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We propose a novel application of reinforcement learning (RL) with invalid action masking and a novel
training methodology for routing and wavelength assignment (RWA) in fixed-grid optical networks and
demonstrate the generalizability of the learned policy to a realistic traffic matrix unseen during training.
Through the introduction of invalid action masking and a new training method, the applicability of RL to
RWA in fixed-grid networks is extended from considering connection requests between nodes to servicing
demands of a given bit rate, such that light paths can be used to service multiple demands subject to
capacity constraints. We outline the additional challenges involved for this RWA problem, for which we
found that standard RL had low performance compared to baseline heuristics, in comparison with the
connection requests RWA problem considered in literature. Thus, we propose invalid action masking and
a novel training method to improve the efficacy of the RL agent. With invalid action masking, domain
knowledge is embedded in the RL model to constrain the action space of the RL agent to lightpaths that
can support the current request, reducing the size of the action space and thus increasing the efficacy of the
agent. In the proposed training method, the RL model is trained on a simplified version of the problem and
evaluated on the target RWA problem, increasing the efficacy of the agent compared to training directly on
the target problem. RL with invalid action masking and this training method outperforms standard RL
and three state-of-the-art heuristics, namely k−shortest path first fit, first fit k−shortest path and k−shortest
path most utilized, consistently across uniform and non-uniform traffic in terms of the number of accepted
transmission requests for two real-world core topologies, such as NSFNET and COST–239. The RWA run
time of the proposed RL model is comparable to that of these heuristic approaches, demonstrating the
potential for real world applicability. Moreover, we show that the RL agent trained on uniform traffic is able
to generalize well to a realistic non-uniform traffic distribution not seen during training, outperforming
the heuristics for this traffic. Visualization of the learned RWA policy reveals an RWA strategy that differs
significantly from the heuristic baselines in terms of the distribution of services across channels and the
distribution across links. © 2022 Optica Publishing Group
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1. INTRODUCTION

The routing and wavelength assignment (RWA) problem in opti-
cal networks consists of selecting an optimal path and channel
combination to transmit data between two requested nodes.
RWA is proven to be a NP−hard problem [1], meaning no ex-
act approach exists that guarantees an optimal polynomial-time
solution. Thus, there is considerable interest in new methods

that improve on the efficacy of existing heuristic solutions. In
the static RWA problem, it is assumed that all the requests are
known before we start servicing them. For this case, it is possible
to use global techniques such as integer linear programming to
obtain an optimal solution. However, in many cases network
operators do not have knowledge of all requests ahead of time.
In this work we consider the sequential RWA problem, in which
the requests arrive sequentially with an unknown distribution.
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In this case, heuristics, such as k−shortest path first-fit channel
(kSP-FF) are typically used to service the requests, as no global
solutions are available. As RWA is a sequential decision-making
problem it can be cast as a Markov decision process (MDP), and
thus solved using reinforcement learning (RL), i.e., a machine
learning (ML) technique in which a model, known as the agent,
learns a solution by interacting with its environment via a feed-
back loop. RL has been shown to perform remarkably well for a
vast range of control problems, from playing Atari games to a su-
perhuman standard [2] to highly complex control tasks, such as
controlling the plasma in a simulated nuclear fusion reactor [3].
One of the main benefits of RL is flexibility – in principle the
same well-designed RL agent can learn a solution for a number
of similar problems. In this sense, we can refer to RL as a general
purpose method. Frameworks to solve classes of combinatorial
optimization [4] and multi-objective optimization problems [5]
based on RL have been proposed. In the case of RWA, this could
mean we can train the same RL agent on different topologies and
traffic matrices and obtain a good solution. In contrast, hand-
tuned heuristics are problem-specific and must be designed for
the target problem, with limited flexibility to changing condi-
tions. Additionally, as RL agents learn through experience, they
can discover solutions that are relatively free from human bias.
However, problem-specific heuristics are designed based on the
assumptions of the designer, meaning that their performance
can suffer if these assumptions are limited.

Multiple previous studies have explored the efficacy of RL
for solving RWA [6, 7] and related problems, such as routing as-
signment in fixed-grid networks [8, 9], routing, modulation and
spectrum assignment (RMSA) in elastic optical networks [10–12]
and IP/optical cross-layer routing [13]. The proposed models
have a range of different design choices, with variations on how
the network state is represented, the action space of the RL agent,
the reward that is given to the agent and the RL algorithm used
for training. However, for the fixed-grid case, these previous
works have considered a relatively simple problem in which
the RL agent learns how to service a series of connection re-
quests [7, 14]. Thus, the agent learns how to establish lightpaths
between requested node pairs, and each channel can only sup-
port a single connection request. Similarly, for flex-grid elastic
optical networks, the spectrum slots considered can only sup-
port a single request at a time [10]. In this work, we consider
fixed-grid RWA in terms of non-expiring demands of a given
bit rate, such that a lightpath can be used to service multiple
requests between the same two nodes, as long as it has sufficient
remaining capacity. Our choice to model this system is moti-
vated by systems that are currently deployed today. Thus, the
agent has to learn not only how to establish lightpaths, but also
how to reuse them. As a result of this, the network is able to
support a far greater number of requests in our work compared
to in relevant works from the literature. This means that the
episode sizes, meaning the number of RWA decisions that must
be made, considered in this work are much longer than those
previously considered, by approximately a factor of 10. This is
because it is possible to service many more requests, chosen to
have a typical bit rate of 100 Gbps, before blocking occurs in our
more realistic implementation. In general, longer episode sizes
make RL problems more difficult as it becomes harder for the
agent to identify which decisions were the most important in de-
termining the final state. This is known as the credit assignment
problem [15, 16]. Additionally, in our implementation lightpath
reuse is possible, which has not been considered in the literature.
Thus, the agent is required to learn not only how to optimally

establish new lightpaths but also how to reuse existing ones in
an optimal way. Thus, we present a novel application of RL
to RWA problems with fixed bit rate requests, which is a more
difficult problem for the reasons outlined above.

In this work, we present a novel action space for RWA in
optical networks, in which invalid action masking is utilized.
We demonstrate that masking invalid actions increases the per-
formance of the agent as compared to without masking. Addi-
tionally, we consider a novel training mode for RWA in optical
networks, in which the agent is trained on a simplified version
of the target RWA problem with shorter episodes. We found
that the policy learned for this problem generalizes to the target
problem, achieving performance better than baseline heuristics
commonly considered in the RL-driven RWA literature and in-
creasing the performance relative to training directly on the
target problem. Furthermore, we demonstrate that the RL agent
trained on uniform traffic outperforms the heuristics with statis-
tical significance of 99.5% when performing RWA on an unseen
non-uniform traffic distribution, while heuristics fail to achieve
consistent results across different traffic matrices. This demon-
strates that the proposed RL solution has an ability to generalize
to traffic distributions unseen during training. Moreover, the
proposed RL approach shows applicability to real-world sys-
tems in terms of its RWA run-time, which is of the same order of
the heuristic approaches considered.

We summarize our novel contributions here.

• We present a novel application of RL to the full RWA prob-
lem of servicing demands of a given bit rate over lightpaths
with a given maximum capacity in fixed-grid networks.
Thus, lightpaths can be used to service multiple demands.

• We demonstrate a novel application of RL with invalid
action masking to RWA in optical networks.

• We show a novel application of a reduced complexity train-
ing method for RL-driven RWA in optical networks, reduc-
ing the difficulty of credit assignment during the training
stage. This allows the agent to learn a policy that generalizes
to a realistic target case with a higher efficacy as compared
to training directly on that case.

