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Abstract—WiFi sensing has been well explored for recognizing
human activity types. However, research is limited in the possibil-
ity of its use in identifying affective expressions such as behaviors
associated with pain experience. As critical groundwork, we
investigated the use of channel state information from WiFi
devices for capturing speed and lateral asymmetry attributes
of physical activity. These two attributes are body movement
qualities associated with hesitation and guarding, respectively,
which are pain behaviors that are valuable to address in physical
rehabilitation for people with chronic pain. We obtained mean
F1 scores of 0.92 and 0.90 for automatic detection of movement
speed levels and lateral asymmetry. These findings suggest that
WiFi sensors could be a valuable alternative or supplement to
traditional motion capture systems, for unobtrusive, continuous
evaluation for hesitation and guarding behaviors in everyday
physical activity in the home.

Index Terms—Affect recognition, chronic pain, pain behavior,
wireless sensing, machine learning.

I. INTRODUCTION

People with pain employ strategies for performing physical
activity in the presence of pain, low movement self-efficacy
due to pain, or fear of movement associated with pain [1]–
[4]. Some strategies, e.g. initiating sit-to-stand at large knee
angles and compensating with the use of the upper limbs for a
laterally asymmetrical maneuver during the lift phase [4], [5],
are unhelpful and could worsen pain experience. Thus, it can
be useful to make people with pain aware of these ‘protective’
pain behaviors during everyday activities, with the aim of
guiding them to adopt more valuable coping strategies for
dealing with challenging physical activity [5]. Assessment for

protective behaviors can also be useful in measuring outcomes
of pain conditions and/or management. This paper investigates
automatic detection of such behaviors based on the use of WiFi
sensing so as to support objective evaluation during everyday
physical activity where other movement capture methods have
limitations.

Current solutions for capturing body movements rely on
cameras or wearable devices. While easy to access, cameras
raise privacy concerns and are significantly limited for capture
of everyday activity in the home due to the problem of occlu-
sions. Wearable devices, on the other hand, are not as readily
available and can be burdensome to keep powered, connected,
and worn. These challenges hinder the wide adoption of tech-
nologies for physical rehabilitation. WiFi sensing is emerging
as an alternative [6]. Their value for human tracking (as
well as localization [7]) is based on WiFi signal fluctuations
due to movement [8]. These fluctuations can be captured as
variations in channel state information (CSI), which describe
the scattering, fading, and power decay of wireless signals
altered by obstacles. Commodity WiFi routers use CSI to scan
signal propagation for the purpose of informing improvement
of wireless communication quality. The pervasiveness of WiFi
networks makes WiFi sensing a readily available method for
capturing human movement data in the home [9]. Previous
studies on WiFi sensing have focused on automatic recognition
of types of activities (e.g., walking, standing, falling) [10].
Thus, there is still little understanding on how (if at all) WiFi
signals can be used for assessing qualities of movements used
in executing individual activities.
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Speed is one of the movement qualities relevant in the
context of pain. Slow movement can be indicative of hesi-
tation or limited joints coordination due to pain or related
cognition and affect [5], [11], [12]. For sit-to-stand or stand-
to-sit, which are movements critical to everyday activity [13],
lateral asymmetry is another pertinent quality [4], [14], [15].
Asymmetry typically involves use of the upper limbs as
support in the transfer to/from the seat, with a twist toward
one side of body, possibly to minimize loading on the trunk
or legs and related to self-efficacy for the movement. As a
first step in exploring the possibility of automatic protective
behavior detection in people with musculoskeletal pain based
on WiFi signals, we investigated the use of data from WiFi
routers for differentiating between three speeds of movement
in addition to automatic recognition of the type of movement.
We focus on sit-to-stand, stand-to-sit, reach-and-grab, and
bend-and-pick movements. They are representative of actions
in everyday functioning, e.g. reaching forward while vacuum-
ing, and can be challenging for people with pain, especially
low back pain. The three classes of speed that we consider
(fast, normal, slow) are based on self-definition by individual
(healthy) participants, rather than using objective metrics. We
further evaluate classification of sit-to-stand and stand-to-sit
movement as normal, asymmetric primarily using the left-
hand side (asymmetric-left), or asymmetric primarily using the
right-hand side (asymmetric-right).

