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Abstract

This paper demonstrates how two different methods used to calculate population-level

mobility from Call Detail Records (CDR) produce varying predictions of the spread of epi-

demics informed by these data. Our findings are based on one CDR dataset describing

inter-district movement in Ghana in 2021, produced using two different aggregation method-

ologies. One methodology, “all pairs,” is designed to retain long distance network connec-

tions while the other, “sequential” methodology is designed to accurately reflect the volume

of travel between locations. We show how the choice of methodology feeds through models

of human mobility to the predictions of a metapopulation SEIR model of disease transmis-

sion. We also show that this impact varies depending on the location of pathogen introduc-

tion and the transmissibility of infections. For central locations or highly transmissible

diseases, we do not observe significant differences between aggregation methodologies on

the predicted spread of disease. For less transmissible diseases or those introduced into

remote locations, we find that the choice of aggregation methodology influences the speed

of spatial spread as well as the size of the peak number of infections in individual districts.

Our findings can help researchers and users of epidemiological models to understand how

methodological choices at the level of model inputs may influence the results of models of

infectious disease transmission, as well as the circumstances in which these choices do not

alter model predictions.

Author summary

Predicting the sub-national spread of infectious disease requires accurate measurements

of inter-regional travel networks. Often, this information is derived from the patterns of

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011368 August 10, 2023 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gibbs H, Musah A, Seidu O, Ampofo W,

Asiedu-Bekoe F, Gray J, et al. (2023) Call detail

record aggregation methodology impacts

infectious disease models informed by human

mobility. PLoS Comput Biol 19(8): e1011368.

https://doi.org/10.1371/journal.pcbi.1011368

Editor: Yamir Moreno, University of Zaragoza:

Universidad de Zaragoza, SPAIN

Received: January 25, 2023

Accepted: July 17, 2023

Published: August 10, 2023

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1011368

Copyright: © 2023 Gibbs et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: CDR mobility data

used in this study was provided by Vodafone

Ghana in partnership with the Flowminder

Foundation and Ghana Statistical Service. This data

https://orcid.org/0000-0003-4413-453X
https://doi.org/10.1371/journal.pcbi.1011368
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011368&domain=pdf&date_stamp=2023-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011368&domain=pdf&date_stamp=2023-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011368&domain=pdf&date_stamp=2023-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011368&domain=pdf&date_stamp=2023-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011368&domain=pdf&date_stamp=2023-08-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011368&domain=pdf&date_stamp=2023-08-10
https://doi.org/10.1371/journal.pcbi.1011368
https://doi.org/10.1371/journal.pcbi.1011368
http://creativecommons.org/licenses/by/4.0/


mobile device connections to the cellular network. This travel data is then used as an

input to epidemiological models of infection transmission, defining the likelihood that

disease is “exported” between regions. In this paper, we use one mobile device dataset col-

lected in Ghana in 2021, aggregated according to two different methodologies which rep-

resent different aspects of inter-regional travel. We show how the choice of aggregation

methodology leads to different predicted epidemics, and highlight the conditions under

which models of infection transmission may be influenced by methodological choices in

the aggregation of travel data used to parameterize these models. For example, we show

how aggregation methodology changes predicted epidemics for less-transmissible infec-

tions and under certain models of human movement. We also highlight areas of relative

stability, where aggregation choices do not alter predicted epidemics, such as cases where

an infection is highly transmissible or is introduced into a central location.

Introduction

The volume of travel between geographic locations is widely used as an input to epidemiologi-

cal models of disease transmission. Mobility data provides an approximate representation of

the travel of a population between subnational areas by recording the movement of a sample

of individuals. One such form of mobility data is Call Detail Record (CDR) data which are col-

lected from the customers of mobile network operators and record mobile device connections

to the cellular network.

Metapopulation models [1] informed by CDR mobility data have been widely used to study

the dynamics of infectious diseases including influenza [2,3], rubella [4], malaria [5,6] cholera

[7] dengue fever [8] Ebola virus disease [9,10], HIV [11] and COVID-19 [12,13]. Transmission

models informed by CDR mobility data are particularly useful in low and middle income

countries where there has been a widespread adoption of mobile devices. These data can

address a lack of prior knowledge about inter-regional patterns of travel and in turn, can build

greater capacity for disease surveillance and prediction. Understanding what factors influence

estimates of population mobility will allow for more accurate interpretation of the results of

infectious disease models which rely on human mobility data. In this paper, we focus on fac-

tors introduced at the CDR aggregation stage, where individual records from mobile subscrib-

ers are aggregated to describe population-level mobility.

