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Accurate segmentation of brain tumors from medical images is important for diagnosis and treatment
planning, and it often requires multi-modal or contrast-enhanced images. However, in practice some
modalities of a patient may be absent. Synthesizing the missing modality has a potential for filling this
gap and achieving high segmentation performance. Existing methods often treat the synthesis and seg-
mentation tasks separately or consider them jointly but without effective regularization of the complex
joint model, leading to limited performance. We propose a novel brain Tumor Image Synthesis and
Segmentation network (TISS-Net) that obtains the synthesized target modality and segmentation of brain
tumors end-to-end with high performance. First, we propose a dual-task-regularized generator that
simultaneously obtains a synthesized target modality and a coarse segmentation, which leverages a
tumor-aware synthesis loss with perceptibility regularization to minimize the high-level semantic
domain gap between synthesized and real target modalities. Based on the synthesized image and the
coarse segmentation, we further propose a dual-task segmentor that predicts a refined segmentation
and error in the coarse segmentation simultaneously, where a consistency between these two predictions
is introduced for regularization. Our TISS-Net was validated with two applications: synthesizing FLAIR
images for whole glioma segmentation, and synthesizing contrast-enhanced T1 images for Vestibular
Schwannoma segmentation. Experimental results showed that our TISS-Net largely improved the seg-
mentation accuracy compared with direct segmentation from the available modalities, and it outper-
formed state-of-the-art image synthesis-based segmentation methods.
� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Brain and other Central Nervous System (CNS) tumors are one
of the most common types of cancers, with an estimated incidence
of 29.9 per million per year among adults, and approximately one-
third of them are malignant [24]. As an example, gliomas that orig-
inate in glial cells constitute 80% of malignant primary brain
tumors. High-Grade Gliomas (HGG) have a median survival rate
of two years or less, while Low-Grade Gliomas (LGG) are less
aggressive with a relatively promising prognosis [23]. In contrast,
Vestibular Schwannoma (VS) is a benign tumor caused by the
abnormal proliferation of schwann cells on the outside of the
vestibulocochlear nerve that connects the brain to the ear. The
incidence of VS is increasing in recent years and has been esti-
mated to be 14 to 20 cases per million per year [27].

Currently, Magnetic Resonance Imaging (MRI) is an important
tool for diagnosis and treatment management of brain tumors
due to its good contrast for soft tissues. Especially, segmentation
of the tumor structure from MRI plays a critical role in accurate
volumetric measurement and 3D modeling of the tumors that is
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required by tumor growth detection and surgical planning. As
manual segmentation is time-consuming, labor-intensive and sub-
ject to inter-observer and intra-observer variations, automatic seg-
mentation is highly desirable in clinical practice. Usually, accurate
automatic segmentation requires multi-modal scanning or
contrast-enhanced imaging to visualize the entire tumor or tumor
subregions. For example, state-of-the-art glioma segmentation
methods typically require four modalities [22,6], including T1-
weighted, contrast enhanced T1-weighted (ceT1), T2-weighted
and Fluid Attenuation Inversion Recovery (FLAIR) imaging. T1
and ceT1 mostly highlight the tumor core region (without peri-
tumoral edema), and T2 and FLAIR provide a better contrast for
the whole tumor region (with peri-tumoral edema). Specifically,
FLAIR images show hyperintensity signal abnormality in peri-
tumoral edema surrounding the main mass lesion that generally
represents infiltrative edema.

In clinical practice, since obtaining multiple sequences is time-
consuming and expensive, some modalities may be missing
[18,20], which leads to challenges for the segmentation task.
Fig. 1 shows two examples of such cases. In the first example of
glioma, the segmentation task often involves T1, T2, ceT1 and
FLAIR images, and the segmentation accuracy of the whole tumor
would be largely reduced when FLAIR is not available. In the sec-
ond example of VS, high-resolution T2-weighted MRI is commonly
used for imaging, but it suffers from a low contrast between the
tumor and the background. To improve the visibility of the tumor
for accurate assessment, Radiologists may use gadolinium contrast
agents for ceT1 MRI scanning, which makes the tumor boundary
easier to recognize. Despite the fact that the performance of auto-
matic VS segmentation from ceT1 can be comparable to that of
manual segmentation [27], ceT1 scanning requires the use of
gadolinium contrast agents that raise concerns on potentially
harmful cumulative side-effect, leading to a demand on segmenta-
tion of VS with only T2 images being available.

To tackle these problems, synthesizing a missing target modal-
ity from one or more available modalities for the downstream seg-
mentation has attracted increasing attentions recently [8,36].
Traditionally, researchers have used dictionary learning [13] and
random forest [17] methods for this purpose. But they usually
focus on a low-level pixel-wise optimization for synthesis and
can hardly obtain realistic images at a high level. Recently, Convo-
lutional Neural Networks (CNNs) and Generative Adversarial Net-
works (GANs) have been proposed for more realistic synthesis,
such as generating high-dose Positron Emission Tomography
(PET) images conditioned on low-dose PET images [33] and gener-
ating FLAIR images from T1 images for brain tumor segmentation
[39,20]. Such methods typically use a generator to obtain the syn-
thesized image, a discriminator to encourage realistic synthesis,
and a segmentation CNN taking the synthesized image as input
Fig. 1. Examples of source and target modalities for glioma and Vestibular
Schwannoma (VS) segmentation. The bounding boxes highlight the segmentation
targets in the images. Note that the tumor is less visible in the source modalities.
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to obtain the segmentation result. The synthesis in these works
was not well optimized for segmentation due to that the image
generation model and segmentation model were trained indepen-
dently, which may limit the final segmentation performance.

To overcome this issue, end-to-end medical image synthesis
and segmentation methods have been proposed recently [36].
However, it remains challenging to achieve accurate segmentation
results from the synthesized images due to the following reasons:
First, there is a domain gap between the synthesised and real tar-
get modalities, leading the segmentation based on synthesised
images to be inferior to segmentation with real target modalities
[32]. Second, an end-to-end synthesis and segmentation model
becomes more complex and much deeper than independent mod-
els and it has a higher risk of over-fitting, which requires more
effective regularization methods to keep the performance during
testing. However, regularization of the end-to-end model has
rarely been explored in-depth in existing works.

