 
marks to establish or maintain chromatin structures [16]. 
For example, SETD2-dependent H3K36 trimethylation 
(H3K36me3) recruits the de-novo DNA methyltransfer-
ase DNMT3B through its PWWP domain which subse-
quently methylates DNA at nearby regions [17, 18]. This 
first occurs in active genes during development as the 
transcription machinery first passes along a gene [19]. 
While this link is well-recognised, whether loss of SETD2 
and H3K36me3 can lead to subsequent loss of DNA 
methylation after de-novo methylation is established is 
subject to controversy. Neri et al. showed that knocking 
out SETD2 led to reduced recruitment of DNMT3B and 
reduced gene body methylation [20]. However, in another 
study, depletion of H3K36me3 through SETD2 knock-
down did not lead to reduced DNA methylation [21].

Understanding the impact of loss or depletion of 
SETD2  and H3K36me3 on DNA methylation is of par-
ticular clinical relevance as SETD2 is frequently mutated 
in multiple cancer types, for example, in up to 16% of 
clear cell renal cell carcinomas (ccRCC) and can be as 
high as 30% in metastatic ccRCC [22, 23]. We and oth-
ers have also found that H3K36me3 is frequently lost or 
depleted in up to 60% of metastatic ccRCC [22, 24, 25]. 
SETD2 is also frequently mutated or under-expressed in 
several other cancer types including 15.9% of Phyllodes 
breast tumours, 15% of paediatric high grade gliomas, 
and 8–10% of pancreatic ductal adenocarcinomas [26–
28]. Depletion of and H3K36me3 is associated with more 
aggressive tumours and worse prognosis [29–34]. Thus, 
understanding the impact of SETD2 and H3K36me3 loss 
on DNA methylation and tumorigenesis is of biological 
and clinical importance.

Previously, association of SETD2 with DNA meth-
ylation has been shown in 4 cancer types [22, 25, 26, 
33–37]. These studies show a widespread hypermeth-
ylation change in cancer, however since SETD2 altera-
tions is linked with reduced H3K36me3, we predicted it 
would also lead to gene body hypomethylation through 
reduced H3K36me3-dependent DNMT3B recruitment. 
We, thus, expanded the study to include more cancer 
types including those that show infrequent SETD2 muta-
tions to explore if SETD2 downregulation also impacted 
on DNA methylation. Further, previous studies have not 
explored the effect of these SETD2-dependent methyla-
tion changes on gene expression or tumorigenic process 
which remains a research gap. Loss of SETD2 and DNA 
methylation changes can both be early events in cancers, 
thus we wished to explore the role of SETD2 loss on DNA 

methylation dysregulation and tumorigenesis, which has 
not been studied before.

In this study, we performed a pan-cancer analysis to 
look at the effect of SETD2 mutation and depletion in 24 
cancer types using The Cancer Genome Atlas (TCGA) 
data and found that both SETD2 alternative variants 
and reduced expression are associated with characteris-
tic DNA methylation changes in 21 out of the 24 cancer 
types tested. Importantly, we find that in renal cancer, 
these DNA methylation changes are significantly cor-
related with gene expression changes in oncogenes 
and tumour suppressors, including TP53, FOXO1, and 
CDK4. Genes with dysregulated expression that corre-
lated with SETD2-dependent DNA methylation changes 
are enriched for tumorigenic processes such as neoplasm 
invasiveness, suggesting a new role for SETD2 in tumori-
genesis and cancer aggressiveness through DNA meth-
ylation dysregulation. Further, we develop a renal cancer 
signature of SETD2 loss using a unique machine-learning 
approach comprising multiple random sampling and 
repeated cross-validation, and successfully validated our 
biomarker in an independent Japanese renal cancer data-
set. We also show that our CpG signature is associated 
with prognosis. Our approach allows for a more accurate 
estimate of biomarker performance in external datasets 
and thus, we anticipate this approach will be useful in 
developing more readily clinically-translatable biomark-
ers in future studies.

Results
SETD2 alternative variants and depletion is associated with 
DNA methylation changes in multiple cancer types
SETD2 is a histone H3K36me3 methyltransferase and 
loss of SETD2 function is associated with a loss or deple-
tion of H3K36me3 in somatic cells [25]. However, the 
impact of SETD2 loss of function on methylation has 
only been studied in a few cancers, namely renal, glioma, 
and GI stromal tumours [22, 26, 35, 37]. However, a pan-
cancer analysis of the impact and functional characteri-
sation of SETD2 loss and depletion on DNA methylation 
is lacking.  To further explore the relationship between 
SETD2 status and DNA methylation profiles we used 
TCGA data to assess the impact of SETD2 mutation and 
copy number variation in 12 cancer types where SETD2 
alterations were present in greater than 3% of the samples 
and methylation data was available. All types of alterna-
tive variants, including single nucleotide variants and 
copy number variants, were included as cases. How-
ever, samples with SETD2 amplification were excluded 
as they may result in higher levels of SETD2 and thus 
H3K36me3. Samples with fusions were included as the 
majority of fusions cause a loss of function in SETD2. 
SETD2 WT samples are referred to as control group.
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Table 1 shows that all 13 cancer types tested show dif-
ferentially methylated CpG sites when comparing SETD2 
cases to SETD2 controls. There was no significant age dif-
ference in the SETD2 cases and SETD2 control groups 
across all cancers, except lung adenocarcinoma.