CDR data used in infectious disease research is typically produced as an aggregated, cen-

sored network describing the volume of travel between pairs of locations in a specified time

period. The aggregation of CDR data transforms sensitive individual-level data into a descrip-

tion of population-level mobility, thereby reducing the risk of disclosing personally identifiable

information. CDR aggregates can highlight different aspects of human mobility, from describ-

ing the volume of travel between sub-national districts (as addressed in this study) [14,15], to

recurrent travel to/from a home district [16,17]. CDR data may be limited by the size of the

customer segment from which it is collected, or by the interaction between individuals and a

mobile device. To address sparsity in the sample of individuals or travel behaviours captured

in CDR data, the data may be rebalanced to better match official sources of travel data [18].

Alternatively, CDR data may be used as the empirical input to models of human mobility

which can estimate volumes of travel in sparse areas [19].

Previous research has demonstrated how estimates of infectious disease can be altered by

the movement model chosen to represent population mobility, although these movement

models are informed by the same input parameters [19,20]. In our research, we investigate the
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impact of differences at the level of inputs to movement models, as well as the influence of the

choice of movement model itself. We show how movement models are sensitive to empirical

inputs and how this sensitivity leads to differing predictions of infection dynamics by subse-

quent epidemiological models.

Methodological choices about CDR data aggregation have important implications for the

reliability of infectious disease models informed by human mobility. In our research, we focus

on the extent to which methodological choices used when aggregating CDR data impact esti-

mates of population mobility [14]. We show how, given identical CDR datasets, two common

methodological choices during the aggregation procedure produce different representations of

an empirical movement network. The first is the “all pairs” methodology which retains the

long distance network connections while inflating the number of reported travellers as a con-

sequence; while the second is the “sequential” methodology which was designed to accurately

reflect the volume of travel between locations but does not include long distance connections.

These methods were implemented during the COVID-19 pandemic to provide rapid indica-

tors of changes in human movement because of their low computational complexity in trans-

forming large individual CDR datasets into useful representations of population-level

mobility.

We use CDR data collected by Vodafone Ghana and processed by the Flowminder Founda-

tion using the open source FlowKit software [21] to investigate the impact of CDR aggregation

methods on estimates of human mobility and subsequently, on the results of modelled infec-

tious disease dynamics. This data is the result of a partnership between Ghana Statistical Ser-

vice, Ghana Ministry of Health, Ghana Health Service, Vodafone Ghana, and the Flowminder

Foundation [22,23].

Results

Aggregation of CDR data

We used Call Detail Record (CDR) data from Vodafone Ghana, a mobile network operator

which collects CDRs from subscribers to calculate billing charges. The data used in this study

records all transactions between a mobile device and the cellular network including calls, text

(SMS) messages, and data usage (this is sometimes referred to as XDR data). The approximate

location of a device can then be estimated using the location of the connected cell tower.

“Movement” of devices is derived from the sequence of locations in which a mobile device

connects to a cell tower. We use CDR data aggregated to the level of districts (Administrative

Level 2).

We explore the impact of two different CDR aggregation methodologies: “all pairs” and

“sequential” [24]. Given the movement of one device through the same sequence of districts,

these methodologies produce a different movement network, one representing all connections

between transit districts and one recording only sequential connections (Fig 1A and 1B). In

the all-pairs network, long distance connections are retained at the expense of over-estimation

of the volume of travel in the network, as devices may be counted more than once. Alterna-

tively, in the sequential network, the number of trips in the network accurately represents the

quantity of devices in the movement network while omitting long-distance connections

(Fig 1C). Further, the sequential network will maintain a constant relationship between transit

locations and network connections (Fig 1D) while in the all pairs network, an increase in the

number of transit locations will accelerate the number of network connections for each device

(and thereby increase the overall density of the network).
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Differences in estimated population movement

We found that the all pairs methodology recorded an average of 2.33 million daily trips while

the sequential methodology recorded 1.35 million trips (41% fewer trips) (Fig 2). For individ-

ual origin-destination pairs common to both networks, the sequential network had an average

of 43% less travel compared to the all pairs network (Fig A in S1 Text). Aside from a higher

overall volume of travel, the all pairs network was also more connected than the sequential net-

work, with 13,523 connections compared to 5,805, a 57% difference. The all pairs network was

also more dense (a comparison of the number of observed connections and the number of pos-

sible connections) compared to the sequential network (0.18 compared to 0.08 for the sequen-

tial network) (Table 1). The higher density of the all pairs network is likely a result of the

increased number of trips and the uneven distribution of cell sites in Ghana (Figs B and C in

S1 Text).

Impact of aggregation on modelled human movement

Overall, each movement model reflected the differences in the empirical networks, with more

connections and daily trips between districts in the all pairs methodology. However, the size of

these differences varied based on the construction of the movement model (Fig 3 and Table 2).