The contribution of this work is threefold. First, to deal with
missing modality for brain tumor segmentation, we propose a
novel brain Tumor Image Synthesis and Segmentation Network
(TISS-Net) based on a cascaded dual-task architecture for end-to-
end training and inference, where the synthesis and segmentation
models are learned synergistically with several novel high-level
regularization strategies. Second, we introduce segmentation-
aware target-modality image synthesis, where a coarse segmenta-
tion is used as an auxiliary task to regularize the synthesis task,
and a tumor-aware synthesis loss with perceptibility regulariza-
tion is introduced to generate segmentation-friendly images in
the missing modality. Thirdly, we propose a novel error-
prediction consistency loss for improving the segmentation perfor-
mance, where the dual-task segmentor uses two branches to pre-
dict a fine segmentation and errors in the coarse segmentation
simultaneously, and a consistency between these two predictions
is introduced as a regularization for better segmentation perfor-
mance. The dual-task generator and dual-task segmentor are
trained end-to-end so that they are adaptive to each other for high
segmentation performance. We extensively evaluated our method
on FLAIR image synthesis for glioma whole tumor segmentation
and ceT1 image synthesis for Vestibular Schwannoma segmenta-
tion. Experimental results show that our method outperformed
several state-of-the-art deep learning-based image synthesis and
segmentation methods.
2. Related Works

2.1. Brain Tumor Segmentation

Brain tumor segmentation from multi-modal images has made
great advances based on the development of CNNs [25,14]. They
have achieved better performance than traditional methods using
hand-crafted features [22]. Some techniques such as attention
mechanism have proven effective for improving performance for
glioma segmentation [44,21] and Vestibular Schwannoma (VS)
segmentation [27]. To deal with brain tumors in multiple scales,
Zhou et al. [46] used atrous convolution feature pyramid to keep
high spatial resolution, and Ye et al. [38] introduced a dense neural
network with parallel pathways at different scales. Sun et al. [29]
used a multi-pathway architecture to effectively extract features
from multi-modal MRI images. Hu et al. [11] proposed mutual
ensemble learning to enable knowledge exchange between net-
works and let them teach each other for better performance.
Coarse to fine architectures have also shown their potential in
glioma segmentation [42,4]. They often perform well when the
images have a good contrast or multi-sequence images are used
[31], and the segmentation accuracy is limited when the image
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has a low contrast or some of the multiple modalities are missing
[18].
2.2. Segmentation with Missing Modality

Segmentation with missing modality is a challenging problem
in medical image analysis. It is often challenging to achieve satis-
factory results when performing segmentation directly on the
remaining available (source) modalities [32,40], as depicted in
Fig. 2(a). There have been several approaches to handle the prob-
lem of missing modalities. One popular approach is Domain Adap-
tation (DA), which transfers models trained in a source domain
(i.e., one modality) to a target domain (i.e., another modality)[9].
The DA methods usually train a model with annotated source-
domain images and unannotated target-domain images, and then
use target-domain images for inference. For example, Dou et al.
[7] proposed a GAN-based method to align the features between
source and target domains for adaptation. Zhu et al. [47] proposed
a boundary-weighted domain adaptive neural network to improve
the performance of prostate MR image segmentation by consider-
ing the boundary information between the source and target
domains. Zhong et al. [43] proposed joint image and feature adap-
tive attention-aware networks to alleviate the domain shift for
cross-modality semantic segmentation. Liu et al. [19] also used col-
laborative adaptations from both image and feature perspectives in
a supervised learning framework. Other techniques such as pseudo
label-based methods [34] and disentanglement [37] have also been
proposed for cross-modality domain adaptation. In HeMIS [10], a
common feature space was learned to represent different modali-
ties, and it was used to perform down-stream segmentation or
classification tasks.

Knowledge Distillation (KD) has also been proposed to deal
with missing modalities. Hu et al. [12] proposed to use generalized
knowledge distillation to transfer knowledge from a teacher net-
work trained with multi-modal images that are registered [28] to
a mono-modal student. A similar framework was proposed by
Chen et al. [2], where both pixel-level and image-level distillation
are leveraged for better knowledge transfer. In addition, synthesiz-
ing the missing modality based on available modalities for seg-
mentation is appealing [45], as the synthesized image can
provide additional important features to improve the performance
Fig. 2. Illustration of existing pipelines (a-c) and our proposed framework (d) for segme
example. Our proposed TISS-Net based on cascaded dual-task networks deals with th
synthetic target-modality image and a coarse segmentation mask simultaneously. It is f
coarse segmentation simultaneously, and a consistency loss between them (i.e,Lcon) is pr
aware synthesis loss with perceptibility regularization detailed in Section 3.2.
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and the result is more explainable [36]. The synthesis-based meth-
ods are detailed in the following.
2.3. Medical Image Synthesis for Improved Segmentation

Synthesis-based segmentation methods can be briefly summa-
rized as two categories: 1) sequential synthesis and segmentation
where the two models are trained independently or end-to-end; 2)
simultaneous synthesis and segmentation where a hybrid model is
used to obtain the synthesized target modality and segmentation
jointly. Fig. 2(b) and (c) illustrate the workflow of these two cate-
gories, respectively.

Most existing works follow the sequential image synthesis and
segmentation workflow. For example, Luo et al. [20] first generated
the missing modality based on an edge-preserving generator, and
then segmented the target with the synthesized modality, where
the image generation model and segmentation model were inde-
pendently optimized during training and cascaded during testing.
However, dealing with the synthesis and segmentation indepen-
dently may restrict the segmentation performance. To overcome
this problem, end-to-end synthesis and segmentation methods
have been increasingly employed recently. For example, Xu et al.
[36] proposed progressive sequential casual GANs (PSCGAN) to
simultaneously synthesize a contrast-enhanced image and seg-
ment tissues related to diagnosis of ischemic heart disease. How-
ever, as the synthesis and segmentation models are cascaded, the
whole pipeline has a risk of over-fitting and it’s performance is lim-
ited if without effective regularization [36].

Compared with sequential synthesis and segmentation, simul-
taneous synthesize and segmentation takes a better advantage of
the inter-dependency between these two tasks. In such methods,
a model takes the available modalities as input, and gives target
modality and segmentation result simultaneously, where the
implicit constraints between synthesis and segmentation is used
as a regularization. For example, Bahrami et al. [1] jointly learned
two parallel CNNs for 7T MR image reconstruction and brain tissue
segmentation from 3T MR images. Sun et al. [30] proposed a uni-
fied network for simultaneous compressed sensing MRI recon-
struction and brain tissue segmentation, where a high-quality
MRI synthesis network and a segmentation model share the enco-
der and use independent decodes to get the outputs. However, in
ntation of brain tumors with missing modalities. This figure takes the VS case as an
e synthesis and segmentation tasks end-to-end. A dual-task generator obtains a
ollowed by a dual-task segmentor obtaining a fine segmentation and errors in the
oposed for regularization. Note that the generator is further regularized by a tumor-
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suchmethods, the synthesized image was not further used to guide
the segmentation process, which may limit the segmentation
accuracy.
3. Methods