The contributions of this paper can be summarized as
follows:

• A novel Hybrid-Fusion Stacked LSTM architecture
(HFS-LSTM) for assessment of protective behaviors. Our
HFS-LSTM is based on stacked long short-term memory
(LSTM) neural networks and performs data fusion at two
levels: a) a fusion of amplitude and phase CSI data at
the input level, and b) a fusion of frozen pretrained and
learnable encodings from (a). The pretrained encoder is
trained for activity recognition so as to provide mid-level
information about activity type for recognizing protective
behavior.

• Evaluation of the HFS-LSTM for automatic detection
of 3 movement speed levels for 4 activity types (sit-
to-stand, stand-to-sit, reach-and-grab, bend-and-pick) and
automatic detection of left and right lateral asymmetries
in sit-to-stand and stand-to-sit movements. This was
based on pilot data captured from healthy participants
in acted settings using a setup of four WiFi devices.
We compared our HFS-LSTM with traditional machine
learning methods (random forest, support vector machine,
k-nearest neighbors, multilayer perceptron).

II. RELATED WORKS

A. Automatic Detection of Behaviors Associated with Pain
Experience

In contrast to gross assessment of movement, e.g. quantifi-
cation of physical activity levels using pedometers, assessment
of movement behaviors associated with pain experience relies

on data from multiple regions of the body [4], [5], [15].
Findings in [16] suggest that RGB videos have been the most
dominant approach to capture such data. Beyond these and
media based on cameras with depth sensing capability, wear-
able sensor systems that either only provide acceleration and
angular velocity data or also output joint positions and angle
information have been the main contenders. The widely-used
EmoPain dataset [3] that captures movement data for assessing
pain-related expressions is based on a high-fidelity full-body
inertia sensor system that consists of 18 gyroscope units and an
expensive surface electromyography system. The dataset was,
for example, used for protective behavior detection in [17]
where both the motion capture data and muscle activity data
were fused based on graph convolution and LSTM networks.
The use of fewer (and low-cost) sensors, which only capture
half-body information, explored in [4] and [18] shows promise
although automatic detection performance was found to be
lower than using the full sensor set of the EmoPain dataset.
While WiFi sensing is an alternative as discussed in Section
I, there has been no study of its use for detection of pain
expressions during physical activity. The focus in WiFi sensing
has largely been on activity recognition [6], which is a lower
level of movement abstraction.

B. WiFi-based Activity Recognition

A pioneer study in this area involves the CARM [19],
which is based on a hidden Markov model that uses sequential
transformed (using principal component analysis) features
extracted from CSI data. The model was able to identify eight
activities including walking, sitting, falling, and boxing, with
an average accuracy of 0.93. Another work is Wi-Chase [20]. It
employed statistical features such as mean, standard deviation,
percentiles, median absolute deviation, and maximum value
from CSI amplitude and phase measurements. These features
were fed into a k-nearest neighbours (kNN) model to detect
three activity types: running, walking, and moving hands. The
study showed that statistical features from CSI data can be
useful for activity recognition. However, it is representative of
existing WiFi-based systems, which predominantly focus on
differentiation between very distinct activities. Although their
capacity to distinguish between activities with similar actions
is expanding, there is still a lack of discussion around the
efficacy of statistical features and temporal information for
discrimination between fine-grained qualities of movements.
Such qualities can especially encode affective modulations in
activity execution [21].

The only study relevant to this is based on the EQ-
Radio [22] and used a 7.2 GHz FMCW radar (rather than WiFi
devices) to capture chest movement associated with respiration
and heartbeats, further using the heart rate data for estimating
inter-beat interval (IBI) features. Both respiration and IBI
features were then applied to classification into anger, sadness,
joy, and pleasure based on a support vector machine (SVM)
model, with accuracy of 0.72. Some studies have explored
wireless sensing for detecting interruption of movement in the
context of Parkinson’s disease [23], but no study has explored



Fig. 1. An overview of the proposed HFS-LSTM architecture for protective
behavior detection. In our experiments, we evaluate the HFS-LSTM specif-
ically for automatic recognition of movement speed levels as well as for
automatic detection of lateral asymmetry.

the use of WiFi sensing for detection of qualities of body
movement associated with pain or related fear.