• We perform interpretation of the learned RWA policy via
visualization of the distribution of services as the episode
progresses and comparison with the baseline heuristics. To
the best of our knowledge, this is the first time such an
interpretation is presented.

The organization of the remainder of the paper is as follows.
Section 2 presents the state-of-the-art of RWA in optical networks
and highlights the limitations in existing approaches. Section 3
describes the optical core network physical layer model used,
followed by a summary of key RL theory and our proposed RL
model in Section 4. The simulation set up is outlined in Section 5.
We present the results of the RWA simulations for uniform traffic
for the NSFNET and COST-239 topologies in Section 6, followed
by results showcasing the generalization of the trained agent to
a realistic traffic matrix unseen during training in Section 7. An
interpretability study of the learned RWA policies is presented
in Section 8, followed by concluding remarks in Section 9.



Research Article Journal of Optical Communications and Networking 3

2. RELATED WORK

A. Routing and Wavelength Assignment in Optical Networks

RWA algorithms in optical networks select both the path taken
through the network and the wavelength channel that is used
for transmission for a given request to transmit data between
two nodes. The path consists of a series of links that connect a
given pair of nodes. Often, this choice is formulated as choosing
between the k−shortest paths that connect the requested nodes,
rather than all possible routes as these may be numerous. In this
work, for instance, we consider the 5−shortest paths between
each node pair. RWA also involves selecting the wavelength
that is used to transmit the data along the chosen path. Once
a path and a wavelength is chosen, a lightpath is established
on that path along the chosen wavelength. In fixed-grid wave-
length division multiplexing (WDM) networks, there is always
a fixed number of channels to choose from. As we are consid-
ering wavelength-routed WDM optical networks, the principle
of wavelength continuity must be obeyed. RWA is proven to
be a NP−hard problem [1], meaning no exact approach exists
that guarantees an optimal solution in polynomial time. In the
literature several problem formulations have been proposed to
solve RWA in optical networks [17, 18].

Conventionally, RWA is performed using polynomial time
algorithms based on standard heuristics, such as k−shortest path
first-fit wavelength (kSP-FF) [19]. In the literature the potential
of reinforcement learning (RL) for routing assignment problems
in optical networks has been demonstrated [8, 10–12, 20, 21].
This has been driven by a recent increase in the performance of
reinforcement learning approaches [22]. A range of RL models
have been proposed, aiming to find an solution that is optimal
with respect to a range of performance metrics, such as network
throughput [10], delay [8, 20], survivability [11], jitter and traffic
volume [21]. Some approaches have considered the problem
of routing, modulation and spectrum assignment (RMSA) in
flex-grid elastic networks, where the agent must select the path,
modulation format and spectrum that is used to service a given
request [10–12]. The spectrum in such networks is composed
of combinations of spectrum slots and the agent must learn to
select the spectrum slots in an optimal way. On the other hand,
other studies have considered fixed-grid WDM networks, in
which wavelength channels with a fixed spacing are chosen by
the agent [6, 7].

In these previous works, the RWA problem in fixed-grid
WDM networks has been modeled in terms of connection re-
quests, rather than servicing demands of a given bit rate. Thus,
one lightpath can support only a single request, as the requests
are simply to connect node pairs. In deployed networks, how-
ever, demands can be represented as a request to transmit data
at a given bit rate between two nodes, rather than simply to
connect them. We model this situation here, as it is a more com-
plete representation of the RWA problem. This substantially
increases the number of demands that must be serviced, as a
lightpath with a given capacity can service multiple demands,
thus increasing the difficulty of the allocation problem. As a re-
sult, we observed that additional RL techniques, namely invalid
action masking and a simplified training phase were required
to achieve results better than problem specific heuristics for this
RWA formulation.

B. Domain Knowledge-Informed Machine Learning Ap-
proaches in Optical Networks

Invalid action masking constitutes a form of domain knowledge-
informed ML, as we are utilizing what we already know about
the system in order to reduce the size of the search space of the
RL algorithm. A range of domain knowledge-informed ML ap-
proaches have been proposed in the optical networks literature,
such as physics-informed neural networks (NNs) for nonlin-
earity estimation [23] and solving the nonlinear Schrödinger
equation [24], and physics-informed Gaussian processes for re-
gression problems in optical networks [25]. Domain knowledge
has also been used to inform the design of ML approaches, by
using the structure of the nonlinear Schrödinger equation to
design NN architectures for learned digital backpropagation,
e.g., [26]. A domain knowledge-informed RL approach to rout-
ing in IP/optical cross-layer networks has also been presented,
in which an RL agent was enhanced by an experience-driven
mathematical model of the system [13]. In these methods, do-
main knowledge in the form of the equations governing the
physics of the optical fiber communications channel was embed-
ded within ML approaches to improve their data efficiency and
computational complexity. Thus, by using invalid action mask-
ing we employ a similar technique by embedding our domain
knowledge of which lightpaths are able to support the current
request into the action space of the RL agent.

3. NETWORK PHYSICAL LAYER MODEL

We make the simplifying assumption of transmission at the Shan-
non rate and assign the point-to-point throughput between a
given source and destination node per lightpath as the theoreti-
cal upper-bound taken at the optimum launch power. The phys-
ical layer is modeled as a regular incoherent nonlinear interfer-
ence Gaussian noise (GN) model [27] to assign the point-to-point
throughput between a given source and destination node per
lightpath. We also make the assumption that transmitted optical
pulses have a rectangular spectrum, with channel bandwidth
equal to the symbol rate. This is an idealized case, correspond-
ing to the maximum spectral efficiency for fully-loaded links.
In addition, we assume that the spectrum of nonlinear inter-
ference distortions is distributed across the modulated signal
bandwidth as white Gaussian noise. We thus neglect the influ-
ence of colored noise due to either the higher-order dispersion
or the inter-channel inelastic light scattering. This physical layer
assumption remain sufficiently reasonable as long as the entire
modulated bandwidth does not exceed the (C + L)−band [28],
as in this work. Hence, the available path data rate estimated
from the Shannon capacity is given by

Cpath = 2RS · log2

 1 +
1

∑
i

NSRi

 , (1)

where RS is the symbol rate and NSRi stands for the white noise-
to-signal ratio (NSR) defined at the optimal launch power on
ith−link. At the Nyquist rate, this is given by the following
closed-form expression 1

NSRi = Ni
3

√√√√2σ4
ASEαγ2L2

eff
π |β2| R2

S
ln
(

π2 |β2|
α

· B2
)

, (2)

1For the parameters given in Table 1, the NSR scales as: NSRi ≈ Ni/405.
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Table 1. Physical layer parameters

Parameter Value Units

Notional carrier wavelength (λ0) 1550 nm

Symbol rate (RS) 100 GBd

WDM channel spacing 100 GHz

Total modulated bandwidth (B) 10 THz

Loss coefficient (α) 0.2 dB/km

fiber GVD coefficient (β2) – 21.7 ps2/km

Nonlinear coefficient (γ) 1.2 /W/km

Lumped amplifier spacing (Ls) 100 km

Lumped amplifier noise figure (NF) 4.5 dB

where Ni denotes the number of fiber spans on the ith−link, σ2
ASE

is the amplified spontaneous emission (ASE) noise power, α is
the fiber loss coefficient, β2 is the fiber group-velocity dispersion
(GVD) coefficient, γ is the fiber nonlinear coefficient, Leff is the
fiber effective length, B is the total modulated bandwidth, and
ln(·) denotes the natural logarithm. The overall variance of ASE
noise arising from the lumped optical amplifiers at the end of
each fiber span in a link is given by

σ2
ASE =

(
eαLs − 1

)
· 10

NF
10 · hc

λ0
· RS , (3)

where Ls is the fiber span length, NF stands for the lumped
amplifier noise figure measured in [dB], λ0 is the notional carrier
wavelength, c is the speed of light in vacuum, and h is the Planck
constant. The physical layer modeling parameters are shown in
Table 1.