Fig. 2(d) is an overview of our TISS-Net for end-to-end target
modality synthesis and brain tumor segmentation, where only par-
tial modalities are given and the real target modality is not avail-
able at test time. Both the target-modality generator and brain
tumor segmentor have two branches with a shared encoder for dif-
ferent tasks that can regularize each other. The dual-task generator
obtains a synthesized target-modality image and a coarse segmen-
tation simultaneously, and it is further regularized by a tumor-
aware perceptibility loss. The segmentor takes the coarse segmen-
tation, the input modalities and the synthesized modality as input,
and uses one branch to directly predict a fine segmentation, and
another branch to predict errors in the coarse segmentation for
refinement. As the two branches are designed to obtain the final
segmentation of the same target using different mechanisms, we
impose a consistency between these two branches as an additional
regularization to achieve better performance.
3.1. Dual-Task Generator for Image Synthesis and Coarse
Segmentation

Let xs denote the input image with the available source modal-
ities, and xt denote the corresponding target modality of the same
subject. We use y to denote the segmentation ground truth. Our
dual-task generator G takes xs as input, and simultaneously obtains
a synthesized target-modality image xt0 and a coarse segmentation
yc . G is composed of a shared encoder GE and two decoders: GD1 to
obtain xt0 and GD2 to obtain yc , respectively. Compared with using
two different networks to obtain xt0 and yc sequentially or indepen-
dently, our dual-task generator with a shared encoder can save
network parameters and the synthesis and coarse segmentation
branches are regularized by each other.

Theoretically, G can be implemented by any image-in and
image-out CNNs. In this work, we use a 2.5D U-Net [27] as the
backbone for the glioma and VS segmentation from 3D volumes
due to the following reasons. First, VS images have high inter-
plane resolution and low through-plane resolution, and a 2.5D net-
work combining 2D and 3D convolutions has been shown more
effective than standard 3D networks [27]. Second, for 3D volumes
with isotropic resolutions, 2.5D networks can achieve a good trade-
off between model complexity, receptive field and GPU memory
with competitive performance [31].
Fig. 3. Details of the 2.5D dual-branch network structure used in this work. It include
convolutions and the other three resolution levels use 3D convolutions. Channel numbe
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The original 2.5D U-Net [27] has an encoder-decoder structure
with five resolution levels, where the two highest resolution levels
use 2D convolutions and the other three resolution levels use 3D
convolutions. We add another decoder with the same structure
as the existing decoder with skip connections to obtain the dual-
branch network, which is denoted as 2.5D DB-Net and illustrated
in Fig. 3. The two branches are trained to obtain xt0 and yc respec-
tively. The loss function for coarse segmentation branch Lc is
defined as a standard Dice lossLDiceðyc; yÞ, and the loss for the syn-
thesis branch Lsyn is detailed in the following.

3.2. Tumor-Aware Synthesis Loss with Perceptibility Regularization

Most existing image synthesis methods define a global synthe-
sis loss Lsyn�g to supervise quality of the overall image [15,20],
which may not ensure a high synthesis quality around the tumor
region and lead to low performance in the down-stream tumor
segmentation task. To address this problem, in addition to the
widely used global synthesis loss, we introduce a tumor-aware
synthesis loss Lsyn�t that highlights the synthesis quality around
the tumor and a perceptibility regularization Lp to reduce high-
level domain gap between the synthesized and real target-
modality images.

Global Synthesis Loss: The global synthesis loss in typical
image synthesis methods [15] is formulated as a combination of
an L1 term and an adversarial term:

Lsyn�gðxt0 ; xtÞ ¼ ag jjxt0 � xtjj1 þLGðxt0 ;DgÞ ð1Þ
where ag is weight for the L1 term. Dg is a global discriminator
implemented by PatchGANs [15] to recognize xsrxt and xsrxt0 as
real or fake, respectively, andrmeans the concatenation operation.
The generator G is trained to fool the discriminator Dg to obtain
realistic outputs, and the corresponding loss is:

LGðxt0 ;DgÞ ¼ Exs ;xt0 �Pdataðxs ;xt0 Þ½ðDgðxsrxt0 Þ � 1Þ2� ð2Þ
And the adversarial loss function for discriminator Dg is:

LDg ðxt0 ; xt;DgÞ ¼ Exs ;xt0 �Pdataðxs ;xt0 Þ½Dgðxsrxt0 Þ2�
þ Exs ;xt�Pdataðxs ;xtÞ½ðDgðxsrxtÞ � 1Þ2� ð3Þ

Tumor-Aware Synthesis Loss: To improve the synthesis qual-
ity around the tumor region, we introduce a tumor-focused dis-
criminator Dt for training. Let M denote a binary mask around
the tumor according to the bounding box of y, we multiply xs; xt
and xt0 by M respectively, and the corresponding masked results
are denoted as x̂s; x̂t and x̂t0 respectively. Lsyn�t is defined as:

Lsyn�tðx̂t0 ; x̂tÞ ¼ atjjx̂t0 � x̂tjj1 þLGðx̂t0 ;DtÞ ð4Þ
s one encoder and two decoders, where the two highest resolution levels use 2D
rs are shown on the top of feature maps.
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where at is a weight for the L1 term, and Dt is a tumor-focused local
discriminator to recognize the masked images x̂srx̂t and x̂srx̂t0 as
real or fake, respectively. Similarly to Eq. (2) and Eq. (3), we replace
xt; xt0 and Dg by x̂t; x̂t0 and Dt respectively to define the generator’s
local adversarial loss LGðx̂t0 ;DtÞ and the local discriminator’s loss
LDt ðx̂t0 ; x̂t;DtÞ, respectively.

Perceptibility Regularization: As good low-level synthesis
quality measurement such as SSIM and PSNR may not necessarily
lead to a high segmentation performance due to the high-level
semantic gap between xt0 and xt [32], we introduce a perceptibility
loss to encourage a segmentation model trained with real target-
modality images to keep high performance on the synthesized
images with parameters freezed, which makes synthesized and
real target-modality images have similar semantic features. Let
Sp denote a segmentation model pre-trained with real target-
modality images and freezed during training of G, we aim to gen-
erate xt0 so that Sp performs well on xt0 . In this paper, Sp is imple-
mented by the 2.5D U-Net [27], and the perceptibility
regularization is:

Lpðxt0 ; yÞ ¼ LDice Spðxt0 Þ; y
� � ð5Þ

Note that the gradient of Lp is back-propagated to the generator G,
rather than Sp that is freezed.

Overall Synthesis Loss: As shown in Fig. 4, our proposed syn-
thesis loss is a combination of the global synthesis loss, the
tumor-aware synthesis loss and the perceptibility regularization:

Lsyn ¼ Lsyn�g þLsyn�t þ kpLp ð6Þ
where kp is weight for the perceptibility regularization.