III. PROPOSED HYBRID-FUSION STACKED LSTM
(HFS-LSTM)

We present a novel Hybrid-Fusion Stacked LSTM archi-
tecture (HFS-LSTM), which is illustrated in Figure 1. The
use of LSTM [24], [25] to encode temporal relationships
is well established in the area of machine learning. So, it
was an intuitive building block for our model. The HFS-
LSTM fuses two (stacked) LSTM networks such that one of
the LSTM networks (LSTM1) captures mid-level information
about the type of activity encoded in the signal, while the
second LSTM network (LSTM2) captures other encodings
relevant for recognition of the given protective behavior.

LSTM1 is set up to encoder activity type information by
pretraining it separately for activity recognition. The LSTM
layers are then re-used in the HFS-LSTM. In training the
HFS-LSTM, the weights of LSTM1 are frozen, while only
the weights of LSTM2 are updated. The outputs from both
LSTM networks are concatenated and fed into a four-layer
multilayer perceptron (MLP), for classification of the given
protective behavior label. In our experiments below, the labels
are either movement speed level or lateral asymmetry.

An additional level of fusion occurs earlier in the HFS-
LSTM with input-level fusion of amplitude and phase signals
extracted from the CSI data for each of the two LSTM net-
works (LSTM1 and LSTM2). The use of both CSI amplitude
and phase data as the input follows the approach of previous
work, e.g. [20] using CSI data for activity recognition.

Fig. 2. An illustration of the layout of our WiFi sensor system in a room.
The layout consists of four WiFi devices place in the four corners of the
room respectively. The participant performs the activities of interest within
the space enclosed by the sensor layout.

TABLE I
SUMMARY OF THE MEAN SPEEDS IN SECONDS (AND NUMBER OF
INSTANCES) OVER ALL PARTICIPANTS ASSOCIATED WITH THE 3
DIFFERENT MOVEMENT SPEED LEVELS CAPTURED IN OUR DATA

Speed level Sit-to-stand Stand-to-sit Bend Reach
Fast 0.9s (39) 1.3s (38) 2.7s (12) 1.9s (14)

Normal 3.2s (69) 1.4s (71) 2.9s (23) 2.3s (24)
Slow 4.31s (129) 1.5s (126) 3.0s (21) 2.8s (21)

s represents time in seconds.

IV. EXPERIMENTAL SETUP

A. Data Collection

1) Sensor system setup and feature extraction approach:
We implemented a custom two-way communication protocol
proposed in [26] and systematically elaborated in [27] with
the Nexmon system [28], [29]. This protocol addresses the
lack of synchronization for commercial radio devices which
limits the extraction of valuable data from CSI. In the rest of
this subsection, we first provide a brief overview of feature
extraction from CSI to highlight the need for synchronization
before further elaborating on the sensor system setup that we
used.

CSI is a set of complex numbers used to describe the
radio propagation channel. Since complex numbers have two
dimensions, they can depict the phase and amplitude response
of electromagnetic wave propagation channels simultaneously.
CSI is estimated from the fixed preambles in the protocol,
and in the idealized case that the hardware is perfect and
synchronized, the CSI would be:

H(i, t) =

N∑
k=1

ak(i, t)e
−j2π(fc+fi)τk(t) (1)

where t represents time, i is the subcarrier index, N is
the number of paths, fc is the centre frequency, fi is the
baseband frequency of subcarrier i, ak is the complex number
representing the attenuation and initial phase offset of path
k, and τk is the propagation delay of path k. In general,
the magnitude of ak depends on the size of the reflection
surface and the incident angle, while τk is very sensitive to
distance. Since the final CSI (Equation 1) is the sum of the
channel response of propagation paths, it is influenced by
signal reflections against the human body. Thus, the amplitude
of CSI encodes constructive and destructive signal interference
patterns. The phase of the CSI could further be valuable,



however, as it is dependent on time, it requires synchronization
of the radio devices.