The power law gravity model produced a near-fully connected network based on both aggrega-

tion methodologies but a large difference in the number of modelled trips (+46% more trips in

the all pairs network). The exponential gravity model produced a less connected network over-

all, with greater differences in the number of connections (+39%), but somewhat smaller dif-

ferences in the number of modelled trips (+43%) in the all pairs network. The radiation model

produced smaller differences in the number of trips between aggregation methodologies

Fig 1. Differences between CDR aggregation methodologies. Synthetic networks showing the transport network created by a single

device moving through four districts, aggregated using a) the sequential methodology and b) the all pairs methodology. The number of

network connections with increasing numbers of transit districts in c) the sequential network, and d) the all pairs network.

https://doi.org/10.1371/journal.pcbi.1011368.g001
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(+38% in the all pairs network), but produced a less connected network compared to the

power law gravity model or exponential gravity model (for sequential connections only).

We compared the modelled movement networks to the underlying empirical networks,

finding that the radiation model had the lowest overall Mean Absolute Percentage Error

(MAPE) and highest R2 values compared to other models, indicating closer fit with the empiri-

cal data, but produced higher Root Mean Squared Error (RMSE) compared to the other mod-

els (Table 3). This likely indicates that the radiation model had better overall fit but introduced

large errors for connections between certain locations. Because models were trained on differ-

ent underlying empirical networks, these measures of model performance cannot be compared

between different aggregation methodologies.

We compared the empirical networks and modelled networks, and calculated differences

between aggregation methodologies for both the empirical and modelled networks predicted

by each movement model (Figs 4, D, E, and F in S1 Text). Overall, we observe greater differ-

ence in the number of travellers recorded by different aggregation methodologies with respect

to distance, as the length of connections increases, there is greater difference between the

empirical networks. For the predictions of movement models, the difference between aggrega-

tion methodologies reflects the underlying construction of each model. This is especially evi-

dent in both gravity models (Figs 4B, 4C, Dd, and Ed in S1 Text), whereas the difference in the

Table 1. Differences in observed movement caused by aggregation methodology. Differences between two move-

ment networks computed from the same underlying CDR data.

All pairs Sequential

Total Connections 13,523 5,805

Daily Trips 2,331,125 1,354,908

Average Degree of a district 99.8 42.8

Network Density 0.18 0.08

https://doi.org/10.1371/journal.pcbi.1011368.t001

Fig 2. Aggregation methodology increases reported movement with identical underlying CDR data. The number of recorded trips

relative to a) district population and b) the number of cell sites in a district. c) The all pairs movement network and d) the sequential

movement network. Base map data are publicly available under the MIT licence from: https://github.com/hamishgibbs/ghana_cdr_

aggregation.

https://doi.org/10.1371/journal.pcbi.1011368.g002
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radiation model (Figs 4D and Fd in S1 Text) more closely approximates the difference

observed in the empirical networks.

Results of aggregation methodology on an SEIR metapopulation model

We found that different aggregation methodologies influenced the epidemic trajectories of a

stochastic SEIR metapopulation model but that this influence was highly sensitive to the choice

of mobility model and R0 (Fig 5). Under mobility models that produced a more sparse mobility

networks (the Exponential Gravity and Radiation models), the use of the all pairs aggregation

methodology resulted in significantly different infection dynamics including an earlier epi-

demic peak, higher peak number of infections, shorter epidemic length, and earlier average

time of infection arrival in each district (Table 4 and Figs 5, G, and H in S1 Text). This finding,

however, was not consistent for the Power Law Gravity Model, which produced very similar

epidemics irrespective of the aggregation methodology. The differences in simulated epidem-

ics were also influenced by the infectiousness of the epidemic, with aggregation methodology

causing larger differences in epidemic characteristics for lower values of R0.

Fig 3. Empirical and modelled networks informed by different aggregation methodologies. Comparison of the empirical movement networks (left) and

modelled networks for three types of movement models. Higher numbers of travellers in the all pairs network translates into a higher number of modelled

travellers for all models.

https://doi.org/10.1371/journal.pcbi.1011368.g003

Table 2. Differences in travel network characteristics by movement model and aggregation methodology. The difference in the number of modelled connections and

daily trips using different models of human movement. The difference between empirical networks is reflected in predictions from each movement model.

All pairs aggregation Sequential aggregation

Model Connections Daily Trips Connections Daily Trips

Gravity (Exponential) 22,764 2,639,262 13,979 1,503,146

Gravity (Power) 73,170 3,958,835 73,168 2,137,533

Radiation (Basic) 16,886 2,148,336 14,184 1,332,434

https://doi.org/10.1371/journal.pcbi.1011368.t002
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To understand whether differences in the progression of simulated epidemics were driven

by differences in the topology of the transmission network, or merely indicated a “slowing” of

similar infection trees under the sequential methodology, we calculated Spearman’s rank cor-

relation coefficient for the timing of epidemic arrival in each district. The Spearman rank cor-

relation coefficient shows significant similarity in the sequences of infected districts under

different aggregation methods, with a minimum correlation of 0.86 for all parameter combina-

tions, with many simulated epidemics near or equal to 1 under either aggregation methodol-

ogy (Table A in S1 Text). This indicates that, although epidemics may exhibit differences in

the speed with which an infection spreads, these differences are largely driven by increases in

the volume of travel around the movement network, not a change in the topology of the trans-

mission network, which would result in different sequences of infected districts.