3.3. Multi-Task Segmentor with Error-Prediction Consistency

With the synthesized target modality image xt0 and the coarse
segmentation yc , we concatenate them with the original input
image xs and denote the concatenation result as ~x ¼ xsrxt0ryc .
Then ~x is sent to the following segmentation network that can
leverage the information from the synthesized missing modality
and coarse segmentation to obtain better segmentation results
than just using the available modalities for segmentation.

To obtain a fine segmentation considering that a coarse seg-
mentation yc has been incorporated into ~x, there are two basic
approaches: one is to predict the fine segmentation directly [16],
and the other is to first predict the error information in yc [35]
and then combine the error information with yc to obtain a refined
Fig. 4. Illustration of our proposed synthesis loss. Global synthesis loss Lsyn�g encourage
highlights the synthesis quality around the tumor region. The perceptibility loss Lp enc
with real target modality images and then freezed) performs well on the synthesized targ
target modality images.
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segmentation. Differently from existing works using only one of
these two predictions, we take advantages of both of them, and
add a consistency between these two predictions as a regulariza-
tion to improve the robustness. Therefore, we use a dual-task
structure again to implement the fine segmentation network.

Similarly to the dual-branch generator G, our dual-task fine seg-
mentor S has a shared encoder SE and two decoders, where the first
decoder SD1 directly obtains a fine segmentation yf and the second
decoder SD2 predicts the probability of errors (denoted as ye) in yc
and then assembles ye and yc to obtain a refined segmentation
(foreground probability map) yr:

yr ¼ yc � ye ¼ ð1� ycÞye þ ycð1� yeÞ ð7Þ
where when a pixel in yc is 0 (1), a high corresponding value in ye
leads to a high (low) yr value, indicating that this pixel should have
a high probability of being the foreground (background) after
refinement.

As both yf and yr can represent the new segmentation refined
from yc , there should be a consistency between them. Therefore
we define a consistency loss as:

Lconðyf ; yrÞ ¼ jjyf � yrjj22 ð8Þ
The entire loss function for S is defined as:

LSðyf ; ye; yc; yÞ ¼ Lfineðyf ; yÞ þLerrðye; y– ycÞ þLconðyf ; yrÞ ð9Þ
where Lfine measures the difference between the fine prediction yf
and the segmentation ground truth y, and Lerr measures the differ-
ence between ye and mis-segmentations in yc . Both Lfine and Lerr

are implemented by Dice loss. Note that in the binary segmentation
task of this paper, instead of predicting under-segmentation and
over-segmentation respectively [35] that introduces extra difficulty
due to extremely severe class-imbalance, our error prediction ye
indicating whether a pixel value in yc equals to that in y is simpler
to train.

3.4. Overall Loss Function

The overall loss function for training our dual-task generator G
and dual-task fine segmentor S is summarized as:

G�; S� ¼ argminG;S LG þ kSLSð Þ
¼ argminG;S Lsyn þ kcLc þ kSLS

� � ð10Þ
s good quality in the entire image as a whole, and tumor-aware synthesis loss Lsyn�t

ourages segmentation-friendly synthesis so that Sp (a segmentation model trained
et modality image, leading to minimized semantic gap between synthesized and real
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where Lsyn is the synthesis loss, Lc is the coarse segmentation loss
and LS is loss for the fine segmentor S. kc; kS are weighting coeffi-
cients for Lc and LS, respectively. The overall loss function for
training the discriminators Dg and Dt is summarized as:

D�
g ;D

�
t ¼ argminDg ;Dt

LDg þLDt

� � ð11Þ
With Eq. (10) and Eq. (11), the generator G and segmentor S are
trained end-to-end (i.e., the gradient of segmentation loss flows
back to the synthesis network), so that they are adaptive to each
other for the synthesis and segmentation tasks.

4. Experiments and Results

We validated our proposed TISS-Net for target-modality syn-
thesis and brain tumor segmentation in two applications: 1) syn-
thesizing FLAIR images using T1, T2 and ceT1 images for whole
glioma segmentation, and 2) VS tumor segmentation based on syn-
thesizing ceT1 images from T2 MR images.

4.1. Implementation Details

All the experiments were implemented with PyTorch, using an
Ubuntu 20.04 Desktop with an Intel i9-10940X CPU and an NVIDIA
GeForce RTX 2080Ti GPU. Both G and S used the dual-branch net-
work structure illustrated in Fig. 3 based on the backbone of a 2.5D
U-Net [27]. Dg and Dt were based on 16�70�70 PatchGANs [15], as
they have been demonstrated with higher performance than only
letting the discriminator output a scalar to judge the entire syn-
thetic image as a whole. For both glioma and VS segmentation
tasks, we used a batch size of 2, and the patch size was
16�128�128. Adam optimizer was used for training, and the
learning rate for G; S;Dg ;Dtwas initialized to 1� 10�4 in the first
100 epochs and linearly decayed to 0 in the following 150 epochs.
Sp was also implemented by the 2.5D U-Net and pre-trained with
the target modality. The learning rate for Sp was initialized to

1� 10�4 that was halved when no performance improvement
was observed on the validation set for 30 consecutive epochs. Note
that the parameters of Sp was freezed when training TISS-Net. The
hyper-parameter setting was ag ¼ 50;at ¼ 200; kp ¼ 25; kc ¼ 1 and
kS ¼ 25 according to the optimal performance on the validation set.
For the dual-branch segmentor S, we used prediction in the first
branch (yf ) as the segmentation result during inference.

To evaluate low-level synthesis quality, we used Peak Signal to
Noise Ratio (PSNR) and Structural Similarity Index (SSIM). These
two metrics were calculated both globally (i.e., in the entire image
region) and locally (i.e., around the ground truth tumor). In addi-
tion, we evaluated high-level synthesis quality based on percept-
ability, which was measured by the performance of Sp on
synthesized images. A high perceptability indicates a high seman-
tic similarity between synthesized and real target-modality
images. For quantitative evaluation of segmentation performance,
we reported Dice, Average Symmetric Surface Distance (ASSD)
Table 1
Quantitative comparison between different input and loss functions for FLAIR image synthe
Sp (i.e., a segmentation model pre-trained with real FLAIR images and then freezed) to the

Input Loss functions Synthesis

Lsyn�g Lsyn�t Lp Lc Global SSIM Local SSIM

T1, ceT1, T2 U 0.73�0.05 0.50�0.09
T1, ceT1, T2 U U 0.75�0.09 0.52�0.12
T1, ceT1, T2 U U 0.71�0.08 0.49�0.08
T1, ceT1, T2 U U U 0.73�0.05 0.50�0.11
T1, ceT1, T2 U U U U 0.74�0.09 0.50�0.12