We examined the top 10% of differentially methylated 
CpG sites in clear cell renal cell carcinoma and lung ade-
nocarcinoma based on the most variable β-value change 
(∆β) (Fig.  1A and B). We find that the majority of dif-
ferentially methylated CpG sites were hypermethylated; 
however, there is a considerable number of hypometh-
ylated CpGs in each cancer type. The majority of hypo-
methylated CpGs in SETD2 cases compared to SETD2 
controls were present in the gene bodies (Fig. 1C and D) 
whereas hypermethylated CpGs do not show a gene body 
enrichment. This gene body enrichment of hypomethyl-
ated CpGs was seen in all cancers. (Table 1 and supple-
mentary Fig. 1).

To study the effect of loss or depletion of H3K36me3 in 
cancer types that had a SETD2 mutation frequency of less 
than 3%, we used SETD2 expression data to group sam-
ples into high and low SETD2 groups. Samples with the 
lowest and highest quartile of SETD2 expression based 
on mRNA-Seq were compared. 9 out of the 12 cancer 
types studied showed differential methylation between 
low and high SETD2 expressing samples. Table 2 shows 
the DNA methylation changes found in each of these 
cancer types. Of these, breast cancer,  , head and neck 
cancers, and sarcoma demonstrate the greatest DNA 
methylation changes. Adrenocortical carcinoma, chol-
angiocarcinoma, and thymomas show no differentially 

methylated DNA sites although the smaller sample size 
in these cancers may be a contributing factor.

Figure  2  A and 2B displays the top 10% of differen-
tially methylated CpG sites, based on ∆β, in thyroid 
cancer and sarcoma respectively. 4 of the 9 differentially 
methylated cancers tested showed greater hypometh-
ylation than hypermethylation, and 5 showed greater 
hypermethylation (Table  2). 5 out of the 9 cancer types 
with differential methylation showed an enrichment of 
hypomethylated CpGs in the gene body regions (Fig. 2D, 
p < 0.05, Table 2). Of the remaining 4, thyroid carcinoma 
showed a significant reduction in the proportion of hypo-
methylated CpGs in the gene body (Fig.  2C, p < 0.05) 
whereas diffuse large B-cell lymphoma and esophageal 
cancer, and pheochromocytoma and paraganglioma 
showed no significant difference. Thus, our above analy-
ses show that both SETD2 alternative variants and down-
regulation lead to gene body hypomethylation in almost 
all cancer types tested. This suggests that these SETD2-
dependent DNA methylation changes are due to loss of 
H3K36me3 which occurs in the gene body.

VHL mutations confound the effect of SETD2 loss on DNA 
methylation alterations in renal cancer
Loss of SETD2 has previously been shown to affect 
DNA methylation in renal cancer. However, we noted 
that a vast majority of these samples have VHL, BAP1, 
and PBRM1 mutations or copy number variations which 
are also known to impact on DNA methylation [36, 38]. 
Supplementary Table  2 shows that these mutations are 

Table 1 Differentially methylated CpGs for each cancer type with over 3% SETD2 mutations
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significantly correlated with the presence of SETD2 
mutations in this tumour type.

When differentially methylated CpGs in a VHL 
mutant/VHL WT comparison are compared to differen-
tially methylated CpGs between SETD2 cases and SETD2 
controls, a large overlap can be seen for the differentially 
methylated CpG sites (Fig.  3A). This may confound the 
effect of SETD2 variants on methylation. Therefore, to 
ensure that the methylation changes seen across renal 
cancers were not due to the confounding effect of VHL 
and other mutations, we selected a group of pan-nega-
tive WT samples by excluding samples with VHL, BAP1, 
or PBRM1 mutations. We also excluded VHL, BAP1, 
and PBRM1  mutants from the SETD2 mutant cases to 
allow us to disentangle the effect of SETD2 from other 

co-occuring mutations. 113 of the 259 SETD2 control 
samples were also WT for VHL, BAP1, and PBRM1 and 
the remaining 146 WT samples were excluded. When 
SETD2 cases were compared to the pan-negative WT 
samples, 1664 CpGs were found to be differentially 
methylated (BH-adjusted p-value < 0.05). Even when the 
excluded samples were added back to the dataset, these 
1664 CpGs performed better at unsupervised hierarchical 
clustering, giving a better separation of SETD2 cases and 
controls compared to the differentially methylated CpGs 
found using the entire dataset (Fig. 3B). As in the previ-
ous analyses, the hypomethylated CpGs were enriched 
in gene bodies (Fig. 3C), providing further evidence that 
these SETD2-dependent methylation changes are due 
to the H3K36me3 axis. The top-most hypomethylated 

Fig. 1 Performing a differential methylation analysis comparing SETD2 cases and SETD2 control cancer samples in (A) clear cell renal cell carcinoma 
and (B) lung adenocarcinoma shows a large number of differentially methylated CpGs. The top 10% of differentially methylated CpG sites, i.e. CpGs with 
the greatest ∆β values are shown in the heatmap. Unsupervised hierarchical clustering was carried out using complete-linkage clustering and distance 
measure is given by the Euclidean distance. Hypomethylated CpGs in both (C) papillary renal cell carcinoma and (D) lung adenocarcinoma show strong 
enrichment in gene bodies (p < 0.05) whereas in comparison, hypermethylated CpGs in papillary renal cell carcinoma and lung adenocarcinoma are more 
enriched in promoter regions and transcription start sites; Illumina array shows the distribution of CpGs in the entire 450k methylation array; β-value 
represents level of methylation; 3’UTR: 3’ untranslated region, 5’UTR: 5’ untranslated region; TSS1500: 1500 bp upstream of transcription start site, TSS200: 
200 bp upstream of transcription start site.
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CpGs mapped to genes that lost H3K36me3 in SETD2 
knock-outs or showed no change (representative fig-
ures in Supplementary Fig.  3). However, several of the 
most hypermethylated CpGs mapped to genes where 
H3K36me3 showed a redistribution from gene body 
to promoter regions although not all hypermethylated 
CpGs showed a distribution of H3K36me3 (Supplemen-
tary Fig. 4).