This physical layer model is used to pre-calculate the maxi-
mum capacity of each lightpath in the network, Cpath. We then
assume a demand with a given bit rate D, such that the remain-
ing data rate for each lightpath Rrem after servicing a demand is
given by

Rrem ≜ Cpath − D. (4)

Thus, each lightpath can support multiple requests, if D is
smaller than Cpath. It should be emphasized that Cpath is initial-
ized assuming fully-loaded links, such that the Shannon capacity
is never overestimated. Additionally, we note that this phys-
ical layer model, chosen for simplicity, could be modified to
more closely resemble a given deployed system without loss of
generality for the RWA method presented in this work.

4. REINFORCEMENT LEARNING RWA SOLUTION

A. Reinforcement learning theory
In RL, problems are represented as a finite MDP [16], consisting
of an agent interacting with its environment at a series of time
steps 1, 2, . . . , t − 1, t, t + 1, . . . . We can think of the agent as a
controller that learns through trial and error to perform a given
task. This learning happens interactively through interaction
with the environment, which in the context of RWA is a simula-
tion of the optical network. The agent can choose from a set of
available actions given its current observation of the state of the

RWA Agent

Optical Network
Environement

Rt+1

action
At

St+1

reward

Rt

St

state

b

Fig. 1. Diagram of the MDP that defines the interactions be-
tween the RWA agent and the optical network.

environment, defined as the observation space, and it receives a
numerical reward for each action taken, describing how good
the action was. In the case of RWA, an optimal action is one that
maximizes the total number of services that can be supported by
the network. Through many interactions with the environment,
the agent learns a function known as the policy that describes
the probability of each action being optimal given the current
state. In the strict MDP formulation of RL used in this work, only
the current state is inputted into this function. The user must
design the environment, the observation space for the agent and
the reward function. More quantitatively, the agent’s goal is
to learn an optimal policy Π∗, a functional mapping from the
observed current state St ∈ S of the environment to the optimal
action A∗ (Π∗ : S → A∗). A numerical reward Rt+1 ∈ R ⊂ R

is provided for each action At ∈ A. Fig. 1 depicts the MDP
for an RL agent solving RWA in an optical network. The agent
aims to maximize the cumulative future reward Gt for timestep
t, defined as follows

Gt =
T−t−1

∑
τ=0

κτ Rt+τ+1 , (5)

where T denotes the total number of timesteps and κ ∈ [0, 1)
denotes the discount factor [16].

There are a range of different algorithms for finding an op-
timal policy, meaning a policy that maximizes Eq. (5). In this
work, we utilize the proximal policy optimization (PPO) algo-
rithm [29], in which the policy of the RL agent is represented
by a NN such that it is possible to exploit the NNs ability to
generalize to unseen states [7]. PPO is a state-of-the-art RL algo-
rithm that has been observed to perform very well for a range of
problems, including RWA [7]. We denote this NN parameteri-
zation of the policy by Πθ . PPO is a policy gradient algorithm,
meaning that the gradient of the expected cumulative reward of
the policy is calculated and gradient ascent is used to update the
NN parameters θ such that the expected cumulative reward is
maximized. Said another way, PPO trains a NN representation
of the policy Πθ with the goal of finding the optimal policy Π∗

defined above. PPO is also an on-policy algorithm. This means
that the agent follows the current best estimate for the optimal
policy when gathering samples. For a detailed description of
PPO, we refer the reader to Ref. [29] and Ref. [7].

B. Invalid action masking
As discussed above, in PPO the policy is represented by a NN.
This NN learns a mapping from the observation space defined
above to the probability of each of the actions in the action space
being the optimal choice, in terms of maximizing the cumulative
future reward. Thus, these probabilities correspond to the out-
put nodes of the NN (and the observation space corresponds to
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the input nodes). In standard RL, the action corresponding to the
output node with the highest probability is selected, as this is the
action that is most likely to lead to maximization of the cumula-
tive reward according to the current policy. In some problems,
not all of the actions in the action space will be valid choices for
every state of the environment and it is possible to know from
the current state of the environment which actions are invalid.
In the RWA problem for instance, not all of the lightpaths con-
necting the requested source and destination nodes will be able
to support the request, either because they are blocked or they
do not have sufficient capacity. Invalid action masking works
by checking which actions are invalid and removing invalid
actions from the action space. This is implemented by setting the
output probabilities of the NN nodes for invalid actions to zero,
then renormalizing the remaining probabilities and selecting the
highest-probability valid action. In standard RL, the agent must
learn through the reward signal how to avoid choosing invalid
actions, which may be challenging. Thus, RL with invalid action
masking is more efficient than standard RL as the agent does
not have to learn to avoid invalid actions in this way.

C. Difficulties associated with long episodes
In general, the difficulty of using RL to solve a given problem
increases as the size of the training episodes increases. This can
be due to a number of factors, however in this problem there are
two key reasons why this is the case. First, for longer episodes
the agent has to make more decisions and it therefore becomes
increasingly more difficult to quantify the importance of each
decision in terms of reaching the final state of the episode, known
as the credit assignment problem [15, 16]. Second, for longer
episode sizes the number of full training episodes is smaller for
a given fixed number of training timesteps. Thus, with longer
episodes the agent experiences fewer full episodes for the same
total training budget. As a result of these issues, we observed
that standard RL was unable to learn a policy that outperformed
baseline heuristics for the RWA problem with longer episodes
compared to in the literature, i.e., with requests of a given fixed
bit rate rather than connection requests.

D. Reinforcement learning agent design
In this work, the agent learns how to choose a route and a
wavelength for a given service request in a series of requests,
given the requested source and destination and the state of the
network as input on each timestep. The key components of our
RL model are as follows.

Environment The environment consists of a simulated fixed
grid optical network, composed of nodes connected by bidi-
rectional links. These links have a given maximum capacity,
estimated using the physical layer model outlined in Section 3.
Requests in the environment consist of 100 Gbps demands. If a
demand is serviced on a given lightpath, the remaining capacity
is calculated according to Eq. (4). The requests are generated
by selecting two nodes randomly without replacement, where
the probability of selecting each node is given by a traffic model.
The salient features of the state of environment are the locations
of allocated services on the network, meaning the link-channel
combinations that they occupy, and the remaining capacity of
each lightpath.

Observation space We consider a simple representation at the
link-level, where links are equivalent to edges on a graph. Specif-
ically, the observation space consists of the number of services

on each link, as well as the source and destination nodes of the
current request. This allows the agent to see the total link load
across all channels on a given link. Using a link-level observa-
tion space as opposed to a path-level representation [7, 8, 10]
allows the agent to see a whole-topology view of the network,
at the cost of requiring the RL agent to learn the mapping from
the link-level observation to a path-level action.