T2 U U U U 0.65�0.06 0.37�0.09
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and 95% Hausdorff distance (HD95) between segmentation results
and the ground truth tumor masks.
4.2. Glioma Segmentation from Multimodal MR Images with Absence
of FLAIR

4.2.1. Data
We used the Multimodal Brain Tumor Segmentation Challenge

(BraTS) 2020 training set for experiments [22]. In this dataset, spa-
tially aligned four 3D MRI modalities (T1, ceT1, T2 and FLAIR) of
369 patients with resolution 1.0 mm � 1.0 mm � 1.0 mm and
in-plane size 240�240 were annotated into 3 heterogeneous histo-
logical sub-regions by expert raters: peri-tumoral edema, necrotic
core and non-enhancing tumor core and enhancing tumor core. As
FLAIR images provide a high contrast for the edema region and
thus important for the whole tumor segmentation, we investigate
synthesizing FLAIR images from T1, T2 and ceT1 for whole tumor
segmentation. We randomly selected images from 258, 37 and
74 patients for training, validation and testing, respectively. For
preprocessing, each image was manually cropped along the z-
axis centered on the tumor. The intensity values were normalized
to the range of [-1, 1] for each modality, respectively.
4.2.2. Ablation Study of the Synthesis Method
To evaluate the performance of our segmentation-aware target-

modality image synthesis, we first ignore the segmentor in TISS-
Net (i.e., equals to setting kS to 0), and conducted an ablation study
to investigate effectiveness of each of our proposed losses for the
synthesis: tumor-aware synthesis loss Lsyn�t , perceptibility regu-
larization Lp and using the coarse segmentation branch (i.e., Lc)
as regularization for the synthesis task. The baseline method was
using global synthesis loss Lsyn�g only. The quantitative evaluation
results of different synthesis loss configurations are shown in
Table 1. The segmentation performance (perceptibility) of Sp with
freezed parameters when applied to the synthesized images was
used to measure the domain similarity between synthesized and
real FLAIR images, where a higher perceptibility indicates closer
high-level semantic appearance.

In Table 1, it can be observed that our tumor-aware synthesis
loss Lsyn�t helps to improve the image quality in terms of SSIM
and PSNR, as well as the perceptibility. Lp improves the percepti-
bility of the whole tumor, due to that Lp makes the image synthe-
sis aware of the segmentation, which alleviates the high-level
semantic domain shift between real and synthesized FLAIR images.
We found that Lp and Lc did not improve the SSIM and PSNR
scores. This is mainly due to that these metrics only measure the
low-level image quality and may not be directly related to the
semantic segmentation task. In contrast, Lp and Lc are designed
to enhance high-level semantic information related to segmenta-
tion in the image, and they are optimized for better segmentation
accuracy, rather than low-level pixel intensity similarity between
synthesized and real images. However, for perceptibility measure-
sis for whole glioma segmentation. Perceptibility means the performance of applying
synthesized images for segmentation.

quality Perceptibility

Global PSNR Local PSNR Dice (%) ASSD (mm) HD95 (mm)

22.72�2.07 19.85�1.84 83.20�10.00 2.41�2.23 10.08�12.01
22.99�2.39 20.01�2.14 84.66�8.09 2.06�1.73 8.03�11.06
22.52�2.36 19.40�2.09 84.24�8.43 2.25�2.12 9.82�14.10
22.63�2.47 19.53�2.14 85.74�7.99 1.84�1.29 6.72�6.17
22.76�2.53 19.75�2.05 86.09�7.58 1.76�1.00 6.70�5.92
21.14�2.12 18.00�2.13 83.71�9.84 2.28�1.93 8.94�10.28
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ment, the baseline method obtained an average Dice of 83.20%, and
introducing Lsyn�t and Lp improved it to 84.66% and 85.74%,
respectively. Additionally using Lc to regularize the synthesis task
with the coarse segmentation branch further improved the average
Dice to 86.09%. The results show that our proposed synthesis
method that combines Lsyn�g ;Lsyn�t ;Lp and Lc outperformed
the other variants in synthesizing segmentation-friendly FLAIR
images of glioma. In addition, a visual comparison between synthe-
sized FLAIR images obtained by different loss functions are shown
in Fig. 5. It can be observed that the proposed method obtained
better local contrast and structure details around the tumor region
than the other variants.

In addition, to demonstrate the effectiveness of combining all
the three available modalities as input, we conducted an experi-
ment with only using T2 images as input. The results in the last
row of Table 1 shows that removing T1 and ceT1 from the network
input led the average Dice value to drop from 86.09% to 83.71%,
which shows the importance of leveraging all the available modal-
ities for synthesizing the missing modality for segmentation, as
also demonstrated in previous works [18].
4.2.3. Effectiveness of Fine Segmentation using Error-Prediction
Consistency

To further investigate the effectiveness of the proposed dual-
task fine segmentor based on error-prediction consistency, we
compared it with three variants: 1) only using the fine segmenta-
tion decoder (Lfine), without the error prediction branch; 2) error
prediction branch only (Lerr) without fine segmentation and thus
without consistency loss; 3) predicting fine segmentation and error
in the coarse segmentation simultaneously (Lfine and Lerr) but
without consistency regularization. Quantitative results are shown
in Table 2. It can observed that when taking a concatenation of
source-modality image xs, synthesized target-modality image x0t
and coarse segmentation yc as input, using one of Lfine and Lerr

leads to an average Dice of 86.95% and 86.81% respectively. Com-
Fig. 5. Visual comparison of different loss functio

Table 2
Quantitative evaluation results of different inputs and loss functions for segmentor S in who
modal image with absence of FLAIR, and yc is the coarse segmentation. The last two se
improvement from xs as input based on a paired t-test (p-value <0.05).

Input Training loss

Lfine Lerr Lcon

xs U

xt0 U

x0t ; yc U

U

U U

U U U

x0t ; xs; yc U

U

U U

U U U
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bining Lfine and Lerr together improved the score to 87.17%, and
introducing the consistency loss further improved the score to
87.55%, which outperformed the other variants. We also compared
these variants when using a concatenation of x0t and yc as input of
the segmentor. The results in Table 2 show that our proposed
error-prediction consistency strategy still performed better than
the other three variants.

We also investigated only using xt0 as the input for the fine seg-
mentor (i.e.,Lcon is not applicable), and it can be observed that this
method obtained better results than direct segmentation from xs,
but its performance is much lower than that of our method, as
shown in Table 2. In addition, for our error-prediction consistency
segmentor, we compared yf ; yr and their average in Table 3. It
shows that the three results are very close to each other, and the
average Dice difference between yf and yr was only 0.28% (p-
value > 0.05).