A gene ontology analysis of the genes with differentially 
methylated CpGs revealed that the majority of genes 
were involved in developmental processes such as mor-
phogenesis, embryonic organ development, and cell fate 
commitment (Fig. 3D). To explore whether these methyl-
ation changes had any impact on the expression levels of 
genes in these cancers, we conducted a methylation-gene 
expression correlation analysis. In order to characterise 
and categorise the function of the genes whose expres-
sion was found to be correlated with the methylation 
status of differentially methylated CpGs, we performed 
a gene ontology analysis based on biological processes, 
molecular functions and cellular components. Many of 
the genes were involved in embryonic development and 
morphogenesis (Fig. 4A). Interestingly, a large proportion 
of these genes were involved in immunity. Next, disease 
ontology and semantics analysis was performed to dis-
cover any disease associations of the genes that are cor-
related with differentially methylated CpGs. Figure  4  C 

shows the disease processes these genes are involved in. 
Genes whose expression was correlated with differen-
tial methylation in SETD2 cases show an enrichment for 
processes such as neoplasm invasiveness, in particular 
kidney neoplasm, which suggests that SETD2 mutations 
may be involved in cancer aggressiveness through DNA 
methylation. Interestingly, CpGs whose methylation was 
negatively correlated with gene expression were more 
enriched in gene bodies, whereas positively correlated 
CpGs had greater proportions in transcription start sites 
(Fig. 4B).

To test whether methylation changes had any impact 
on cancer genes, we examined which of the differen-
tially methylated CpGs in SETD2 cases were correlated 
with the expression of known cancer genes. Figure  4D 
and E show the tumour suppressor genes and onco-
genes, respectively, whose expression is correlated with 
CpG sites that are differentially methylated in SETD2 
cases. Many of these are frequently mutated cancer genes 
including TP53, FOXO1, CDK4,and PIK3CA [39–42].

A robust machine learning approach identifies a 3-CpG 
signature for the diagnosis of SETD2 mutated cancers
33,153 differentially methylated CpGs were identified 
upon comparing SETD2 mutated and SETD2 control 
renal cancers (BH-adjusted p-value < 0.05), with 10,549 
CpGs hypomethylated in SETD2 cases and 22,604 CpGs 

Table 2 Differentially methylated CpGs when comparing samples with lowest and highest quartile of SETD2 expression
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hypermethylated CpGs. No difference was found in 
tumour purity or age (Welch Two Sample T-test, p > 0.05) 
nor in gender, race or ethnicity between SETD2 mutants 
and SETD2 WT samples (Pearson’s Chi-squared test, 
p > 0.05, Supplementary Table  1). Due to sample size 
constraints, in this analysis, we did not exclude SETD2 
mutants with VHL deletions. Additionally, since VHL 
deletions are likely to be present alongside SETD2 dele-
tions in the patient population, we decided to include 
these samples to accurately represent the patient popula-
tion. Consistent with our predictions and observations in 
other cancers, CpGs that are hypomethylated in SETD2 
cases show strong enrichment in the gene bodies whereas 
hypermethylated CpGs do not.

To identify a generalisable CpG signature able to pre-
dict the SETD2 status of samples, we used a multiple 

random sampling and cross-validation approach to per-
form CpG selection and misclassification error calcula-
tion at each training set size (see Materials and Methods). 
This allowed us to obtain a better estimation of the true 
error and thus generalisability of the selected model 
(more details in Materials and Methods).

Figure  5A shows that increasing the training set size 
reduces the misclassification error considerably, with a 
training-set size of 98 samples having the lowest error. 
Our approach yielded different “best models” based 
on various parameters of interest such as the model 
with the lowest mean-squared error or lowest absolute 
error. It was noted that two CpG sites (cg14297023 and 
cg25415966) were selected in all three of the best models 
based on misclassification error, mean-squared error, or 
mean absolute error.

Fig. 2 Top 10% of the differentially methylated CpGs in several cancers such as (A) thyroid cancer and (B) sarcoma when comparing tumour samples 
with the highest and lowest quartile of SETD2 expression, clustered using the McQuitty clustering method and distance measure given by the Euclidean 
distance. The genomic distribution of hypomethylated CpGs in gene bodies in (C) thyroid cancer is significantly lower than expected whereas (D) in 
sarcoma, hypomethylated CpGs show a strong gene body enrichment; Illumina array shows the distribution of CpGs in the entire 450k methylation array; 
β-value represents level of methylation; 3’UTR: 3’ untranslated region, 5’UTR: 5’ untranslated region; TSS1500: 1500 bp upstream of transcription start site, 
TSS200: 200 bp upstream of transcription start site.
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Amongst the multiple iterations at a training set size 
of 98 samples, our best model was selected using the 
misclassification error and comprised only 3 CpG sites 
for prediction (Supplementary Table  3). These were 
cg14297023, cg17054691, and cg25415966, and could 
correctly identify renal cancer samples as SETD2 cases 
or WT with a misclassification error of only 0.11. As 
there are multiple models at each training set size, we 
also calculated the probability measure of the likelihood 
of a certain CpG site being included in the various other 
models developed at a particular training set-size. This is 
given by the value p which shows that cg14297023 and 
cg25415966 have high probabilities and are, hence, more 
frequently selected in various best models of SETD2 loss 
which suggests a stronger association with SETD2 loss 
than other CpG sites (Supplementary Table 3). Figure 5B 

shows the methylation distribution of SETD2 mutated 
and WT samples at each of the 3 CpG sites selected in 
the model. SETD2 mutated samples on average have 
lower methylation at all three sites compared to WT 
samples. Next, we computed the principal components of 
the data considering only the 3 CpG sites and reported 
the PC1 vs. PC2 in a scatterplot (Fig. 5C). The first princi-
pal component, corresponding to 82.8% of variance, per-
mits good separation of the two populations, i.e. SETD2 
mutated and WT, thus confirming the goodness of our 
model selection. Figure  5D shows a ROC curve of the 
best model with an area under the curve (ROC-AUC) 
of 0.94 which shows a very good prediction ability of the 
3-CpG signature on the TCGA full set. As tumour stag-
ing may affect the incidence of SETD2 mutations, we per-
formed a chi-squared test to test the difference in tumour 