The protocol that we used synchronizes two devices using
wireless communication that eliminates phase errors caused
by clock asynchronization. In order to capture body movement
simulataneously from multiple viewpoints, we built a sensor
system with 4 WiFi devices (see the system layout in Figure 2).
One WiFi device was placed in each corner of the room
to allow for capture of movement qualities dependent on
spatial configuration, thereby enhancing sensing capabilities
for enriched information.

2) Data Capture Procedure: Our study was approved by
the local research ethics committee at University College
London, and participants gave consent for their data to be
collected and processed for the purpose of this study. We
invited 10 healthy participants (7 male, 3 female) to our lab.
They were university students between 18 and 30 years old
(height=155-190cm).

As illustrated in Figure 3, the participants were asked to
perform four activity types selected for their relevance to
everyday physical activity: sit-to-stand, stand-to-sit, reach-
and-grab, and bend-and-pick. The sit-to-stand and stand-to-sit
movements were executed as normal or with acted left and
right asymmetries that are illustrative of lateral asymmetries
due to protective behavior in people with chronic pain. These
variants and the other two activity types were done at three
different speed levels, fast, normal, and slow, to capture
slowness in movement (or hesitation) that has been associated
with chronic pain.

B. Data Preprocessing

The raw CSI data recorded by the WiFi sensor (exceed-
ing 4GB) were converted into amplitude and phase signals
(resulting in data less than 300MB) based on the method
described in Section IV-A1. Figure 4-left shows example
amplitude signals for sit-to-stand, bend-and-pick, and reach-
and-grab movements, with the 3 different variants of the sit-
to-stand (i.e. with and without lateral asymmetries), for the
same participant. Distinction in the signal pattern for each of
these movements can be seen in the figure. The total number
of data instances for training the activity recognition model,
lateral asymmetry model and speed levels model are 587, 472,
and 587 respectively.

There were data quality issues for the first participant’s
recording. One WiFi router lost connection due to environmen-
tal noise and interference from other WiFi sensors during that
data capture. Consequently, the dataset is missing values (from
the offline WiFi sensor) for that participant. Nevertheless, we
included this participant’s data in our experiments. This is
to enable robust evaluation of WiFi sensing for protective
behavior detection given that noise and interference are real
problems that must be tackled in its use. In future work,
missing values could be addressed with fusion of data from
multiple sensor types as explored in [30]. There were two
forms of additional preprocessing done on the amplitude and
phase signals:

TABLE II
HFS-LSTM ARCHITECTURE SUMMARY

Layers Output Shape
Transferred LSTM1 network (256,)
LSTM2 Layer (256,)
Concatenation (256,)
MLP (256, 128, 64, 32)
Output Layer (One-hot encoded output)
Batch Size 32
Learning Rate 0.005
Optimizer Adam

1) Removing noise due to stationary objects from the phase
signal: As both static (e.g., furniture, wall) and moving
obstacles (human targets) contribute to the variation in the
signal multipath reflection that affects the CSI, variations
contributed by stationary obstacles needs to be removed from
the phase signal. For this, we used a classic Butterworth filter
of order of 5, cut-off frequency of 25Hz, normalized cut-off
frequency of 0.5 (cut-off frequency/Nyquist frequency), and
sampling frequency of 100Hz.

2) Removing noise due to phase drift from the phase signal:
Phase drift is inevitable due to changes in the hardware’s work-
ing temperature, ageing of components, and the piezoelectric
effect in the crystal oscillator [31]. To check for phase drift,
we attached two directional antennas close to each other with
no gap in between (to avoid any obstacle’s impact on signal
communication) and recorded two minutes of CSI data. We
implemented a 1Hz lowpass filter (order=5) on this recorded
signal to remove moving target reflections. We observed a
linear phase drift over time (see Figure 5 shows 3D and 2D
visualizations of the phase drift).

To remove the phase drift from collected data, we imple-
mented a simple moving average filter with a time window of
100 milliseconds. The moving average filter is commonly used
for the time-series signal denoising [32]. By setting the time
window of 100 milliseconds, we assumed that the phase drift is
negligible. Figure 6 compares the same phase signal with and
without implementing a simple moving average filter applied.
We found that in the raw signal, phase drift obscures the phase
signatures of body movement considerably, while the filtered
signal shows a reasonable phase change fluctuating over zero
radians and reflects motion orientation toward or away from
the antennae.