4.2.4. Hyper-parameter Analysis
Our method has three main hyper-parameters related to the

proposed loss function: kp for the perceptibility regularization loss
(Lp), kc for the coarse segmentation loss (Lc), and kS for the fine
segmentor loss (LS). We conducted ablation experiments on the
validation set to investigate the sensitivity of these hyper-
parameters. The results are presented in Fig. 6, which shows that
our method performs the best when kp ¼ 25; kc ¼ 1:0, and
kS ¼ 25. It can be found that the performance our method is rela-
tively not sensitive to kp and ks when they are in the range of
[15,25].

4.2.5. Comparison with State-of-the-art Methods
We further compared our framework with different types of

existing methods for the synthesis and segmentation task: 1) sep-
arated synthesis and segmentation. We respectively used Pix2pix
[15] and PGAN [3] for synthesizing FLAIR based on T1, ceT1 and
T2 images, and then trained a 2.5D U-Net [27] to segment whole
ns for synthesizing FLAIR images of glioma.

le glioma segmentation. xt0 denotes our synthesized FLAIR image, xs is the input multi-
ctions are based on a concatenation of these images as input. y denotes significant

Segmentation Performance

Dice (%) ASSD (mm) HD95 (mm)

84.54�9.62 2.32�2.12 10.75�15.86
86.33�6.85 1.70�0.91 6.40�5.13
86.76�8.11 1.72�1.15 6.68�6.69
86.62�8.39 1.70�1.11 6.57�6.93
86.81�7.86 1.70�1.12 6.81�7.86
87.15�7.41 1.60�0.84 5.83�4.75
86.95�8.02 1.67�1.07 6.36�6.07
86.81�8.75 1.69�1.27 6.55�6.88
87.17�8.56 1.63�1.16 6.34�6.78
87.55�7.62y 1.53�0.85y 5.67�4.92y



Table 3
Quantitative comparison between yf ; yr and their average obtained by our error-
prediction consistency segmentor for whole glioma segmentation.

Results Used Dice (%) ASSD (mm) HD95 (mm)

yf 87.55�7.62 1.53�0.85 5.67�4.92
yr 87.27�7.91 1.60�1.08 6.33�6.28

average 87.47�7.56 1.59�1.04 6.31�8.20

Table 4
Quantitative comparison of different synthesis-based and synthesis-free methods for
whole glioma segmentation. # and � denote separated and end-to-end image
synthesis and segmentation respectively. M denotes synthesis-free methods for the
segmentation task. Bold font highlights the best values obtained by synthesis-based
methods. Results with no significant difference from the upper bound are denoted by
*, according to a paired t-test (p-value > 0.05).

Methods Dice (%) ASSD (mm) HD95 (mm)

#Pix2Pix [15] 84.67�7.93 2.26�2.09 9.12� 11.97
#PGAN [3] 85.79�7.73 1.90�1.29 7.21�7.53
�PSCGAN [36] 86.45�8.04 1.99�1.59 8.62�9.62
� Wang et al. [32] 83.77�8.48 2.41�1.70 9.97�11.26
�UAGAN	 [41] 81.55�2.96 2.53�0.29 not reported
�UAGAN [41] 86.27�8.10 1.96�1.37 8.04�8.47
Mw/o FLAIR 84.54�9.62 2.32�2.12 10.75�15.86
MReal FLAIR 87.49�8.51 1.57�1.71 5.69�4.62
Ours 87.55�7.62� 1.53�0.85� 5.67�4.92�
MUpper bound 88.65�10.01 1.50�1.89 5.54�4.69
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glioma from the concatenation of available and synthesized modal-
ities. These two steps were trained separately. 2) End-to-end syn-
thesis and segmentation. We used the methods of Wang et al. [32],
PSCGAN [36] and UAGAN [41] for this purpose, respectively. As
these methods were originally proposed for 2D images, we
replaced their 2D CNN-based backbones with the 2.5D U-Net
[27] respectively. All these methods were otherwise trained in
the same way as the original papers. As UAGAN [41] had reported
their results on BraTS dataset, we also list their reported results,
which is denoted as UAGAN	 [41]. We found that our re-
implementation of UAGAN had a better performance than the orig-
inal paper, mainly due to the different data split and preprocessing
methods.

Table 4 shows a quantitative comparison between these meth-
ods. For the existing separated synthesis and segmentation meth-
ods, PGAN [3] outperformed Pix2Pix [15], and their average Dice
values were 85.79% and 84.67%, respectively. Among the existing
end-to-end synthesis and segmentation methods, PSCGAN [36]
outperformed the others, with an average Dice of 86.45%. Our
end-to-end cascaded dual-task framework obtained an average
Dice of 87.55%, which outperformed the existing methods.

We also trained a segmentation model based on 2.5D U-Net
only using the available source-modality images, which is denoted
as ‘‘w/o FLAIR”. The same network structure trained and tested
with real FLAIR images only is denoted as ‘‘Real FLAIR”, as shown
in Table 4. We can observe that our framework outperformed these
two methods. It should be noted that compared with ‘‘w/o FLAIR”
that directly uses source-modality images for training and testing,
our method significantly improved the average Dice from 84.54%
to 87.55%. For comparison, we also segmented the whole tumor
from a complete set of the four modalities, and the average Dice
was 88.65%, which serves as a upper bound for our synthesis-
based segmentation. There is no significant difference between
our result and the upper bound (p-value = 0.17 > 0.05 for Dice,
p-value = 0.77> 0.05 for ASSD and p-value = 0.83> 0.05 for HD95).

Fig. 7 shows a visual comparison between our method and the
top three existing methods according to Table 4, i.e., PGAN [3],
PSCGAN [36] and UAGAN [41]. It can be observed that the images
synthesized by PGAN [3] are fuzzier than those of the other meth-
ods. The results of PSCGAN [36] have a different structure com-
pared with the ground truth in some local regions, and UAGAN
[41] introduced some artifacts. In contrast, our method leads to a
better image quality, and its segmentation accuracy is also higher
than that of the compared methods.
Fig. 6. Performance of our method with different hyper-paramete
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4.3. Segmentation of Vestibular Schwannoma

4.3.1. Data
We further used a public VS dataset for experiments [26]. In this

dataset, spatially aligned T2 and ceT1 MR images of 242 patients
with VS were acquired with in-plane resolution around
0.4 mm�0.4 mm, in-plane size 512�512 and slice thickness
1.5 mm. Manually segmented results by an experienced neurosur-
geon and physicist were used as the ground truth by consensus
[26]. We randomly selected images from 169, 24 and 49 patients
for training, validation and testing, respectively. For preprocessing,
each 3D volume was cropped by a cubic box centered on the tumor
with 256, 128 and 40 pixels along the width, height and depth
dimensions, respectively. The intensity values for each modality
were normalized to the range of [-1, 1]. Here we treat T2 as the
available source modality and ceT1 as the target modality to
synthesize.