Table 3. Evaluation of movement models for different aggregation methodologies. The Root Mean Squared Error (RMSE), Mean Average Percentage Error (MAPE),

and R2 comparing modelled movement to the empirical movement networks. Note that because models were informed by different empirical networks created from dif-

ferent aggregation methodologies, the evaluation cannot be compared between methodologies.

All pairs aggregation Sequential aggregation

Model RMSE MAPE R2 RMSE MAPE R2

Gravity (Exponential) 764.44 1.72% 0.33 659.74 2.33% 0.24

Gravity (Power) 742.73 1.21% 0.51 655.94 1.80% 0.41

Radiation (Basic) 1,292.40 0.95% 0.65 725.92 0.91% 0.68

https://doi.org/10.1371/journal.pcbi.1011368.t003

Fig 4. Comparison of empirical and modelled travel networks by aggregation methodology. The choice of aggregation methodology results in lower

number of travellers in the sequential network in a) the empirical network, b) the exponential gravity model, c) the power law gravity model, and d) the

radiation model, thereby leading to an underestimation of the number of travellers compared to the all pairs network.

https://doi.org/10.1371/journal.pcbi.1011368.g004
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Table 4. Difference in epidemic characteristics between aggregation methodologies. The results of independent samples t-tests: 95% confidence intervals and p-values

testing differences between the characteristics of simulated epidemics under different aggregation methodologies. Confidence intervals indicate the range of difference

between the Sequential and All Pairs methodologies for each quantity (i.e. Column 1, Row 1—epidemics in the All Pairs network had an epidemic peak 96.91 to 149.04

days earlier compared to the sequential network). N/A values indicate some epidemic simulations that did not end in the modelled time period with R = 1.25.

R0 Gravity (Exponential) Gravity (Power) Radiation (Basic)

Epidemic peak time (days) 1.25 96.91 to 149.04 (<0.0001) -13.53 to 24.44 (0.5735) 29 to 71.31 (<0.0001)

1.5 99.57 to 121.62 (<0.0001) -3.03 to 6.59 (0.4688) 27.69 to 39.89 (<0.0001)

3 49.83 to 57.82 (<0.0001) 0.18 to 0.85 (0.0023) 11.52 to 14.03 (<0.0001)

Epidemic peak infections 1.25 -94,957.63 to -79,615.91 (<0.0001) -8,685.66 to 10,724.89 (0.8368) -55,633.99 to -40,522.18 (<0.0001)

1.5 -335,324.94 to -315,072.41 (<0.0001) -4,070.94 to 19,049.5 (0.2041) -158,879.79 to -141,001.94 (<0.0001)

3 -1,683,016.56 to -1,643,336.03 (<0.0001) -40,064.16 to -35,837.81 (<0.0001) -560,367.84 to -512,214.82 (<0.0001)

Epidemic Length 1.25 N/A N/A N/A

1.5 284.1 to 314.54 (<0.0001) -7.01 to 16.48 (0.429) 45.68 to 70.16 (<0.0001)

3 119.74 to 124.07 (<0.0001) -1.13 to 1.56 (0.7552) 17.01 to 20.19 (<0.0001)

Average time of 1st infection 1.25 201.17 to 227.42 (<0.0001) 14.49 to 22.18 (<0.0001) 61.65 to 79.54 (<0.0001)

1.5 144.96 to 157.82 (<0.0001) 8.12 to 11.69 (<0.0001) 37.39 to 44.22 (<0.0001)

3 56.72 to 61.33 (<0.0001) 2.92 to 3.54 (<0.0001) 12.66 to 14.48 (<0.0001)

Average time of 5th infection 1.25 169.96 to 200.19 (<0.0001) -1.73 to 14.89 (0.1205) 51.72 to 74.56 (<0.0001)

1.5 133.09 to 146.15 (<0.0001) 0.15 to 5.47 (0.0387) 34.06 to 41.59 (<0.0001)

3 54.9 to 59.43 (<0.0001) 1.57 to 2.23 (<0.0001) 12.12 to 13.95 (<0.0001)

https://doi.org/10.1371/journal.pcbi.1011368.t004

Fig 5. Comparison of recovered individuals in simulated national epidemics by aggregation method, movement model, and R0. Density intervals show

median, 20%, 60%, and 90% density distributions for 100 epidemic simulations for each parameter combination. Difference between solid and dotted lines

indicates variation in the progression of national epidemics caused by aggregation methodology. Tamale South, Manhyia South and Okaikoi South are urban

districts in the 3 largest cities of Ghana, and Nkwanta South and Lawra are rural districts. Base map data are publicly available under the MIT licence from:

https://github.com/hamishgibbs/ghana_cdr_aggregation.

https://doi.org/10.1371/journal.pcbi.1011368.g005
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We found that the difference between aggregation methodologies was highly sensitive to the

transmissibility and the location of infection introduction (Figs 6, I, and J in S1 Text). There

was little difference between the timing and size of epidemics caused by aggregation methodol-

ogy when an infection had higher R0 or was introduced into central districts in the middle and

southern parts of Ghana, which include the largest cities in Ghana: Kumasi and Accra respec-

tively. However, the choice of aggregation methodology produced a greater difference in the

progression of the modelled epidemic as infections were introduced into more rural locations,

particularly in Northern areas, or were less transmissible (R0 = 1.25, or R0 = 1.5).