Episode An episode consists of a series of timesteps. In each
training episode we begin with an empty network and sequen-
tially receive non-expiring requests at a rate of one request per
timestep, which the agent aims to service. This assumption of
non-expiring requests is justified by the fact that requests are
established for relatively long periods of time in currently de-
ployed networks. Episodes terminate after a pre-determined
number of timesteps (equals to the number received requests), af-
ter which the network state is reset to the initial empty state. The
motivation for training the agent to perform RWA starting from
an empty network state is as follows. Performing RWA from
an initial empty state is the most challenging problem for the
agent to solve, and thus it is expected that the proposed scheme
could be applied to RWA in a brownfield scenario, meaning
with a non-empty initial state. This is because starting from the
empty state corresponds to the maximum episode length, which
is the most challenging due to the credit assignment problem,
as discussed above. For brownfield RWA, the episode size is
shorter, and thus the difficulty of credit assignment is reduced.
Moreover, it is noted that in RL the policy maps states to actions
and that as the problem is formulated as an MDP, only the cur-
rent state is required to make an optimal decision. Therefore, the
optimal policy learned for RWA from the empty initial state is
still optimal for brownfield RWA. Applying the presented RWA
framework to brownfield RWA is part of the planned future
work.

Action space with invalid action masking The action space con-
sists choosing one of the k × Nch unique lightpaths connecting
the requested source and destination, where Nch denotes the
number of channels. We utilize domain knowledge to reduce
the size of the action space using invalid action masking [30],
which facilitates learning for problems in which the number of
valid actions is not constant across all episodes. As more services
begin to occupy the network, not all of the lightpaths connecting
the desired source and destination nodes will be available, and
therefore these lightpaths can be masked out such that the agent
does not consider them. This corresponds to imparting some
domain knowledge into the RL learning process, allowing the
agent to focus on learning a successful allocation strategy given
the lightpaths that will not result in immediate blocking.

As we consider non-expiring requests, the action space of
the agent with invalid action masking becomes smaller as more
services are provisioned in the network, as more of the light-
paths become blocked. We observed a significant increase in
performance using invalid action masking compared to stan-
dard tabula rasa learning, in which the agent must learn through
experience to not choose lightpaths that are already blocked.

Reward We used the following reward function, motivated by
the shaped reward presented by Cicco et al. [(Eq. 21) 7]

r =

{
1/L , if service accepted
0 , otherwise ,

(6)

where L is the load on the chosen path, defined as the sum of
the services allocated on each of the constituent links in the path.
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L was normalized to a maximum value of 1, such that the value
of the reward returned was within a reasonable range. Thus,
this reward is intended to bias the agent towards choosing paths
with low loading. We observed an increase in the efficacy of
the agent as compared to the simplistic rewards used in the
literature [7, 10, 12]. Specifically, this reward is defined as +1
for a successfully serviced request and −1 for a rejected request.
We also tried a similar reward function of +1 for an accepted
request and 0 for a rejected request which has been used in
the literature also [8, 14]. Again, the reward defined in Eq. (6)
yielded favorable performance.

5. TRAINING AND EVALUATION SET-UP

A. Proposed training methodology for problems with long
episodes

The choice to use a simplified version of the RWA problem for
training the RL agent was motivated by the credit assignment
problem, caused by the large episode sizes encountered in our
formulation of RWA. Specifically, training the agent is difficult
with large episode sizes as it becomes difficult for the agent to
determine the importance of each decision made, as outlined in
Section 4. Therefore, we train the agent on a simplified version
of the problem, in which the episode size is reduced. This is
achieved by multiplying the capacity of each lightpath in the
network by a scale factor SF:

Cpath := Cpath × SF. (7)

As a result of this, the number of 100 Gbps services that the
network can support is reduced, and thus the episode size can
be reduced. The episode size was reduced by the same factor SF.
The agents were trained on this scaled problem and then evalu-
ated on the full target problem, i.e. with SF = 1. We found that a
value of SF = 0.2 worked well for both the NSFNET and COST-
239 topologies. This suggests that a highly effective policy can
be learned on the scaled problem and applied directly to the tar-
get problem. We observed an increase in performance of the RL
agent using this training mode as compared to regular training
on the target problem. This is due to a reduction in the difficulty
of credit assignment, aiding the agent to learn an effective RWA
solution. A similar demonstration of policy generalization was
shown in Ref. [31], where an RL agent learned a policy for re-
source allocation in datacenters - another graph-based allocation
problem (related to the RWA problem considered here). Here the
agent was evaluated on graphs that were 100 times larger than
those it was trained on in terms of the number of nodes. Whilst
this is different to the scaling applied in Eq. (7), it demonstrates
that training on a smaller problem can often lead to a higher
efficacy RL solution than training directly on the target problem.

B. Network topologies
In this study, we consider two core network topologies, namely
the NSFNET topology and the COST–239 topology [32], shown
in Figure 2 and Figure 3, respectively. All link lengths are shown
in km and have been rounded to the nearest integer multiple
of 100 km, as we assume a fixed span length of 100 km at the
physical layer implementation. The 11-node COST-239 topology
has an average node degree of 4.7 and mean link length of
581 km compared to 3.1 and 945 km for 14-node NSFNET.

C. Simulation Environment
The network simulation is built using the open source Optical
RL Gym library [14] and the agents are trained using imple-
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mentations of PPO with and without invalid action masking
provided by the Stable Baselines 3 library [33], referred to as
MaskablePPO and PPO, respectively. In this work, the RL agent
is trained on the NSFNET (Fig. 2) topology using the simplified
training process outlined above for a total of 107 timesteps. With
the chosen value of SF = 0.2, this corresponds to 5000 episodes
of 2000 timesteps each (with one request per timestep). For the
COST-239 topology, training was performed also with SF = 0.2
for a total of 107 timesteps, meaning 5000 episodes of size 4000
each. The target problem for NSFNET and COST-239 consists
of 104 and 2 × 104 timesteps respectively (with SF = 1.0). This
difference is due to the fact that COST-239 has a higher capacity
than NSFNET, due to its higher average node degree and shorter
average link length. Training was performed for both topologies
with the following hyperparameters: discount factor κ = 0.99,
learning rate of 1.57× 10−5, batch size equal to 16 and a network
architecture of 2 layers of 128 neurons. All other parameters
are equal to the defaults in Stable Baselines 3 MaskablePPO and
PPO. We use a fixed bit rate of 100 Gbps.

During evaluation the same requests are given to each algo-
rithm per episode. Lightpaths are modeled as having a given
capacity Eq. (1), meaning that an existing lightpath can be used
to service multiple requests between the same two nodes as long
as there is sufficient spare capacity and wavelength continuity
is obeyed. k = 5 for both the agent and the heuristics, meaning
that both can choose up to the 5th−shortest path.

D. Heuristic baselines
We benchmark the performance of our RL solution against
three state-of-the-art RWA heuristics: k−shortest path first fit,
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k-shortest path most-used (kSP-MU) and first fit k−shortest
path (FF-kSP) [19]. kSP-FF searches for a lightpath that can
support the current request, starting with the shortest path
and searching each channel sequentially until a valid lightpath
is found. If a lightpath is not found for the shortest channel,
the second-shortest path is searched and so on. kSP-MU also
searches each channel in order of length, allocating the request
to the most-used wavelength in the network at the current time.
This heuristic is motivated by reducing the number of channels
used in order to reduce congestion. Finally, FF-kSP starts with
the first channel slot and searches each of the shortest paths in
order of length to find a lightpath that can support the current re-
quest. Thus, FF-kSP also aims to reduce the number of channels
used via wavelength packing in an attempt to reduce network
congestion [19].

6. RESULTS FOR UNIFORM TRAFFIC

A. Uniform traffic model
We consider a traffic model with non-expiring requests similar
to Vincent et al. [19]. Bidirectional symmetric traffic is assumed
and we consider the uniform-all-to-all model [34]. For a network
graph G = (V , E) with a set of nodes V ≜ {v1, v2, . . . , vN} and
a set of edges E , source nodes vi ∈ V and destination nodes
vj ∈ V (i ̸= j); the uniform traffic matrix T̂unif is defined as [34]

T̂unif : ∀
{

vi, vj

}
∈ V : Tij =

1
N (N − 1)

, (8)

where N ≜ |V| is the total number of nodes in a given network.