4.3.2. Ablation Study of the Synthesis Method
To demonstrate the effectiveness of our segmentation-aware

ceT1 image synthesis, in this experiment we ignore segmentor
(i.e., setting kS to 0), and compared different combinations of
Lsyn�g ;Lsyn�t;Lp and Lc , where Lsyn�g is the baseline of using
the global synthesis loss only. Note that Sp was pre-trained on
the ceT1 images and then freezed before training TISS-Net. To eval-
uate the domain similarity between synthesized and real ceT1
images, we measured the segmentation performance (perceptibil-
ity) of Sp when applied to the synthesized ceT1 images, where a
higher perceptibility indicates that they have closer high-level
semantic appearance.

The quantitative evaluation results are shown in Table 5. It can
be observed that our tumor-aware synthesis loss Lsyn�t improved
the image quality in terms of SSIM and PSNR, as well as the percep-
tibility (from 83.26% to 86.03% in terms of average Dice). Despite
that Lp did not improve the SSIM and PSNR scores that measure
r values on the validation set of Brats dataset and VS dataset.



PGAN PSCGAN OursReal T1 UAGAN Real FLAIRReal ceT1 Real T2

Input

Fig. 7. Visual comparison of different methods for glioma FLAIR image synthesis and segmentation. Yellow and green curves show the ground truth and segmentation results,
respectively. Direct segmentation from the input source-modality images (T1, T2 and ceT1) is shown on the T1 image. Columns 4–7 show the segmentation results on the
synthesized FLAIR images.
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low-level image quality, it improved the perceptibility, showing its
effectiveness in reducing the high-level semantic domain shift
between real and synthesized ceT1 images. Our method of combin-
ing Lsyn�g ;Lsyn�t;Lp and Lc achieved higher perceptibility
(87.03% in average Dice) than the other variants, showing its effec-
tivness in synthesizing segmentation-friendly ceT1 images of VS.
Fig. 8 presents a visual comparison between synthesized ceT1
images of VS obtained by different loss functions. It can be
observed that Lsyn�t leads to an improved image quality in the
tumor region, and when combining Lsyn�g ;Lsyn�t;Lp and Lc , the
image contrast and local structure in the synthesised ceT1 image
is closer to those in the real ceT1 image than results of the other
variants.

4.3.3. Effectiveness of Fine Segmentation using Error-Prediction
Consistency

We further investigated the effectiveness of our dual-task fine
segmentor based on error-prediction consistency. We compared
it with three variants: 1) only using the fine segmentation decoder
(Lfine), without the error prediction branch; 2) error prediction
branch only (Lerr) without fine segmentation and thus without
consistency loss; 3) predicting fine segmentation and error in the
coarse segmentation simultaneously (Lfine and Lerr) but without
consistency regularization.
Table 5
Quantitative evaluation results of different loss functions for ceT1 image synthesis and their
segmentation model pre-trained with real ceT1 images and freezed) to the synthesized im

Loss functions Synthesis qualit

Lsyn�g Lsyn�t Lp Lc Global SSIM Local SSIM Glob

U 0.60�0.04 0.68�0.09 23.0
U U 0.65�0.04 0.72�0.10 23.7
U U 0.60�0.04 0.67�0.11 23.0
U U U 0.60�0.04 0.71�0.09 23.3
U U U U 0.62�0.04 0.71�0.10 23.0

Fig. 8. Visual comparison between synthesized ceT1 i
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Quantitative comparison between these methods for VS seg-
mentation are shown in Table 6. It can be observed that when tak-
ing a concatenation of the source-modality image xs, the
synthesized ceT1 image x0t and coarse segmentation yc as input,
using one of Lfine and Lerr leads to an average Dice of 88.39%
and 88.25% respectively. Combining Lfine and Lerr together
improved the average Dice to 88.87%, and introducing the consis-
tency loss further improved the average Dice to 89.46%, which out-
performed the other variants. We also compared these variants
when using a concatenation of x0t and yc as input of the segmentor.
The results in the second section of Table 6 show that our proposed
error-prediction consistency strategy still performed better than
the other three variants.

We also investigated only using the synthesized ceT1 image xt0
as the input for the fine segmentor (where Lcon is not applicable),
and found that it obtained better results than direct segmentation
from T2 images. Its average Dice was 87.20%, compared with
89.33% obtained by using a concatenation of xt0 and yc and
89.46% obtained by using a concatenation of xs; xt0 and yc.

4.3.4. Comparison with State-of-the-art Methods
Additionally, we compared our framework with different types

of existing methods for the synthesis and segmentation task: 1)
Separated synthesis and segmentation. We respectively used Pix2-
effect on VS segmentation. Perceptibility means the performance of applying Sp (i.e., a
ages for segmentation.

y Perceptibility

al PSNR Local PSNR Dice (%) ASSD (mm) HD95(mm)

6�1.33 22.71�1.92 83.26�12.85 0.89�0.75 3.32�3.91
0�1.64 23.42�1.80 86.03�7.50 0.87�0.69 2.22�1.45
6�1.38 23.34�2.02 84.66�9.78 0.72�0.50 2.51�2.80
7�1.41 22.83�2.20 86.57�7.50 0.55�0.20 1.70�1.07
6�1.59 23.33�2.02 87.03�7.50 0.55�0.22 1.65�1.32

mages of VS obtained by different loss functions.



Table 6
Quantitative evaluation results of different inputs and loss functions for segmentor S in VS segmentation. xt0 denotes our synthesized ceT1 image, xs is the input T2 image, and yc is
the coarse segmentation. The last two sections are based on a concatenation of these images as input. y denotes significant improvement from xs as input based on a paired t-test
(p-value <0.05).