Figure 4-right shows example phase signals, highlighting
distinction in the signal pattern for sit-to-stand (and its lat-
eral asymmetry variants), bend-and-pick, and reach-and-grab
movements for the same participant.

V. RESULTS AND DISCUSSION

A. Automatic Detection of Lateral Asymmetry and Speed
Levels with Transfer Learning

We used a 4-layer LSTM network (with an additional 1-
layer MLP as the output layer) for activity recognition. On
satisfactory finetuning of the model, we extracted the net-
work’s 4 LSTM layers and transferred them to the HFS-LSTM
models for asymmetry detection and speed level detection



Fig. 3. An overview of the data capture procedure. There are four activity types (Level 1 from the top) performed by the participants: sit-to-stand, stand-to-sit,
reach-and-grab, and bend-and-pick. The sit-to-stand and stand-to-sit movements were further executed as normal or with left and right asymmetries (Level 2).
Each activity (and the different symmetry variants) was done in three different speeds, fast (F), normal (N) and slow (S) (Level 3).

Fig. 4. Amplitude (left) signals, in dB for decibels, and phase (right) signals,
in rad for radians, from CSI data for sit-to-stand (normal and in left and
right asymmetries), bend-and-pick, and reach-and-grab movements for a single
participant. sec denotes time in seconds.

(a) Phase Drifting in 3D (b) Phase Drifting in 2D

Fig. 5. Example of the effect of phase drifting issue, visualized in 3D (Left)
and 2D (Right).

(a) Raw Phase without MAF (b) Filtered Phase with MAF

Fig. 6. Example of the effect of the moving average filter (MAF) on the
phase signal, showing the raw signal (left) and the filtered signal (right).

(see Section III for details about the HFS-LSTM architecture).
The HFS-LSTM models for the two tasks are similar in
architecture. The number of units in each layer of the HFS-
LSTM models and the other hyperparameters are specified in
Table II. However, while the model for automatic detection of
movement speed levels is trained using the full dataset, the
model of asymmetry detection is only trained on sit-to-stand
and stand-to-sit movement data. We evaluated all three models
using in a leave-one-subject-out cross-validation approach
which involves the systematic exclusion of one participant
from the dataset in each fold of the training and evaluation.
This strategy assesses the models’ generalizability to people
not included in the training data. All models were trained
on a Windows 11 PC with a 12th Generation Intel CPU and
an NVIDIA GTX 1660 Super GPU with CUDA acceleration
during the training process, and the total training time for all
models (including the comparison models discussed in Section
V-B) was approximately 50 minutes.

As can be seen in Figure 7 and in the last rows of Tables
III and IV, the HFS-LSTM performs very well for both
asymmetry and speed level detection. We obtained mean F1
scores of 0.90 and 0.92 respectively. True positive rates are
similar across classes for both tasks. F1 scores are also similar
across participants although performance for Participant A is
considerably low. This is due to the missing values in the
signals for that participant as discussed in Section IV-B. This
suggests that missing values need to be carefully addressed
so that they do not undermine the efficacy of WiFi sensing
for protective behavior detection. Nonetheless, performance
for the other participants are very high, despite the inclusion
of the signals with missing values in the training data used
for prediction. Although activity recognition performance is
also high, it is slightly lower than the performance for the
other two tasks. The HFS structure of the LSTM model used
in the asymmetry and speed level detection tasks, compared
to the vanilla LSTM used for activity recognition, may have
contributed to the higher performance. This is especially likely
given the higher level of abstraction of the two tasks.

B. Comparison with Standard Machine Learning Approaches

We compared the performance of our HFS-LSTM with
traditional machine learning algorithms: random forests
(RF) [33], kNN, SVM [34], and MLP. For these algorithms,



Fig. 7. Confusion matrices (showing proportions across respective rows) for automatic recognition of activity type (left), lateral asymmetry (middle), and
movement speed levels (right).

we extracted six aggregate features from the amplitude and
phase timeseries based on previous studies on WiFi sensing
for activity recognition (see Section II-B). We computed
minimum, maximum, standard deviation, variance, skewness,
and kurtosis for each of the two signals.