Fig. 3 (A) A large overlap is seen in the differentially methylated CpGs in SETD2 cases and VHL mutants in renal cancer. (B) Comparing SETD2 cases to 
pan-negative (VHL, PBRM1, and BAP1 negative) WT samples removes the confounding effect and finds 1664 differentially methylated CpGs, clustered 
using complete-linkage clustering and distance measure given by euclidean distance. (C) Genomic distribution of differentially methylated CpG sites 
shows that hypomethylated CpGs are strongly enriched in the gene bodies whereas hypermethylated CpGs show a more wide-spread distribution. 
Illumina array shows the distribution in the entire 450k methylation array; 3’UTR: 3’ untranslated region, 5’UTR: 5’ untranslated region; TSS1500: 1500 bp 
upstream of transcription start site, TSS200: 200 bp upstream of transcription start site (D) Gene enrichment analysis of differentially methylated sites. A 
large number of significantly enriched processes are involved in developmental pathways. The gene ratio refers to the number of genes in that gene set 
annotated to the GO term divided by the total number of genes in the gene set. A higher gene ratio implies greater overrepresentation of genes to the 
particular GO term.
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staging between SETD2 control and SETD2 case samples, 
which showed no significant difference (p = 0.373) (Sup-
plementary Fig. 5).

We decided to investigate if the performance of our 
classifier could be improved by tuning the classification 

threshold of the binomial logistic regression model. We 
selected the threshold which maximized the Balanced 
Accuracy on the full training set, resulting in a cut-off of 
0.66. This further improved the model, giving a sensitivity 

Fig. 4 (A) shows the gene ontology results of genes whose expression and methylation are correlated. The gene ratio refers to the number of genes in 
that gene set annotated to the GO term divided by the total number of genes in the gene set. A higher gene ratio implies greater over-representation 
of genes to the particular GO term (B) Genes that were positively correlated with methylation were present more in transcription start sites or promoter 
regions whereas negatively correlated genes were more enriched in the gene bodies; 3’UTR: 3’ untranslated region, 5’UTR: 5’ untranslated region; TSS1500: 
1500 bp upstream of transcription start site, TSS200: 200 bp upstream of transcription start site (C) Disease ontology of expression-methylation correlated 
genes shows that many of the differentially methylated genes are associated with kidney neoplasm and neoplasm invasiveness. (D) and (E) shows that a 
large number of these methylation-associated genes are tumour suppressor genes and oncogenes respectively.
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of 0.94, specificity of 0.82, and a false negative rate of 0.06 
(Table 3).

We also tested to see if the 3 CpGs could provide infor-
mation on patient prognosis. We used the maximally 
selected rank statistic to determine the best cut-off for 
each probe (Fig. 6A-C). Figure 6(D-F) shows the Kaplan-
Meier curves for each CpG site. There is a statistically 
significant difference in prognosis at a β-value cut-off 
of 0.90, 0.94, and 0.64 for cg14297023, cg17054691, and 
cg25415966 respectively. Supplementary Table  4 shows 
the methylation-expression correlation analyses for CpGs 

that are nearby these 3 CpGs. Our analysis found 14 
CpGs hypomethylated in P4HB, 4 of which were associ-
ated with expression of the P4HB gene (Supplementary 
Table  4). Further, certain CpGs such as cg19936372 in 
P4HB are correlated to the expression of nearby genes as 
well as P4HB.

Validation of our 3-CpG signature in an independent 
cohort
To test the performance of our model in an independent 
dataset, we used Illumina 450K array methylation data 

Table 3 Model performance in TCGA and Japan cohort at a threshold of 0.66

 

Fig. 5 (A) Multiple random-sampling at different training set sizes shows that as the training-set size increases, the misclassification error greatly reduces. 
The interactive report shows the best model highlighted as the red circle at training set size of 98. (B) Heatmap displaying the methylation of the top 3 
CpGs (cg14297023, cg17054691, and cg25415966) selected as the best model. Columns clustered using complete-linkage clustering and distance mea-
sure given by the Euclidean distance. (C) PCA analysis using the best model shows a good separation between SETD2 cases and WT renal cancer samples. 
(D) ROC curve to display the true positive and false positive rates of the signature in classifying SETD2 controls and cases.
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from a cohort of renal cancer patients in Japan [32]. The 
3-CpG signature showed an accuracy of 87% in classify-
ing SETD2 control and alternative variant cases (Fig. 7A). 
Plotting an ROC curve showed that the 3 CpGs had an 
excellent performance in the Japanese cohort, with an 
AUC of 0.86 (Fig.  7B). The 3-CpG biomarker was able 
to correctly identify samples as SETD2 cases or WT 
with a balanced accuracy of 0.78, the sensitivity of 0.82, 
and specificity of 0.74 (Table  3). The false-negative rate 
and the Bayes’ conditional probability of a sample being 
mutated given a classification as unmutated (P(M|¬PM)) 
were 0.18 and 0.05, respectively (Table  3). Figure  7C 
shows a side-by-side comparison of the methylation dis-
tribution of SETD2 cases and SETD2 control samples in 
the TCGA data as well as the Japanese cohort for each 
of the CpG sites in our biomarker. The methylation dis-
tribution was similar for both cohorts at each probe, 
with very similar medians and interquartile ranges. 
SETD2 cases have reduced methylation at each of the 3 
CpG sites compared to SETD2 controls which is in line 
with our hypothesis of it being associated with loss of 
H3K36me3 at gene bodies.