Input Training loss Segmentation Performance

Lfine Lerr Lcon Dice (%) ASSD (mm) HD95 (mm)

xs U 86.00�14.79 0.71�0.53 1.96�1.42
xt0 U 87.20�6.22 0.51�0.20 1.54�0.72
x0t ; yc U 88.31�6.44 0.45�0.11 1.43�0.55

U 88.36�4.67 0.47�0.13 1.40�0.49
U U 89.03�7.12 0.46�0.15 1.40�0.56
U U U 89.33�5.89 0.44�0.16 1.35�0.69

x0t ; xs; yc U 88.39�7.08 0.45�0.15 1.35�0.61
U 88.25�6.29 0.47�0.17 1.41�0.84

U U 88.87�4.51 0.43�0.15 1.32�0.59
U U U 89.46�5.49y 0.42�0.15y 1.31�0.59y
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pix [15] and PGAN [3] for the synthesis step, and trained a 2.5D U-
Net [27] to segment VS from a concatenation of T2 and synthesized
ceT1 images. These two steps were trained separately. 2) End-to-
end synthesis and segmentation. We used the methods of Wang
et al. [32], PSCGAN [36] and UAGAN [41] for this purpose, respec-
tively. As these methods were originally proposed for 2D images,
we replaced their 2D CNN-based backbones with the 2.5D U-Net
[27] respectively. All these methods were otherwise trained in
the same way as the original papers.
Table 7
Quantitative comparison of different synthesis-based and synthesis-free methods for
VS segmentation. # and � denote separated and end-to-end methods for synthesis
and segmentation, respectively. M denotes synthesis-free methods for the segmen-
tation task. Bold font highlights the best values obtained by the synthesis-based
methods. y denotes significant improvement from ‘‘T2 only” based on a paired t-test
(p-value <0.05).

Methods Dice (%) ASSD (mm) HD95 (mm)

#Pix2Pix [15] 83.75�15.00 0.78�0.43 2.60�2.37
#PGAN [3] 82.90�12.31 1.19�1.09 2.99�5.52
� [32] 85.89�6.50 0.53�0.14 1.54�0.59
�PSCGAN [36] 84.65�10.07 0.65�0.39 1.79�0.87
�UAGAN [41] 87.30�8.65 0.50�0.43 1.65�0.62
MT2 only 86.00�14.79 0.71�0.53 1.96�1.42
MReal ceT1 92.80�3.83 0.31�0.13 1.09�0.24
Ours 89.46�5.49y 0.42�0.15y 1.31�0.59y

Fig. 9. Visual comparison of different methods for VS image synthesis and segmenta
respectively. Columns 2–5 show the segmentation results on the synthesized ceT1 imag
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Table 7 shows a quantitative comparison between these meth-
ods. Our method achieved an average Dice of 89.46%, compared
with 83.75% of Pix2Pix [15], 82.90% by PGAN [3], 85.89% by Wang
et al. [32], 84.65% by PSCGAN [36] and 87.30% by UAGAN [41],
respectively. The results demonstrate that our cascaded dual-task
framework outperformed the existing methods.

We also trained a segmentation model based on 2.5D U-Net
using the T2 images and real ceT1 images, respectively for compar-
ison. It can be observed that our framework improved the average
Dice from 86.00% to 89.46% compared with simply segmenting
from T2 MRI and the improvement was significant based on a
paired t-test (p-value<0.05). Using real ceT1 images for training
and testing achieved an average Dice of 92.80%. Visual comparison
in Fig. 9 also shows the better performance of our framework than
the other synthesis-based methods and direct segmentation from
the T2 images.
5. Discussion

Accurate segmentation of brain tumors relies on multi-modal
images or high-contrast images, but the access to some modalities
may be limited as it is expansive, time-consuming or faced with
safety concerns with the use of contrast agents, which has been a
crucial obstacle for developing deep learning methods for accurate
segmentation of brain tumors. To alleviate these problems, we pro-
pose a new method for missing modality synthesis for better seg-
tion. Yellow and green curves show the ground truth and segmentation results,
es.
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mentation. Our proposed TISS-Net is a unification of simultaneous
synthesis and segmentation through dual-task networks, coarse-
to-fine segmentation and error-prediction consistency. Compared
with typical synthesis followed by segmentation methods [39,5],
our framework is trained end-to-end, so that the synthesis and
segmentation are adaptive to each other and it could obtain
segmentation-friendly synthesis results. Differently from existing
end-to-end methods for image synthesis [31,36], we propose a cas-
caded dual-task architecture, and introduce several regularization
strategies to improve the performance, i.e., simultaneous synthesis
and coarse segmentation, perceptibility regularization and error-
prediction consistency.

The general effectiveness of our method has been demonstrated
on two different brain tumor segmentation tasks. For the whole
glioma segmentation, our synthesis-based method achieved a per-
formance that is comparable to segmentation from multi-modal
images with FLAIR. However, we found that synthesizing ceT1
images of VS from a single modality of T2 is more challenging as
shown in Table 7, and similar phenomenon had also been reported
by previous works [18]. The main reason is that the input single-
modality T2 image has a low contrast and contains limited infor-
mation of the contrast agent. Introducing shape and contrast prior
information could be a potential solution to further narrow the
gap, which will be investigated in the future. Due to the memory
limitation, we used 2.5D networks considering anisotropic resolu-
tion and to achieve a trade-off among patch size, 3D feature learn-
ing and GPU memory consumption. However, our method can also
be extended with 3D networks.

This work also has some limitations. First, the cascaded net-
works with dual decoders increase the model complexity, and it
has more parameters than methods using single-decoder networks
or single-stage methods. Compared with Pix2Pix [15] and PGAN
[3], our method increases the model size from 81.06 M to
126.96 M due to the auxiliary decoders under the the same back-
bone. On the VS dataset, the training time per epoch is 134 s, com-
pared with 126 s of PGAN. However, at the testing stage, as only
the first branch is used in the segmentor, our method has a similar
inference time compared with existing methods, i.e., 0.09 s/case
for PGAN and 0.11 s/case for TISS-Net, respectively. Second, in this
work, we have investigated binary segmentation of brain tumors
based on synthesis of a missing modality, and its effectiveness on
multi-class segmentation tasks remains to be verified. In addition,
this work only considered the synthesis of a single missing modal-
ity, and in some cases, multiple modalities might be missing. It is of
interest to extend our method to deal with multiple missing
modalities in the future.
6. Conclusion

In conclusion, we propose a novel cascaded dual-task network
TISS-Net to synthesize a missing modality for brain tumor segmen-
tation given one or a set of available source modalities. To synthe-
size segmentation-friendly target-modality images, we employ a
dual-branch network to predict the target modality and a coarse
segmentation simultaneously, and propose a tumor-aware synthe-
sis loss with perceptibility regularization that improves the image
quality around the tumor region and reduces the high-level
domain gap between synthesized and real target-modality images.
For the final segmentation network, a consistency loss between
fine segmentation and error prediction in the coarse segmentation
is proposed for regularization. Experiments on glioma and VS
images show that our TISS-Net outperformed state-of-the-art seg-
mentation methods based on target-modality image synthesis, and
it leads to significantly higher accuracy than segmentation from
the original partial modalities. This work increases the accuracy
11
of automated tumor assessment with a missing modality or with-
out the need of gadolinium-based scanning that is associated with
more time consumption or even potentially harmful side-effects of
cumulative gadolinium contrast agent use. In the future, it is of
interest to apply the proposed method for other types of target
modalities and tissues, and investigate more efficient network
structures for the synthesis and segmentation.
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