B. Impact of action masking
Invalid action masking allows us to restrict the action space of
the RL agent to only viable lightpaths, such that the agent can
focus on learning an effective RWA strategy, rather than learning
through the reward signal how to identify lightpaths that are
currently blocked. Here we investigate the performance benefit
of invalid action masking as compared to a standard fixed-size
action space.

We benchmark using the NFSNET topology, shown in Fig-
ure 2, for uniform traffic Eq. (8). The results shown were
recorded across 100 evaluation episodes, where the traffic re-
quests are drawn a uniform traffic matrix and the episode starts
with an empty network and ends after 104 service requests.

Figure 4 depicts the learning curves for RL agents trained
with and without invalid action masking. The moving average
of the number of accepted services calculated with a sliding
window of size 5 is shown, in order to show the general trend.
These models are trained using a uniform traffic matrix for 107

timesteps using the simplified training process outlined in Sec-
tion 5. We found empirically that a scale factor SF = 0.2 had a
high efficacy. Thus, using this technique the episode length is
reduced by a factor of 5 and the number of full training episodes
is 5 times larger for the same total number of timesteps. This
resulted in an increase in the efficacy of the RL agent of 1.8%
relative to training directly on the target problem in terms of
the number of serviced requests. As we trained using 10 par-
allel computational processes [33], we show typical learning
curves for one process for the entire 107 timesteps, meaning 500
episodes per process. Thus, Figure 4 is representative of the
whole training run. We can see that RL with invalid action mask-
ing is able to service a significantly higher number of requests
compared to without masking. We note that the starting average

Fig. 4. Training curves for RL agents without (top) and with
(bottom) invalid action masking for simplified RWA problem
with SF = 0.2. The moving average calculated with a step-
size of 5 episodes is shown. As training was performed using
10 parallel processes, learning curves are shown for one typ-
ical individual process. The training was for a total of 10M
timesteps, corresponding to 5000 episodes, with 500 episodes
per process, with uniformly-distributed traffic on the NFSNET
topology.

value for the accepted services is much lower for the standard
RL agent as compared to the agent with invalid action masking -
approximately 400 as compared to 1020. This is because without
invalid action masking, the agent is able to choose lightpaths
that are currently blocked. Thus, the agent must learn how to
identify lightpaths that are currently blocked from the observa-
tion space and the reward signal. In the invalid action masking
case, the agent can instantly start learning an effective strategy
for choosing from the available (non-blocked) lightpaths. This
makes the learning process more efficient, allowing the agent
to learn a solution with higher efficacy. Moreover, use of in-
valid action masking reduces the size of the action space for the
majority of the episode. Once services start being established
in the network, the number of lightpaths that are able to sup-
port the current request is reduced and thus more actions will
be masked. This will reduce the size of the action space and
thus the complexity of the RL formulation, making it easier for
the RL agent to learn an effective policy. Moreover, we also
note that the learning curves are observed to converge rapidly
for this simplified case both with and without action masking,
plateauing after a relatively small number of timesteps in both
cases. This is due to the fact that we have simplified the training
problem significantly, such that the agent can rapidly learn an
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effective RWA solution. Investigating the minimum number
of training timesteps required to achieve a highly performant
solution forms part of the planned future work.

In Figure 5 we compare the performance of the RL agent
with and without invalid action masking over 100 evaluation
episodes with uniformly-distributed traffic on the NSFNET
topology. It is important to note that while the agents were
trained on a scaled-down version of the RWA problem with
SF = 0.2, they were evaluated on the target problem with an
episode length of 104 requests. We also include results for ran-
dom RWA, where we choose the path and channel at random,
and the first-fit heuristics for reference. Again, we observe a
significant increase in performance as a result of the inclusion
of invalid action masking, with an increase of 222% in the mean
number of services provisioned as compared to the RL agent
without masking. We saw similarly poor performance without
invalid action masking for the COST-239 topology considered,
with an increase of 100% in the number of accepted services with
invalid action masking as compared to without.

In the literature standard PPO algorithms have achieved sim-
ilar or greater performance than standard first-fit heuristics such
as kSP-FF [7, 8, 10, 12]. However, we did not observe this due
to a key difference between our simulated network environ-
ment and those proposed in the literature, as outlined above.
Specifically, in the literature of RL-driven RWA in fixed grid
optical networks, the network environment has been set up such
that the agent has been tasked with servicing a series of con-
nection requests [7]. Thus, the channels can only accept one
service. However, we model lightpaths that can support multi-
ple services, as long as they have sufficient remaining capacity as
calculated using the GN model. This poses a more difficult prob-
lem for the agent, for a number of reasons. Firstly, as outlined
above, credit assignment becomes increasingly more difficult as
the length of episodes increases. Furthermore, the agent must
also learn how to effectively re-use lightpaths as well as how
to allocate new ones. This is not required when servicing a se-
ries of connection requests, as in the literature. Additionally,
this means that the episodes are longer as more services can be
supported on the network as compared to a more simplistic net-
work with single-occupancy channels, increasing the difficulty
of the problem as fewer training episodes are available in the
same wall-clock training time with fixed compute resources. In
order to address these problems, we found that invalid action
masking, i.e. removing lightpaths that cannot accept the current
request from the action space, and a training methodology in
which we trained on a scaled-down version of the RWA problem
was required.

Additionally, the observation space we have used is relatively
simplistic and a more complex space may result in better per-
formance without invalid action masking. A rigorous study of
the effects of different observation spaces on the performance of
RL both with and without masking forms part of the planned
future work. We also performed hyperparameter tuning with
each of the models tested, performing parameter sweeps of the
learning rate, discount factor, batch size and network architec-
ture. However, further exploration may yield hyperparameters
with higher efficacy both with and without action masking.

C. Benchmarking with Heuristics
Figure 6 shows boxplots of the number of accepted services
across the 100 evaluation episodes for the RL agent with invalid
action masking and the heuristics for uniform traffic for NSFNET.
The agent is trained and evaluated on uniformly-distributed traf-

Fig. 5. Boxplot showing the number of services accepted
across 100 evaluation episodes for the RL agent with (Masked
RL) and without (St. RL) invalid action masking. The perfor-
mance of a random agent and the first-fit heuristics are also
shown for reference. Each agent was trained for 5000 episodes
on the NSFNET topology, corresponding to 107 timesteps,
with a uniform traffic distribution. A simplified version of the
target problem with a smaller episode size was used for the
training, as outlined above.

Table 2. Evaluation statistics for uniform traffic on NSFNET

kSP-FF kSP-MU FF-kSP RL

Median 6710 6525 6818 7002

Mean 6701 6543 6820 7002

Min 6545 6234 6674 6857

Max 6831 6841 6964 7159

SD 55 175 63 59

IQR 80 332 75 83

Fig. 6. Boxplots showing the number of services accepted
across 100 evaluation episodes for the RL agent and heuristics
for uniformly-distributed traffic on NSFNET.

fic in this case, and key statistical metrics are summarized in
Table 2 for reference. We can see that for the uniform traffic
case, the RL agent outperforms all heuristics in terms of the
mean, median, minimum and maximum number of services
accepted. Compared to the best-performing heuristic for this
case, this translates to an increase of 184, 183 and 195 services for
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Table 3. Evaluation statistics for uniform traffic on COST-239

kSP-FF kSP-MU FF-kSP RL

Median 15156 14208 14624 15279

Mean 15156 14170 14624 15283

Min 14968 12921 14308 15004

Max 15333 15345 14865 15549

SD 80 1015 126 110

IQR 119 2012 163 141

the median, worst-case and best-case respectively. Additionally,
the agent has a similar interquartile range (IQR) to kSP-FF and
FF-kSP, indicating a robust solution. This improvement should
be understood in the context of the novelty of this paper. These
results indicate for the first time the applicability of RL to RWA
in fixed grid networks for 100 Gbps demands, i.e. with re-use of
extant lightpaths with sufficient capacity. The improvement of a
median of 184 services corresponds to an increased throughput
of 18.4 Tbps, which may be of significant value to network opera-
tors. Additionally, we note that the best performing heuristic for
uniform traffic, FF-kSP, is not the best performing for population-
based traffic. On the other hand, the agent is consistently the
highest performing across the two traffic types. Thus, the agent
affords the operator a flexibility benefit with respect to different
traffic distributions.