The performance of the four models for activity recognition
are shown in the top rows of Tables III and IV. Performance is
better than chance level classification (0.25), i.e. random guess,
for all four algorithms although true positive is consistently
poor for stand-to-sit. The poor performance for stand-to-
sit is due to confusion with the other three activity types
especially sit-to-stand and reach-and-grab (confusion matrix
not shown here). This is not surprising given that all four
activity types involve trunk flexion. True positive is highest
for bend-and-pick (with the RF and MLP) and for sit-to-stand
(with the SVM and kNN). Performance also varies widely
across subjects particularly for the SVM where mean F1
score ranges between 0.19 and 0.56 across people. Overall,
all four algorithms have similar performances although the
kNN has the lowest mean true positive rate and F1 score.
Neither of them matches the very good performance of the
LSTM in terms of mean F1 score, highlighting the importance
of temporal information for activity recognition. The better
performance of the four models for Participant A compared
to the LSTM suggests that aggregate features minimized the
impact of the missing values in the data signals captured for
that subject, while the absence of those values was especially
amplified in the LSTM that focused on temporal relations.

As can be seen in the second rows of Tables III and IV, all
four models perform better than chance level detection (0.33)
for recognition of lateral asymmetry classes for the sit-to-stand
and stand-to-sit movements. The RF has the best performance
while the kNN again has the lowest performance. Performance
for each class varies widely across the models. For example,
right asymmetry has the best true positive rate for RF, while
it is best for left asymmetry with the SVM and best for no
asymmetry with the MLP. Similar to the findings for activity
recognition, the HFS-LSTM outperforms the four models
considerably. This is not surprising given that unlike aggregate
information based on joint angle or position data, similar
metrics (e.g. mean, standard deviation) for CSI amplitude and

phase signals do not encode spatial and temporal information.
For standard machine learning algorithms, including MLP,
kNN, and SVM, which take aggregate information inputs, the
algorithms can only make recognition based on overall CSI
variation signatures, lacking temporal features. Nevertheless,
asymmetry detection is high for Participant D with RF and
MLP which have F1 score of 0.82 and 0.83 respectively
(performance of the HFS-LSTM for that participant is 0.90).

Tables III and IV show the performance of the four models
on speed level detection. As expected given that speed is
strongly related to time, none of the four models performs
well, with mean F1 score less than chance level classification
(0.33) for the kNN and mean F1 scores between 0.38 and 0.41
for the other three models.

TABLE III
TRUE POSITIVE RATES FOR AUTOMATIC RECOGNITION OF ACTIVITY

TYPE, LATERAL ASSYMETRY, AND MOVEMENT SPEED LEVELS

Activity Recognition Performance
Sit-to-stand Stand-to-sit Bend Reach Mean

RF 0.42 0.08 0.63 0.33 0.36
SVM 0.58 0.11 0.39 0.34 0.35
KNN 0.5 0.1 0.37 0.32 0.32
MLP 0.33 0.15 0.61 0.41 0.37

LSTM 0.88 0.89 0.91 0.91 0.89

Asymmetry Detection Performance
None Left Right Mean

RF 0.48 0.38 0.73 0.53
SVM 0.3 0.65 0.52 0.49
KNN 0.44 0.38 0.44 0.42
MLP 0.72 0.24 0.43 0.46

HFS-LSTM 0.93 0.90 0.96 0.93

Speed Level Detection Performance
Fast Normal Slow Mean

RF 0.02 0.11 0.88 0.33
SVM 0.2 0.17 0.69 0.35
KNN 0.28 0.34 0.31 0.31
MLP 0.11 0.19 0.85 0.38

HFS-LSTM 0.91 0.94 0.97 0.93

CONCLUSION AND ETHICAL IMPACT STATEMENT

Our research explores the potential of WiFi CSI for detect-
ing the qualities of body movement during everyday physical