Discussion
SETD2 and DNA methylation
In this study, we conducted a pan-cancer analysis to 
disentangle DNA methylation changes associated with 
SETD2 variants in cancer. We showed using tumour 
samples from the TCGA database that somatic SETD2 
variants, including single nucleotide variants and copy 
number variants are associated with widespread DNA 

methylation alterations across all cancer types tested. We 
also found that low SETD2 expression in SETD2 wild-
type samples is also associated with DNA methylation 
changes. Previous studies on SETD2 mutations and DNA 
methylation have highlighted the widespread promoter 
hypermethylation in SETD2 mutants, which is in line 
with our results [21, 43]. Our study showed that a char-
acteristic gene body hypomethylation phenotype is also 
present in both SETD2 mutated and low SETD2 express-
ing samples and is seen across multiple cancer types. 
Interestingly, these characteristic gene body hypometh-
ylation changes can happen alongside the hypermeth-
ylation phenotype, which suggests that the methylation 
changes in two different directions may be due to two 
different mechanisms. This is also the first study to show 
the association between SETD2-dependent methylation 
dysregulation and gene expression in cancer, as well as 
its link to the tumorigenic process (discussed in more 
detail below). Thus, our study highlights a previously 
undescribed role of SETD2 loss in tumorigenesis via 
DNA methylation dysregulation. This is also of particular 
clinical relevance as depletion of SETD2 and H3K36me3 
is associated with more aggressive tumours and worse 
prognosis [29–34].

In previous renal cancer studies, where SETD2 muta-
tions have been associated with DNA methylation 
changes, the effect of co-occuring mutations has not been 
accounted for [22, 37, 43, 44]. In renal cancer, SETD2 
mutations are frequently associated with VHL, PBRM1, 
and BAP1  mutations as a result of chromosome 3p21 
deletion [36]. All three mutations are also associated 

Fig. 6 Panels A-C show the methylation distribution of each of the three CpGs- cg14297023, cg17054691, and cg25415966, respectively- with the maxi-
mally selected rank statistic which gives the greatest separation used to select the optimal cut-off for survival. Panels D-F show the Kaplan-Meier survival 
curve for each of the 3 CpGs. Each probe shows a significant difference in patient prognosis at the optimal cut-offs selected.
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with DNA methylation changes which could potentially 
confound the association of SETD2 with methylation 
[36, 38]. Similarly, studies on the CpG Island methylator 
phenotype (CIMP+) have highlighted the association of 
SETD2 and DNA methylation in cancer, with gene body 
hypomethylation and promoter hypermethylation which 
is in line with our results [45–47]. While SETD2 muta-
tions can drive CIMP + phenotypes, not all CIMP + phe-
notypes occur due to SETD2 mutations and Yates et 
al. found that SETD2 was a driver of CIMP + in only 3 
cancer types [46]. Further, several mutations may drive 
CIMP + in the same cancer type. For example, in meso-
thelioma, KMT2B is also a driver of CIMP alongside 
SETD2. Therefore, in order to disentangle SETD2-specific 
changes, we conducted differential methylation analysis 
specifically comparing SETD2 WT and SETD2 mutated 
groups to remove the effect of confounders and reveal the 

SETD2-specific methylation changes. Our study shows 
that the gene body hypomethylation can occur alongside 
CIMP + hypermethylation phenotype and are also seen in 
cancer types where SETD2 is not a driver of CIMP + as 
well as those where it drives CIMP + phenotypes46.

Our results suggest that the DNA hypomethylation 
changes are likely due to a reduction of H3K6me3 upon 
SETD2 loss or depletion, resulting in a reduced recruit-
ment of DNMT3B through its PWWP domain and thus 
reduced methylation [18]. Both SETD2 mutations, as 
well as reduced SETD2 expression, are strongly associ-
ated with a reduction in H3K36me3 levels in cells [25, 
33, 34]. We found a strong enrichment of hypometh-
ylated CpGs in gene bodies, which is in line with this 
hypothesis as H3K36me3 is located primarily in gene 
body regions of transcribed genes [48]. This was further 
confirmed as the most hypomethylated CpGs in renal 

Fig. 7 Validation of the biomarker in a Japanese cohort (A) shows that the 3-CpG signature shows an accuracy of 87% in classifying SETD2 control and 
alternative variant cases. (B) shows the true positive and false positive rates of the signature in diagnosing SETD2 control and altered samples in the Japa-
nese cohort. (C) shows boxplots with the methylation distribution of each probe in both the Japanese and TCGA cohorts. Very similar distribution is seen 
in the SETD2 altered and WT samples in each cohort. All three probes show hypomethylation in SETD2 altered samples.