Moreover, the Friedman non-parametric test [35] suggests
RL outperforms the heuristics with statistical significance of
99.5%. Additionally, we performed an evaluation of the RWA
run time of the trained agent compared to the heuristics and
demonstrated that the run time of the RL agent is of the same
order as the heuristics. As the costs of training time are mit-
igated by the ability to pre-train the agent before performing
RWA, this shows the applicability of our RL solution in terms of
computational requirements to real world systems.

Fig. 7. Boxplots showing the number of services accepted
across 100 evaluation episodes for the RL agent and heuristics
for uniformly-distributed traffic on COST-239.

For the COST-239 topology, training was also performed us-
ing the methodology outlined in Section 5 on a scaled-down
version of the RWA problem with SF = 0.2 for 107 timesteps and
the learned policy was evaluated on the full realistic RWA prob-
lem, i.e. with SF = 1. As COST-239 has a higher average node

degree, more total links and a shorter average link length than
NSFNET, the capacity of this network is higher. For instance, we
found that all RWA algorithms tested were able to service 104 re-
quests without blocking. Thus, we increased the episode length
to 2 × 104. Hence, the issues outlined in Section 4 related to
long episodes are worse for COST-239 as compared to NSFNET.
The performance relative to the heuristics for uniform traffic is
shown in Figure 7 for 100 evaluation episodes and summary
statistics are provided in Table 3. The RL agent has the highest
median, mean, minimum and maximum performance, as for
NSFNET. The SD and IQR are also comparable to kSP-FF and
FF-kSP. As for NSFNET, we observed that kSP-MU has a large
variance in performance, perhaps due to sensitivity to the first
few services in the network in terms of determining the most-
used wavelength. Investigating this and other more advanced
heuristics and comparison with upper bounding global solu-
tions such as integer linear programs forms part of the planned
future work.

These results should be interpreted in the context of the nov-
elty of this work. Specifically, this demonstrates the feasibility
of RL for more detailed RWA problems involving demands of
a fixed bit rate in core networks, i.e. for problems with long
episode sizes. Crucially, we observed that standard RL is unable
to approach baseline heuristics for such problems using methods
similar to those deployed on connection request RWA problems
in the literature, due to the significant increase in episode size.
Thus, we introduced invalid action masking and a simplified
training environment to improve the efficacy of the agent in
these scenarios.

7. GENERALIZATION TO REALISTIC TRAFFIC

A. Population-based traffic model
In order to investigate the generalizability of this RL model, we
evaluate the RL agent trained on uniformly-distributed traffic
presented in Section 6 on a realistic non-uniform traffic distribu-
tion not seen during training, generated by considering popula-
tion of major US states obtained from the 2020 US census [36].
Let S and D be the discrete random variables denoting the source
and the destination, respectively. Possible values each can take
are 1, 2, . . . , i, . . . , k with k being the number of nodes. If ri is
the number of residents for the ith−node, then we assume the
probability of selecting the source is the population of the source
as a fraction of the total population such that

P [ S = i ] =
ri

∑
k

rk
, (9)

and likewise the conditional probability of the destination is
the population of the destination as a fraction of the remaining
population (i.e., excluding the source population) such that

P [ D = j | S = i ] =
rj

∑
k ̸=i

rk
, (10)

and likewise by symmetry

P [ S = j ] =
rj

∑
k

rk
, (11)

P [ D = i | S = j ] =
ri

∑
k ̸=j

rk
. (12)



Research Article Journal of Optical Communications and Networking 10

Table 4. Non-uniform population-based traffic matrix for
NSFNET given by Eq. (15), where all actual values of prob-
abilities are multiplied by 104.

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 0 47 76 9 17 94 5 39 40 32 30 63 27 2

2 47 0 157 20 36 195 11 80 82 67 63 131 55 4

3 76 157 0 31 57 312 19 129 131 107 101 208 89 7

4 9 20 31 0 7 39 2 16 16 13 13 26 11 1

5 17 36 57 7 0 71 4 28 30 23 23 47 20 2

6 94 195 312 39 71 0 23 160 164 134 126 261 111 8

7 5 11 19 2 4 23 0 10 10 8 8 16 7 1

8 39 80 129 16 28 160 10 0 67 55 52 108 45 2

9 40 82 131 16 30 164 10 67 0 56 53 110 46 4

10 32 67 107 13 23 134 8 55 56 0 43 90 38 2

11 30 63 101 13 23 126 8 52 53 43 0 84 36 2

12 63 131 208 26 47 261 16 108 110 90 84 0 74 5

13 27 55 89 11 20 111 7 45 46 38 36 74 0 2

14 2 4 7 1 2 8 1 2 4 2 2 5 2 0

Hence, for an unordered pair (i, j) of source and destination
nodes

P [ i, j ] = P [ D = j | S = i ] · P [ S = i ]
+ P [ D = i | S = j ] · P [ S = j ] . (13)

However, for a traffic matrix with elements Tij

P [ i, j ] ≜ Tij + Tji . (14)

Therefore, assuming an undirected graph with a symmetric
traffic matrix requires Tij = Tji, and hence

Tij =
1
2

 ri

∑
k

rk

rj

∑
k ̸=i

rk
+

rj

∑
k

rk

ri

∑
k ̸=j

rk

 . (15)

The source and destination nodes of each request are gen-
erated randomly using the node request probabilities for the
population-based traffic matrix given by Eq. (15). We show the
values of the traffic matrices for NSFNET and COST-239 in Ta-
ble 4 and Table 5 respectively, where the probabilities have been
rounded and multiplied by 104. An additional colormap visu-
alization of the traffic matrices for NSFNET and COST-239 are
provided in Figure 8 and Figure 9.

B. Benchmarking with heuristics
We first consider the NSFNET topology. Boxplots showing the
generalization of the RL model to the unseen population-based
non-uniform traffic distribution and a summary of key statistics
are presented in Figure 10 and Table 6 respectively. For this
case, the RL agent achieves the highest mean, median, best-case
and worst-case number of accepted services. Specifically, the
RL agent serviced an extra 147, 170 and 144 requests for the
median, best-case and worst-case respectively, compared to the
best-performing heuristic kSP-FF. Also, the agent achieved the
second-lowest standard deviation (SD) and IQR, indicating that
the RL solution is robust across evaluation episodes. As with the
uniformly-distributed traffic results, this improvement should
be understood in the context of the novelty of this paper. Namely,
these results indicate for the first time the applicability of RL to

1
(W

A
)

2
(C

A
1)

3
(C

A
2)

4
(U

T
)

5
(C

O
)

6
(T

X
)

7
(N

E
)

8
(I

L
)

9
(P

A
)

10
(G

A
)

11
(M

I)

12
(N

Y
)

13
(N

J)

14
(D

C
)

14 (DC)

13 (NJ)

12 (NY)

11 (MI)

10 (GA)

9 (PA)

8 (IL)

7 (NE)

6 (TX)

5 (CO)

4 (UT)

3 (CA 2)

2 (CA 1)

1 (WA)

NSFNET normalized traffic matrix Eq. (15)

0

0.2

0.4

0.6

0.8

1

Fig. 8. Colormap visualization of non-uniform population-
based normalized traffic matrix for NSFNET.