We found that the choice of movement model had a notable effect on the timing of national

epidemic peaks between aggregation methodologies. This reflects the differences in the under-

lying construction of each movement model and their subsequent impacts on disease exporta-

tion between districts. The exponential gravity model, for example, produced a more sparse

movement network than the power law gravity model, which led to a spatial regularity in the

timing of the epidemic peak because the effect of aggregation has been exaggerated by the

modelled travel networks. By contrast, the power law gravity model, which produced a more

connected network overall, produced more spatial heterogeneity in difference between epi-

demic peaks, particularly for less transmissible infections (R0 = 1.25) (Fig L in S1 Text). The

arrival of infection based on the sequential aggregation methodology in certain districts may

reflect the greater degree of randomness in the exportation of infections in a well-connected

network. The radiation model showed less spatial heterogeneity, with delayed epidemics in the

Northern areas of Ghana and around Lake Volta for less transmissible infections (R0 = 1.25).

Discussion

In this paper, we demonstrate the way that choices in the aggregation of CDR data can influ-

ence the results of models of human mobility and predictions of the spread of epidemics

Fig 6. Difference between the peak timings of national epidemics for different movement models. Comparison of epidemic progression between

aggregation methodologies for an epidemic with R0 = 1.5 seeded in each district. Negative values indicate an earlier peak in the model informed by the all pairs

network. Epidemics informed by different models of human movement show how differences in aggregation methodology vary spatially as a result of

aggregation methodology and because of the choice of movement model. Base map data are publicly available under the MIT licence from: https://github.com/

hamishgibbs/ghana_cdr_aggregation.

https://doi.org/10.1371/journal.pcbi.1011368.g006
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informed by modelled human mobility. We show how two CDR aggregation methodologies

used to respond to the COVID-19 pandemic produce different predicted epidemics in Ghana.

The all pairs methodology, which produces a more densely connected network with higher

volumes of travel, tends to produce an earlier arrival of the epidemic in all districts, with a

higher peak number of infections. We show, however, that the difference between methodolo-

gies is sensitive to the transmissibility of infections, the location of infection introduction, and

the choice of epidemic model and that in some cases, there is little difference between epidem-

ics predicted using either aggregation methodology. For a highly transmissible infection (R0 =

3), or an infection introduced into a fully connected travel network (such as the network pro-

duced by the power law gravity model), there is no significant difference between aggregation

methodologies because infection is spread rapidly between locations, beginning local chains of

transmission which dominate the dynamics of a predicted epidemic. However, for a less trans-

missible infection (R0 = 1.5 or 1.25), or for infection introduced into a more sparsely con-

nected travel network, infections spread more gradually, especially when disease is introduced

in a less central district, the choice of aggregation methodology produces significantly different

epidemic progressions.

A large quantity of research has used CDR data as an input to transmission models for a

range of infectious diseases in different national contexts. COVID-19 provided a new chal-

lenge for the use of CDR data because of the need to provide near-real time insights about pop-

ulation movement in a way that used limited computational resources to produce aggregated

estimates of population movement. The aggregation methodologies considered in this paper

were developed in this context, balancing the need to describe population movements with the

need for rapid, low-complexity methods for their generation [17]. This need is particularly

salient in low and middle income country contexts where computational resources are often

constrained and there is limited capacity for disease surveillance, as well as in rapidly develop-

ing epidemics which require up to date estimates of changing patterns of travel behaviour.

The choice of CDR aggregation methodology is typically an initial step in modelling disease

transmission, and as such, there is little research concerning the impact of these apparently

minor methodological choices on the predictions of epidemiological models. However, there

has been significant research interest in how different choices of mobility data, or different

mobility models can impact the progression of an epidemic. This has included the comparison

of empirical and modelled movement networks [19,25], varying mobility model constructions

[20,26,27], and varying sources of empirical mobility data [2,16,28]. A key task for human

mobility researchers is to understand areas of stability in epidemiological models informed by

human mobility, where choices of mobility data or mobility model construction influence epi-

demiological models in predictable ways.

Previously published research has used a variety of methods to aggregate CDR data, from

aggregating call volumes between pairs of locations, as addressed in this paper, to methods

detecting changes in home locations defined by common presence [8] or night-time location

[7,29]. Other research has used hybrid methods, such as recording travel to all administrative

districts relative to device’s home location [30]. Ultimately, the choice of aggregation method-

ology, as well as the spatial and temporal units used for aggregation, should be chosen based

on a specific hypothesis in agreement with available understanding of underlying mechanisms

of disease transmission. Future research can help to identify the circumstances, such as less

transmissible infection or transmission in rural areas, under which methodological choices at

the stage of CDR aggregation can produce variations in the predictions of epidemic models.