 



Page 12 of 17Javaid et al. BMC Cancer          (2023) 23:721 

cancer identified in our study mapped to genes that lost 
H3K36me3 in SETD2 knock-out renal carcinoma cell 
lines [25]. In terms of the strong hypermethylation phe-
notype occurring with SETD2 mutation, this may be due 
to a redistribution of H3K36me3 to regions where it is 
not canonically present. This is highlighted in Tiedemann 
et al’s study which shows a marked redistribution of 
H3K36me3 from gene bodies to intergenic regions upon 
SETD2 knock-out [43]. We also found that many of the 
top-most hypermethylated CpGs in renal cancer mapped 
to genes that showed a redistribution of H3K36me3 from 
gene bodies to promoters. This redistribution might also 
explain the CIMP hypermethylator phenotype associated 
with SETD2 mutations [45–47].

Role of DNA methylation in cancer pathogenesis and 
progression
Our methylation-expression correlation analysis shows 
that a large number of differentially methylated CpGs are 
associated with gene expression changes. It is interest-
ing to note that a large proportion of CpGs whose meth-
ylation is negatively correlated with gene expression are 
present in the gene bodies which is unexpected given 
that gene body methylation is thought to be positively 
correlated with gene expression [49]. However, a few 
other studies have also found this negative correlation 
between gene body methylation and expression although 
the mechanism for this remains poorly understood [50–
53]. Similarly, a fraction of genes showed a positive cor-
relation between promoter hypermethylation and gene 
expression, which while contrary to the dogmatic under-
standing, is supported by other studies which have also 
observed a positive correlation between promoter meth-
ylation and gene expression, both in normal cells as well 
as in cancer contexts [54, 55]. The mechanism behind 
this has not been studied in detail, however, Wan et al’s 
findings suggest that there is enrichment of specific tran-
scription factor motifs in positively correlated genes [55]. 
Other studies have also shown that some transcription 
factors preferentially bind to methylated DNA [56, 57]. 
This preferential recruitment of certain transcription fac-
tors to methylated promoters may be responsible for the 
increase in gene expression observed. Our gene ontol-
ogy analyses show that a significant proportion of the 
genes whose expression was correlated with differentially 
methylated CpGs were enriched in various developmen-
tal processes. Cancer is a disease of dedifferentiation and 
reversal into more stem-like states, and the expression of 
many developmental genes is dysregulated in the tumori-
genic process [58–60]. Our disease ontology analyses also 
showed that SETD2-dependent DNA methylation altera-
tions were associated with altered expression of genes 
involved in kidney neoplasm and neoplasm invasiveness. 
Further, a large proportion of these genes are oncogenes 

or tumour suppressor genes such as TP53, FOXO1, 
PIK3CA, and CDK4 [39–42]. Loss of SETD2 function is 
known to impact in kidney neoplasm formation through 
replication stress and impaired DNA repair [61, 62]. Our 
findings thus provide new insights into the functional 
impact of SETD2 loss in cancer and suggest a new role 
for SETD2 in tumorigenesis and cancer aggressiveness 
through DNA methylation dysregulation. Our choice of 
using a cut-off of 250,000 bp for the methylation-expres-
sion correlation analysis was in order to explore the long-
range effects of SETD2-dependent methylation changes 
while minimizing the false positives. Kim et al. found that 
over 50% of the gene expression variation is explained 
through long-range methylation and can surprisingly be 
even more important than cis-methylation due to the 
higher order contacts between DNA as a result of the 3D 
architecture of the genome [63, 64]. While there is a ben-
efit of using a more ‘targetted’ approach in reducing false 
positives, reducing the cut-off value comes with the risk 
of excluding potentially important CpGs that can provide 
new insights into the role of SETD2 in cancer and the 
methylation-gene regulation axis, which was an impor-
tant focus of our study.

DNA methylation biomarker associated with SETD2 
mutation
Finally, we asked if we could apply our multiple random 
sampling and cross-validation approach to develop a 
DNA-methylation signature for SETD2 cases, with the 
aim of developing a cheap clinical test for H3K36me3 
depletion in future studies. Aware of the challenges in 
designing a good biomarker, we used robust machine 
learning to ensure robustness of our biomarker model. To 
make the biomarker more generalizable and avoid over-
fitting, we used a repeated sampling approach with cross-
validation (see Material and Methods). Our biomarker 
not only demonstrated an excellent performance in both 
TCGA data and the external cohort, but the model also 
performed very similarly in both populations with very 
close AUC and misclassification errors. Thus, this meth-
odology allows for a better prediction of the true error 
of the model and its performance in the real world. This 
approach will enable us to select more generalizable and 
clinically-translatable biomarkers in the future.

All three of the genes mapped to the CpG loci in our 
signature have been previously shown to be associated 
with cancer. One of the probes in our 3-CpG signature, 
cg14297023, is located in the 3’ UTR of the EIF3D and 
regulates EIF3D expression [65]. Interestingly, EIF3D 
overexpression is a driver of sunitinib resistance in renal 
cancer and another study has shown that SETD2 muta-
tions are associated with sunitinib resistance [66, 67]. 
Cg17054691 is located in the P4HB gene, aberrant meth-
ylation and differential expression of which is implicated 
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in the aetiology of prostate cancer [68]. Its overexpres-
sion is also linked to poorer survival in renal cancer as 
well as tumour progression in gliomas [69, 70]. Our anal-
ysis found 14 CpGs hypomethylated in P4HB, 4 of which 
were associated with expression of the P4HB gene. This is 
in line with our results above which suggest that SETD2-
dependent methylation changes contribute to gene 
expression changes in cancer-associated genes, which 
could be a contributing factor in cancer etiology. While 
one CpG is unlikely to have an impact on gene expres-
sion, clusters of CpGs showing changes in the same 
direction more strongly correspond to gene expression 
changes [71]. Lastly, cg25415966 is located in CABLES2 
which shows differential methylation in cancer and was 
included in a DNA methylation-based prognostic bio-
marker in rectal cancer [72].