Table 5. Non-uniform population-based traffic matrix for
COST-239 given by Eq. (15), where all actual values of proba-
bilities are multiplied by 104.

ID 1 2 3 4 5 6 7 8 9 10 11

1 0 177 34 21 30 60 14 19 10 5 20

2 177 0 480 303 432 847 200 267 142 91 283

3 34 480 0 57 83 164 38 51 27 17 54

4 21 303 57 0 52 103 23 32 17 11 34

5 30 432 83 52 0 147 34 46 23 16 49

6 60 847 164 103 147 0 68 91 47 31 95

7 14 200 38 23 34 68 0 21 11 7 22

8 19 267 51 32 46 91 21 0 15 10 30

9 10 142 27 17 23 47 11 15 0 5 16

10 5 91 17 11 16 31 7 10 5 0 10

11 20 283 54 34 49 95 22 30 16 10 0

RWA in fixed grid networks for 100 Gbps demands, i.e. with
re-use of extant lightpaths with sufficient capacity. The improve-
ment of a median of 147 services corresponds to an increased
throughput of 14.7 Tbps, which may be of significant value to
network operators. Also, generalization of the learned policy
to a different traffic matrix to that used in training is shown
by this performance relative to the heuristics. Additionally, we
can see that the performance of the heuristics does not gener-
alize well across different traffic matrices. FF-kSP is the best
heuristic for uniform traffic but performs worse than kSP-FF
for the population-based traffic, suggesting that a wavelength
packing strategy is not optimal for this case. However, the RL
agent is able to learn a generalizable policy from the uniform
traffic distribution during training, allowing it to perform well
for a different, non-uniform traffic distribution without retrain-
ing. Therefore, the RL agent affords the operator a flexibility
advantage over the heuristics, which need to be hand-tuned for
each problem. This flexibility is one of the major advantages of
RL-driven solutions.

Moreover, the Friedman non-parametric test [35] suggests RL
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Fig. 9. Colormap visualization of non-uniform population-
based normalized traffic matrix for COST–239.

outperforms the heuristics with statistical significance of 99.5%.
Also, we evaluate the RWA run time of the trained agent for 100
evaluation episodes consisting of 104 sequential requests. For
NFSNET under uniform traffic, the mean run times are 33.8, 37.8
and 54.2 seconds for the kSP-FF, FF-kSP and kSP-MU heuristics
respectively, while the RL agent achieved a mean time of 47.3
seconds. Thus, kSP-FF is the fastest, followed by FF-kSP, the
RL agent and then kSP-MU. Similar results are observed for
population-based traffic matrix with means of 36.6, 59.5, 42.1
and 51.8 seconds or kSP-FF, kSP-MU, FF-kSP and RL respec-
tively. Results for COST-239 follow similarly, that the RL agent
run time is of the same order as the heuristics, showing the
strong potential for applicability of our RL solution to real world
systems.

Table 6. Evaluation statistics for non-uniform traffic on
NSFNET

kSP-FF kSP-MU FF-kSP RL

Median 6168 6021 6093 6315

Mean 6171 6011 6090 6313

Min 6023 5690 5921 6167

Max 6295 6295 6248 6465

SD 56 170 76 66

IQR 81 318 98 96

For the COST-239 topology, the RL models presented in Fig-
ure 7 were evaluated for the population-based non-uniform
traffic distribution defined above. Thus, we evaluated the gen-
eralization of the policy learned on uniform traffic to a realistic
non-uniform traffic distribution. Boxplots showing the evalua-
tion results for 100 episodes for non-uniform traffic are shown
in Figure 11 and summary statistics are provided in Table 7. As
for NSFNET, the agent achieves the best mean, median, mini-

Fig. 10. Boxplots showing the number of services accepted
across 100 evaluation episodes for the RL agent and heuristics
for the non-uniform traffic distribution, indicating the ability
of the RL model to generalize to a realistic traffic distribution
on NSFNET.

mum and maximum performance compared to the heuristics.
Specifically, the RL agent serviced an extra 131, 31 and 240 re-
quests for the median, best-case and worst-case respectively,
compared to the best-performing heuristic FF-kSP. Also, the
agent achieves the second-lowest SD and lowest IQR, indicat-
ing a robust solution. As with the other results presented in
this paper, this relative improvement demonstrates that RL is
feasible for RWA problems with longer episode sizes that are
typical for servicing typical 100 Gbps demands in fixed-grid core
optical networks. However, we observed that the use of invalid
action masking and training on a simplified version of the prob-
lem was required to obtain this feasibility. Moreover, as with
NSFNET, the best-performing heuristic for uniform traffic is not
the optimal heuristic for the non-uniform case, whereas the RL
agent is the highest performing in both cases. This indicates
that the policy learned by the agent has the ability to generalize
to an unknown traffic distribution for COST-239, as well as for
NSFNET. The relative magnitude of the increase in performance
relative to heuristic baselines is lower for COST-239 as compared
to NSFNET, indicating some topology sensitivity. However, this
may be due to the increased capacity of COST-239 and the asso-
ciated increased episode length required to fill the network. In
future we plan to investigate the use of a graph NN as part of
the representation of the policy within the RL framework, which
would allow learning from graph-scale features, thus reducing
topology sensitivity.

Table 7. Evaluation statistics for non-uniform traffic on COST–
239

kSP-FF kSP-MU FF-kSP RL

Median 11610 11560 11975 12106

Mean 11611 11542 11990 12106

Min 11455 11166 11736 11976

Max 11775 11864 12198 12229

SD 65 140 102 70

IQR 84 227 132 74
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Fig. 11. Boxplots showing the number of services accepted
across 100 evaluation episodes for the RL agent and heuristics
for the non-uniform traffic distribution, indicating the ability
of the RL model to generalize to a realistic traffic distribution
on COST-239.

8. INTERPRETATION OF LEARNED RL POLICY

In order to interpret the policy that has been learned by the RL
agent, and thus infer how it is able to outperform the heuristics,
we visualize how the distribution of services varies during the
evaluation episodes. This is done for uniform traffic in order to
simplify the interpretation. Specifically, we record the distribu-
tion of services after 30% and 60% of the episode, corresponding
to 3000 and 6000 services provisioned for NSFNET. This is so
that we capture the distribution both early in the episode and
near saturation. Also, we average the results across the 100 eval-
uation runs. Corresponding results for COST-239 are omitted
due to space limitations, however they show similar trends to
those for NSFNET.

For NSFNET, the service distributions after 3000 and 6000
services provisioned averaged over the 100 evaluation episodes
for the RL agent, kSP-FF, kSP-MU and FF-kSP heuristics are
shown in Figure 12. We show the number of services allocated
to each link and channel for each RWA algorithm, in order to
infer how the learned policy of the RL agent differs from the
sequential heuristics. The link IDs are as denoted in the NSFNET
topology (see Figure 2) and have been ordered from the shortest
at 0 to the longest at 21. These link IDs are labeled in Figure 2.