Because this is a novel study, we are unable to confirm the external validity of our findings

across other contexts. We therefore call for further studies that use the same methodology to

generate wider analysis of disease dynamics in sub-Saharan African countries other than
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Ghana to assess whether the adoption of CDRs as inputs to epidemiological models will pro-

duce similar challenges as those found in the present study. However, we argue that our study

is internally valid as extensive attempts were made to minimise any forms of systematic error

that could potentially occur in this modelling exercise by accounting for variations in infection

transmissibility, different models of human movement, and sensitivity to the location of infec-

tion introduction.

This paper focuses on the impact of methodological choices during the aggregation of CDR

records. While these choices may result in important differences in observed patterns of move-

ment, there are many other factors which influence the quantity and structure of movement

captured by aggregated CDR data. These factors include uneven patterns of mobile phone

usage and differences in individual travel behaviour. Some factors, like access to mobile

devices or transportation may be further related to demographic characteristics like socio-eco-

nomic status.

Technical factors may also alter the set of mobile devices included in CDR data. One such

example is the uneven distribution of cell towers resulting in areas with minimal network con-

nection. Mobile devices in these areas may be omitted from CDR data or may have a lower

probability of generating CDRs regardless of the movement or activity of a given device. Cell

towers are unevenly distributed in Ghana, clustering in population centres and along transpor-

tation networks. Cell tower density is also correlated with population, meaning that samples of

CDR data may overrepresent devices located in more populous areas.

Despite the numerous factors which influence the movement behaviour represented by

CDR data, we consider that the accelerating number of travellers relative to cell tower density

observed in this study points to the influence of a considerably small methodological change

on the level of movement in our dataset. Other factors do not influence the difference between

the empirical networks or subsequent model outputs because both aggregates were produced

from the same underlying CDRs. The influence of the aggregation methodology on observed

levels of movement is further supported by the association between the observed volume of

movement and the theoretical prediction of movement volume.

We have shown that aggregation methodology impacts the results of movement and epide-

miological models informed by CDR data and that certain aspects of these models are more

sensitive to the effect of CDR aggregation. While our findings should increase researchers’ cau-

tion when using CDR aggregates, this source of mobility data remains invaluable for under-

standing patterns of human migration, particularly in low and middle income countries like

Ghana. Moreover, CDR aggregates are widely used in operational settings, as the inputs to

movement and epidemiological models and to inform government decision makers. The task

of human movement researchers will be to continue to improve understanding of how these

data can be used to reliably describe population movements, in spite of the shortcomings of

CDR data.

Materials and methods

CDR mobility data

We used CDR mobility data collected by Vodafone Ghana and aggregated by the FlowMinder

Foundation. This data was aggregated into districts (Administrative Level 2–271 districts). The

boundaries of districts were defined by the government of Ghana. CDRs were assigned to an

area based on the location of cell clusters within each region. A cell cluster is the location of a

cell tower or the centroid location of a “cluster” of cell towers. In areas with a high density of

cell towers, device connections may be “balanced” between multiple towers depending on net-

work traffic and signal strength [31].
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We used two aggregated versions of the same underlying CDR dataset collected between

February 2021 and September 2021 which recorded the daily travel between a set of origin-

destination pairs (pi, pj) for each location p within a set of locations P. The number of travellers

between locations w was defined as the total number of connections between pairs of locations.

Pairs of locations with w less than 15 were removed prior to data sharing to prevent identifica-

tion of individual mobile devices. The matrix of OD pairs forms a weighted directed acyclic

graph of travel between locations. We calculated the average number of travellers between

pairs of locations across the data collection period for use in our analysis.

The CDR data used in this study do not include information on the district of residence for

mobile devices, based for example, on where a device tends to be located at night. Instead, the

data describe the daily number of travellers between pairs of districts. Data are recorded daily,

and the aggregated mobility networks are the sum of travellers recorded across all individuals

based on the sequence of districts to which a device connected each day.

Population data

To define the population of administrative areas, we used 2020 population data from the

WorldPop project [32]. WorldPop population data combines population counts from national

censuses with remote sensing data using Random Forest-based dasymetric redistribution to

estimate the population count across a surface of 100m2 cells. We used constrained population

estimates, meaning that population counts match population counts from the Ghana Statistical

Service, but were not adjusted to match UN national population estimates. We aggregated

population estimates to administrative areas in Ghana using a spatial intersection of adminis-

trative boundaries with the population surface.