We have previously identified an evolutionarily con-
served synthetic lethality between loss of SETD2 and 
WEE1 inactivation, and that renal tumours with loss of 
SETD2 or H3K36me3 can be specifically targeted with 
WEE1 inhibition, an observation that has been taken 
into clinical trials [24, 73, 74]. In current WEE1 trials, 
gene mutations are used to classify patients into WEE1-
inhibition responders and non-responders [75]. However, 
in the case of SETD2, as the frequency of H3K36me3 is 
far greater than SETD2 mutations a large proportion of 
patients that would benefit from WEE1 inhibition in an 
H3K36me3-loss background would be excluded in these 
trials. As H3K36me3 loss is linked to more aggressive 
tumours and worse prognosis, it is important to include 
such patients that would benefit from WEE1 inhibitor 
treatment [26, 31, 35, 76]. Thus, in the future, we would 
like to extend this study and validate the use of our bio-
marker in H3K36me3 depleted tumours with the aim of 
developing a DNA methylation blood-based biomarker. 
This would thus help select more patients that will ben-
efit from WEE1 inhibitor or related treatments and 
would thus benefit far more patients. Our study serves as 
proof-of-principle that only a few CpGs can be used to 
develop a biomarker for SETD2 loss and that a multiple 
resampling and cross-validation approach in the devel-
opment of biomarkers provides a better estimate of the 
performance of biomarkers in independent datasets. We 
anticipate that increased use of this approach in future 
biomarker studies will lead to the selection of more gen-
eralizable models. We thus hope this will allow for the 
development of more clinically translatable biomarkers.

Materials and methods
Methylation data
Datasets for the pan-cancer methylation analysis were 
obtained from the cancer genome atlas (TCGA) [77]. 
Barcodes of samples that had SETD2 mutation sta-
tus and methylation data available were accessed using 

cBioPortal [78, 79]. Level 3 methylation data from Infin-
ium HumanMethylation450 BeadChip was downloaded 
from the TCGA harmonized datasets, using TCGA-bio-
links in R/Bioconductor [80–83]. The methylation at each 
probe is given by β-values for each CpG, calculated as M/
(M + U), where M is the signal intensity at the methylated 
bead and U is the signal intensity at the unmethylated 
bead. Genomic coordinates of the CpGs were mapped 
according to the GRCh38 build of the reference genome. 
For cancer types that had lower than 3% SETD2 mutation 
frequency or fewer than 15 SETD2 case samples in the 
TCGA study, SETD2 expression in the form of mRNA 
RSEM values were downloaded from cBioPortal. Samples 
marked as mutated include all alterations including mis-
sense mutations, splice mutations, truncating mutations, 
as well as copy number variations such as deep deletions. 
Samples marked as WT have no alterations. A large pro-
portion of copy number variations in renal cancer were 
homozygous deletions. WT are samples with no altera-
tions. Samples in the top and bottom quartile of SETD2 
expression based on mRNA RSEM values were analysed 
for the effect of SETD2 expression on DNA methylation.

Differential methylation analysis
For the DNA methylation analysis, probes with NA values 
were removed. Samples with SETD2 amplifications were 
excluded to remove the confounding effect of H3K36me3 
overexpression. Differential methylation analysis between 
SETD2 cases and SETD2 control samples was performed 
using the champ. DMP function in ChAMP Bioconduc-
tor on R Studio [84]. The limma method was used to 
identify differentially methylated CpGs [85, 86]. CpGs 
with an adjusted p-value cut-off < 0.05 were considered 
significant. The Benjamini-Hochberg method was used 
to correct for multiple testing [87]. Genomic distribu-
tion analysis of differentially methylated CpGs was per-
formed using the Shiny Library within ChAMP for gene 
body enrichment of differentially methylated CpGs [88]. 
For TCGA-KIRC, the SETD2 mutations details for sam-
ples are added in supplementary Tables  5 to enhance 
replication.

Gene ontology analyses
Differentially methylated CpGs were mapped onto cor-
responding genes using ChAMP. Duplicate genes were 
removed and the Gene Ontology over-representation 
test performed using the enrichGO function in cluster-
Profiler (version 3.14.3) with an adjusted p-value cutoff 
of < 0.05 and multiple testing correction applied using 
the Benjamini-Hochberg method [89, 90]. Gene ontol-
ogy analyses were performed using three ontologies – 
molecular function (MF), cellular component (CC), and 
biological process (BP).
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Methylation-expression correlation analysis
To determine which differentially methylated CpGs 
were correlated with expression of neighbouring genes, 
a methylation-expression correlation analysis was per-
formed using the MEAL, minfi, and missMethyl pack-
ages [91–93]. The BiomaRt package was used to access 
genomic coordinates and gene annotations from the 
ensemble database [94–96]. For each CpG probe, a flank-
ing region of 250,000 base pairs was selected and correla-
tion between a CpG and any genes in its flanking region 
determined using the correlationMethExprs function 
in the MEAL package [93]. Pairs with a BH-adjusted 
p-value < 0.05 were selected as significantly correlated.

Disease ontology and semantic analyses
DOSE (version 3.12.0) was used to perform disease ontol-
ogy and semantic analyses of methylation-expression 
correlated genes in renal cancer to discover disease asso-
ciations of genes that showed a correlation with differ-
entially methylated CpGs [97]. A hypergeometric model 
is implemented within DOSE. The minimum gene size 
for testing was set to 10 and the maximum to 500 and a 
Benjamini-Hochberg adjusted p-value cut-off of 0.05 was 
selected to determine significant disease associations.