First, we can see that the RL policy is more complex than that
of the sequential heuristics, with no clear bias for choice of chan-
nels. This lack of bias is due to the fact that we have modeled
the channels as having an equivalent capacity, meaning that the
agent has no bias towards the channel ID. On the other hand,
the heuristics have a clear sequential strategy with respect to
the channels as expected, which is particularly evident from the
service distributions after 3000 services. For instance, for FF-kSP
we can see the wavelength packing strategy in effect, leading to
a more even loading across the links and fewer channels being
utilized early in the episode. Contrastingly, kSP-FF shows a
tendency to spread services across more channels as it is biased
towards choosing shorter links. Additionally, due to this uni-
form spread of channels, the RL agent service distribution after
6000 services shows a tendency to leave more lightly-loaded
links compared to the best-performing heuristic FF-kSP.

To further interpret the learned policy of the RL agent, we
consider the distribution across the channels for the RL agent
and heuristics. For NSFNET, the number of services assigned
to each channel ID, averaged across all the links in the network

and all 100 evaluation episodes is shown after 3000 services
provisioned and 6000 services provisioned in Figures 13 and 14
respectively for the RL agent and heuristics. Figure 13 shows
that FF-kSP uses the fewest channels of the heuristics early in
the episode, whereas kSP-MU and kSP-FF use a similar num-
ber of channels at the early stages of the episode. Later in the
episode at 6000 services, we can see that kSP-FF is the most
biased towards lower channel IDs due to its first-fit wavelength
selection policy, whereas kSP-MU and FF-kSP show a more even
distribution across channels. Additionally, we can see from both
Figure 13 and Figure 14 that the RL agent is spreading the ser-
vices relatively uniformly across the channels, with no clear bias
towards channel ID.

We also consider the distribution of services across the links,
averaged across all the channels and the 100 evaluation runs.
In Figure 15 the averaged distribution of services across links
after 3000 services provisioned is compared for the RL agent and
the heuristics for NSFNET. Here the link IDs have been ordered
by length, from the shortest at ID 0 to the longest at ID 21. As
expected, there is a general trend of more services on shorter
links, as these links have a higher maximum capacity. Also, we
can see that the RL agent distribution differs fairly consistently
from the heuristics. For the two shortest path heuristics, kSP-FF
and kSP-MU, the distribution is similar as expected, however
FF-kSP prioritizes wavelength packing over shortest paths and
thus it has a different distribution for the majority of links. Thus,
the RL agent appears to be following a different strategy from
the heuristics with respect to the location of the services on the
links. For the distribution after 6000 services shown in Figure 16
the situation is similar, with the RL agent following a different
strategy to the two heuristics for many of the links. In order to
quantify this, we consider the mean absolute error (MAE) of the
difference in link distribution between the RL agent and each
heuristic. After 6000 services, the MAE values are 0.41, 0.42 and
0.46 for kSP-FF, kSP-MU and FF-kSP respectively. Thus, the RL
policy is most similar to kSP-FF and least similar to FF-kSP with
respect to the distribution of services across links.

9. CONCLUSIONS AND FUTURE WORK

This study evaluated the efficacy of RL with invalid action mask-
ing for solving the RWA problem in fixed grid WDM optical
networks. We model a physical layer that enables reuse of light-
paths with sufficient capacity, meaning that the RL agent has to
learn how to reuse lightpaths as well as allocate new ones. This
constitutes a more complex problem compared to the binary
channel or frequency slot occupancy as commonly considered in
the literature [7, 10, 12], particularly due to increased difficulty
of credit assignment. The proposed approach to solve this prob-
lem constitutes a form of domain knowledge-informed RL, in
which we constrain the action space such that the agent can only
choose lightpaths that can support the current request. Addi-
tionally, we propose a training methodology in which the agent
is trained on a simplified version of the RWA problem and the
learned policy is applied to the target RWA problem. This was
found to improve the efficacy of the agent compared to training
directly on the target problem. We compare the performance of
this RL solution with the performance without action masking,
demonstrating significantly improved solution quality in terms
of the total number of requests serviced. Additionally, compari-
son with the state-of-the art RWA heuristic approaches kSP-FF,
kSP-MU and FF-kSP for uniformly-distributed traffic shows that
the proposed knowledge-informed RL agent outperforms the
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(a) RL service distribution after 3000 services. (b) FF-kSP service distribution after 3000 services.

(c) kSP-FF service distribution after 3000 services. (d) kSP-MU service distribution after 3000 services.

(e) RL service distribution after 6000 services. (f) FF-kSP service distribution after 6000 services.

(g) kSP-FF service distribution after 6000 services. (h) kSP-MU service distribution after 6000 services.

Fig. 12. Comparison of the distribution of services for the RL agent and heuristics after 3000 and 6000 services provisioned for
uniformly-distributed traffic, averaged over 100 evaluation runs.
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Fig. 13. Channel service distribution after 3000 services pro-
visioned, averaged over all the links in the network and 100
evaluation runs, for the RL agent solution and heuristics on
NSFNET. The RL agent distributes channels more uniformly
than the heuristics, with no clear bias towards channel ID.

Fig. 14. Channel service distribution after 6000 services pro-
visioned, averaged over all the links in the network and 100
evaluation runs, for the RL agent solution and heuristics on
NSFNET. The RL agent distributes channels more uniformly
than the heuristics, with no clear bias towards channel ID.

Fig. 15. Link service distribution on NSNFET after 3000 ser-
vices provisioned, averaged over all channels and 100 evalu-
ation runs, for the RL agent solution and heuristics. The RL
agent distribution across links is similar to the heuristics early
in the episode.

Fig. 16. Link service distribution on NSNFET after 6000 ser-
vices provisioned, averaged over all channels and 100 evalu-
ation runs, for the RL agent solution and heuristics. The RL
agent allocates a similar distribution across links to the heuris-
tics.

heuristics consistently across two different traffic matrices with
99.5% statistical significance for the two considered benchmark
topologies NFSNET and COST-239. Crucially, we demonstrate
that the RWA policy learned by training the agent on uniformly-
distributed traffic generalizes well to a realistic non-uniform
traffic distribution unseen during training, outperforming the
heuristics. This demonstrates that the policy learned by the RL
agent has an ability to generalize to a realistic unseen traffic
distribution. Finally, we visualize the distribution of services for
the trained RL agent and heuristics in order to interpret some
of the key characteristics of the learned RWA policy. The agent
shows no bias in terms of the channel IDs chosen for each re-
quest, distributing services uniformly across a range of channels.
Moreover, the agent distributes services across the links in a
way that differs from the heuristics, indicating that the agent
has learned a policy that is significantly different. Furthermore,
we evaluate the computational cost of using the proposed RL
method over the heuristics, both in terms of training the RL
agent and the run time for performing RWA once trained. As
the run time is similar to the heuristics and the RL training can
be performed offline, the RL model shows strong potential for
applicability to real world systems.

Future work will concentrate on extending the simulations to
a range of network topologies to investigate the scalability and
real world applicability of the proposed approach. Moreover, we
will extend comparison to a greater range of baselines, including
upper bounding global RWA solutions such as integer linear
programs. For the two topologies considered, we have observed
topology sensitivity of the approach in terms of the magnitude
of improvement relative to the heuristics. To this end, we will
investigate the potential of incorporating graph neural networks
to represent the PPO’s policy network to achieve a topology
invariant RL solution. Moreover, a rigorous analysis of other RL
design parameters, such as the reward structure and observation
space, also forms part of the planned future work. Additionally,
exploration of the effectiveness of the RWA solution for brown-
field RWA scenarios is planned as future work. Also, in future
the proposed scheme will be applied to flex-grid elastic optical
networks. Due to the potential for large action spaces to arise
in these problems, invalid action masking is expected to yield a
substantial benefit over standard tabula rasa formulations of RL
for this problem.
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