Movement models

The empirical movement matrices used in this study included missing values where travel

between pairs of locations did not exceed the censoring threshold of 15 trips during the study

period. To fill in these missing connections, we used three common formulations of move-

ment models to model missing connections in the empirical movement networks. This com-

parison allowed us to assess sensitivity of our findings to the choice of mobility model.

First, we used a power law gravity model defining the number of trips λi,j between locations

i and j as a function of the population size of the origin Ni, the destination Nj, and the distance

between the origin and destination di,j (Eq 1).

li;j ¼ y∗
Ni

o1Nj
o2

di;j
g

 !

ð1Þ

In this model, travel between locations is defined by four parameters: a scaling parameter θ,
and weight parameters ω1, ω2, and γ, which alter the contributions of origin populations, desti-

nation populations, and distance respectively.

Second, we used an exponential gravity model defining the number of trips λi,j between

locations i and j using four parameters: a scaling parameter θ, and weight parameters ω1, ω2,

and δ, which alter the contributions of origin populations, destination populations, and dis-

tance respectively (Eq 2).

li;j ¼ y∗
Ni

o1Nj
o2

e
di;j
d

 !

ð2Þ

Finally, we used a basic radiation model defining the number of trips λi,j between locations
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i and j as a function of the population size of the origin Ni, the destination Nj, the total number

of trips leaving the originMi and the population surrounding the origin si,j defined by the pop-

ulation within the radius ri,j (Eq 3).

li;j ¼ Mi

NiNj
ðNi þ si;jÞðNi þ Nj þ si;jÞ

ð3Þ

We fitted all mobility models using the Mobility [33] and rjags [34] R packages. Both grav-

ity models were fitted to the empirical movement matrices using Markov Chain Monte Carlo

(MCMC) parameter estimation. Both gravity models were fitted as likelihood functions with

the number of trips specified as a Poisson distribution; whereas the weak informative prior dis-

tributions for the parameters θ, ω1, and ω2, were defined by the Gamma distribution with

shape and scale of 0.001 for parameter θ and with shape and scale of 1 for ω1, and ω2. The

prior distribution of the parameter δ was modelled using a normal distribution truncated at 0

with mean and standard deviation calculated from the distance matrix. MCMC training was

conducted using 4 chains of 50,000 samples each, with a burn-in of 10,000 samples. We

assessed convergence using the R̂ convergence diagnostic, requiring a threshold where all

parameters were deemed valid with R̂ less than 1.05.

We compared empirical and modelled networks by the total number of edges (connections)

in the network, the total number of network trips (the sum of weights along each edge), the

average node degree (the average number of edges connected to each node), and the network

density (the ratio of the number of network edges compared to the number of possible edges).

We also compared the performance of each model against the empirical data using Root Mean

Squared Error (RMSE), Mean Absolute Percentage Error (MAPE) and R2. We assessed the

quality of model predictions by identifying the model with the lowest RMSE and MAPE, and

highest R2, indicating a close fit with the empirical travel network while minimising model

error.

Epidemiological modelling

We modelled the spread of infection using a stochastic metapopulation SEIR model imple-

mented in the R package SimInf [35–37]. This model simulates an epidemic by modelling the

transition of individuals in a connected sub-populations between compartments (Susceptible,

Exposed, Infected, Removed). The model is stochastic, meaning that transitions between com-

partments are modelled through a random count measure and infection states for each sub-

population form a Continuous Time Markov Chain. The progression of the epidemic was

modelled in individual subpopulations, defined by district boundaries, and connected by mod-

elled movement networks. In the stochastic model construction, Infectious individuals are

exported between subpopulations according to the average daily volume of movement

between pairs of districts. For movement of an individual between subpopulations, individuals

are sampled from a hypergeometric distribution with probabilities equal to the proportion of

individuals in each compartment of the source population. Therefore, the probability that

infections will be exported between subpopulations reflects the size of the epidemic within

subpopulations as well as the volume of connections to other subpopulations.

Our model assumes constant rates of replacement (births) and mortality (deaths) within

subpopulations during the study period. Although this assumption does not reflect real popu-

lation characteristics, there is not sufficient data to estimate the rate of population change in

Ghana during the study period. The model also assumes a uniform contact rate among mem-

bers of a subpopulation. In reality, within-population contact rates vary relative to age struc-

ture and other demographic factors which are not captured by our model. The inclusion of
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some age-structure adjustment within population-units, as opposed to population units only,

would reduce the uncertainty and fine-tune the predictions from this analysis.

We assess the sensitivity of the model to the location of infection introduction by introduc-

ing 10 index infections into one district for a series of model simulations with different param-

eter combinations and introduction locations. Because of computational limits, we selected a

random sample of 15 districts in Ghana and included an additional 5 districts: Nkwanta South

(Greater-Accra Region), Manhyia South (Ashanti Region), Tamale South (Northern Region),

and two rural districts: Lawra (Upper West Region) and Nkwanta South (Oti Region) to pro-

vide a representative sample of the rural and urban gradient of districts in Ghana. For these

districts, we performed 100 epidemic simulations for three values of R0: 1.25, 1.5, 3.0, and for

each movement model: Gravity (Exponential), Gravity (Power Law), and Radiation (Basic).