Visualization of enrichment analyses
The enrichment results for the gene ontology and dis-
ease ontology analyses generated using clusterProfiler 
and DOSE were visualized using the enrichplot package 
(version 1.6.1) [98]. The barplots and dotplots were cre-
ated using the barplot and dotplot functions respectively. 
The gene concept networks in Fig. 4B were created using 
cnetplot function. The oncogene and tumour suppressor 
heatmap in Fig. 4D and E was created using the heatplot 
function.

Development of methylation signature for SETD2 loss in 
renal cancer
To develop the DNA methylation biomarker for renal 
cancer, Level 3 methylation data from the Infinium 
HumanMethylation450 BeadChip was downloaded for 
the TCGA-KIRC harmonized dataset [22]. In total, 309 
samples had DNA methylation data available, of which 50 
were SETD2 cases. Probes with NA values in more than 
50% of the samples were removed and the top quartile of 
most variable probes were selected as a pre-processing 
step.

To study the relationship between methylation data 
and SETD2 status we used a robust approach based on 
features screening and selection followed by generalised 
linear model selection with L1/L2 penalisation, with 
hyperparameters optimised in 10-fold cross-validation. 
The featurescreening step was used to pre-select the fea-
tures most correlated with the outcome and performed 

through an empirical Bayes moderated t-statistics test. 
We considered three hyperparameters: the number of 
features to keep in the screening, the alpha and lambda 
parameters in penalised models. To obtain a better esti-
mation of the true error of the methodology, a multiple 
random-sampling approach spanning different train-
ing-set sizes was adopted. For each size, data was ran-
domly split into training and test sets: the training data 
was used to fit the model, while the test set was used 
to assess its performance. The hyperparameters of the 
models were selected from a grid of provided values via 
10-fold cross-validation in order to obtain the minimum 
mean cross-validated error. We used the binomial devi-
ance as a measure of accuracy. After the hyperparame-
ters were fixed, the final model was fitted on the entire 
training set and tested on the left-out data. The above 
steps were repeated for multiple random samples of the 
data, in order to estimate the mean error of our proce-
dure and the related 95% confidence interval (CI). The 
best model was selected as the model with the minimum 
test error across all the models fitted using the training-
set size showing the lowest upper bound of the 95% CI. 
ROC curves and PCA plots were plotted. As our bino-
mial logistic regression model returns a probability, the 
conversion to a class label is obtained via the definition 
of a classification threshold (which has a default value 
of 0.5) so that all values equal to or greater than the cut-
off are mapped to one class, and all the remaining values 
are mapped to the other class. Best model was tuned by 
selecting the best cut-off as threshold.

To calculate the probability of a sample being true 
SETD2 mutant when predicted as mutant (true positive, 
P (M |PM)) or WT (false negative, or missed SETD2 
cases, P (M | ¬PM)), we used the Bayes theorem.

Probability of SETD2 mutation when predicted to be 
SETD2 mutant was calculated as:
P (M |PM) =P (PM |M)·P (M)

P (PM) , where M  means SETD2 
mutant, PM  and ¬PM  are predicted SETD2 case and 
WT respectively, and P (M)

is the prior probability, i.e. probability of having SETD2 
case among all cancer cases (estimated from train-
ing dataset from TCGA), P (PM |M) is a likelihood of 
classifier predicting SETD2 case if the sample is actu-
ally SETD2 case. Thus, P (PM |M) is the true positive 
rate of classification. Finally, P (PM) = P (PM |M)

·P (M) + P (PM | ¬M) ·P (¬M)  is a marginal prob-
ability, where P (¬M)  is a ratio of SETD2 among all 
cancer cases (calculated simply as P (¬M) = 1− P (M)
); P (PM | ¬M)  is a probability of classifier predicting 
SETD2 case status to a sample actually of SETD2 control 
(false positive rate).

Probability of actual SETD2 mutant sample if it is pre-
dicted to be SETD2 WT is:
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P (M | ¬PM) =P (¬PM |M)·P (M)
P (¬PM) where P (¬PM |M)  

is a likelihood of classifier predicting SETD2 WT if 
the sample is actually a SETD2 mutant. P (¬PM |M)  
is simply false negative rate of classification. Finally, 
P (¬PM) = P (¬PM |M) · P (M) + P (¬PM |¬M) ·
P (¬M)  is a marginal probability, where P (¬PM |¬M) is 
a probability of classifier predicting SETD2 control status 
to a sample actually of SETD2 control (simply true nega-
tive rate).

For independent validation of our model, methylation 
data from the Infinium HumanMethylation450 BeadChip 
and whole genome sequencing data were accessed for a 
cohort of clear cell renal cell carcinoma patients in Japan 
[32]. The best model was tested on the Japanese data-
set. Dataset characteristics for the Japanese cohort have 
been detailed previously and the data can be accessed on 
the European Genome-phenome Archive (EGA) under 
EGAS00001000509.

Survival analysis
Survival data for the TCGA-KIRC renal cancer dataset 
was downloaded using RTCGA.clinical package (version 
20151101.16.0) [99]. The maximally selected LogRank 
statistic was calculated for each probe using the maxstat 
package in order to find the optimal β-value cut-off that 
gave a statistically significant association with prognosis 
[100, 101]. Survival analyses were then performed using 
this cut-off by the Kaplan-Meier method using the pack-
age survival (version 3.2–11) [102, 103]. Kaplan-Meier 
curves were generated using survminer (version 0.4.9) 
[99, 104].

Plots
Venn diagrams were generated using the VennDiagram 
package, heatmaps to visualize differentially methylated 
CpGs were generated using pheatmap package, and box-
plots were generated using ggplot2 [105–107].
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