For all other districts, we performed 10 epidemic simulations for each parameter combination.

We chose these values of R0 to simulate an infection similar to COVID-19, with R0 between 1

and 3. Because R0 is not a model input parameter, we vary the transmission rate β, given a con-

stant recovery rate, γ.

We assess the effect of aggregation methodology under different parameter conditions

using two statistical tests. First, we perform independent sample t-tests comparing the epi-

demic quantities: epidemic peak timing, epidemic peak number of infections, epidemic length,

and earlier average time of 1st and 5th infection arrival for simulations across all sampled dis-

tricts (N = 2,000). These results indicate whether there is a significant difference between the

average of each epidemic quantity between simulated epidemics informed by each aggregation

methodology. Second, although aggregation methodology may change the characteristics of

epidemics under certain conditions, similar epidemic characteristics could be driven by differ-

ences in the sequence of infection export between subpopulations, or could be caused by dif-

ferences in the topology of the underlying infection network. To understand whether observed

changes in epidemic characteristics are a result of increased “speed” of an epidemic, or are the

result of changes in infection network topology, we calculate the Spearman rank correlation

coefficient of the average arrival time of the 1st and 5th infections across 100 simulations. High

correlation in the sequence of infections indicates greater similarity in the infection network,

because of similarity in the sequence of infected districts between different aggregation

methodologies.

Supporting information

S1 Text. Fig A in S1 Text. Comparison of individual origin-destination pairs between net-

works. The difference in the average daily volume of travel for the 5,804 individual origin-des-

tination pairs common to both networks. Note that because of the difference between

aggregation methodologies, many origin-destination pairs are censored in the Sequential net-

work. Further, note that some pairs have higher volumes of travel in the Sequential network

compared to the All Pairs network. This is caused by empirical differences in the volume of

travel on specific days (certain origin-destination pairs in the Sequential network may have

high counts on particular days but otherwise are censored). Fig B in S1 Text. The number of

cell sites per district. The spatial distribution of cell sites, showing a high density of cell sites

in urban areas. Base map data are publicly available under the MIT licence from: https://

github.com/hamishgibbs/ghana_cdr_aggregation. Fig C in S1 Text. Number of cell sites by

population. The number of cell sites compared to the population in individual districts. Fig D

in S1 Text. Comparison of empirical and modelled travel networks. a) Empirical networks

from each aggregation methodology. b) Movement networks modelled using the exponential

gravity model. Distance kernels show the number of travellers by the distance of network
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connections in the c) empirical and d) modelled networks. Fig E in S1 Text. Comparison of

empirical and modelled travel networks. a) Empirical networks from each aggregation meth-

odology. b) Movement networks modelled using the power law gravity model. Distance ker-

nels show the number of travellers by the distance of network connections in the c) empirical

and d) modelled networks. Fig F in S1 Text. Comparison of empirical and modelled travel

networks. a) Empirical networks from each aggregation methodology. b) Movement networks

modelled using the radiation model. Distance kernels show the number of travellers by the dis-

tance of network connections in the c) empirical and d) modelled networks. Fig G in S1 Text.

Comparison of modelled national epidemics by aggregation methodology. The difference

in the number of individuals in the “recovered” compartment for a sample of 20 introduction

locations, mobility models, and values of R0. Epidemics were modelled 100 times for each

combination of aggregation methodology, introduction location, R0, and mobility model. Fig

H in S1 Text. Comparison of modelled national epidemics by aggregation methodology.

The difference in the number of individuals in the “infected” compartment for a sample of 20

introduction locations, mobility models, and values of R0. Epidemics were modelled 100 times

for each combination of aggregation methodology, introduction location, R0, and mobility

model. Fig I in S1 Text. Influence of introduction location on the difference between aggre-

gation methodologies. Difference between the timing of the peak of a modelled epidemic

with R0 = 3. Negative numbers indicate that the predicted epidemic based on the all pairs

methodology was later than the epidemic predicted based on the sequential methodology. Base

map data are publicly available under the MIT licence from: https://github.com/hamishgibbs/

ghana_cdr_aggregation. Fig J in S1 Text. Influence of introduction location on the differ-

ence between aggregation methodologies. Difference between the timing of the peak of a

modelled epidemic with R0 = 1.25. Negative numbers indicate that the predicted epidemic

based on the all pairs methodology was later than the epidemic predicted based on the sequen-

tial methodology. Base map data are publicly available under the MIT licence from: https://

github.com/hamishgibbs/ghana_cdr_aggregation. Table A in S1 Text. Spearman correlation

coefficient comparing sequence infection under each aggregation method. Correlation

approaching one indicates high similarity between the sequence of infected districts under

each aggregation methodology. All correlation coefficients are significant with p-value

<0.0001.
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