TABLE IV
F1 SCORES BY SUBJECT FOR PARTICIPANTS A TO J

Activity Recognition Performance
A B C D E F G H I J Mean

RF 0.45 0.35 0.31 0.29 0.35 0.56 0.38 0.38 0.34 0.54 0.39
SVM 0.56 0.49 0.27 0.45 0.48 0.48 0.19 0.4 0.4 0.4 0.41
KNN 0.37 0.41 0.29 0.27 0.38 0.28 0.27 0.37 0.42 0.35 0.34
MLP 0.34 0.37 0.44 0.44 0.35 0.4 0.43 0.42 0.2 0.34 0.37

LSTM 0.24 0.71 0.71 0.81 0.98 0.98 0.99 0.99 1.00 1.00 0.84

Asymmetry Detection Performance
A B C D E F G H I J Mean

RF 0.58 0.72 0.55 0.82 0.52 0.6 0.48 0.47 0.2 0.53 0.54
SVM 0.48 0.67 0.39 0.59 0.5 0.72 0.38 0.43 0.45 0.46 0.50
KNN 0.55 0.52 0.27 0.6 0.38 0.52 0.36 0.41 0.35 0.4 0.43
MLP 0.27 0.26 0.48 0.83 0.49 0.71 0.25 0.43 0.36 0.45 0.45

HFS-LSTM 0.43 0.97 0.77 0.90 1.00 0.99 0.99 0.97 1.00 1.00 0.90

Speed Level Detection Performance
A B C D E F G H I J Mean

RF 0.45 0.1 0.49 0.31 0.62 0.31 0.41 0.4 0.42 0.45 0.39
SVM 0.44 0.38 0.2 0.38 0.55 0.28 0.46 0.41 0.23 0.5 0.38
KNN 0.34 0.34 0.33 0.26 0.39 0.31 0.25 0.36 0.24 0.39 0.32
MLP 0.42 0.22 0.44 0.37 0.54 0.34 0.46 0.6 0.26 0.45 0.41

HFS-LSTM 0.40 0.94 0.88 0.98 1.00 0.99 0.99 1.00 1.00 0.995 0.92

activity in the home. Our motivation for pursuing WiFi sensing
is for the valuable role that it could play in automatic detection
of protective behaviors that enable tailored technology-based
interventions for people with chronic pain. For example, a
person who consistently uses unhelpful strategies to execute
sit-to-stand movements in their home could be encouraged to
use a higher seat while confidence in the movement is low
and gradually return to the lower seat as they build confidence
in the movement. Our findings of true positive rates of 0.90
and 0.96 for detecting left and right asymmetries in sit-to-
stand and stand-to-sit movements suggest that WiFi sensing
could indeed proffer a solution to the sensing challenge that
has undermined progress in that direction [16], [35]. Further,
our findings of true positive rates of 0.97 for detecting slow
movements highlight the possibility of its use for detecting a
useful range of protective behaviors.

Our findings are based on acted data in lab settings as a
first step. Future work will explore generalizability in settings
closer to the real world, e.g., where there may be multiple
(moving) people within the home or building beyond the target
person, or the activities (such as vacuuming) may involve mov-
ing objects. It may be necessary to employ multimodal detec-
tion to take advantage of other sensor modalities in addressing
the challenge of missing data due to such environmental noise.
Another limitation of our work is that we do not explore the
influences of different sensor setup attributes (e.g., transmitter-
receiver distances) and other movement characteristics beyond
speed and lateral asymmetry (e.g., range of motion) on the CSI
data. Still, our work and findings are important contributions to
advance in the area of WiFi sensing for automatic detection
of affective expressions, which is currently largely ignored
despite its significance.

Beyond these, it is further important for the community to
address the potential risks that could come with the use of

WiFi devices for sensing, so as to maximize the value for
digital health technology. While real world use of WiFi sensing
is still limited and third parties are not currently allowed
to directly access CSI from routers installed by broadband
service providers, it is critical for the community (research,
industry, regulatory) to consider ethical implications before it
becomes adopted. This is due to the high surveillance risk
that comes with WiFi sensing. Examples of misuse include
illicit use of own WiFi sensor systems to spy on neighbors.
This is especially relevant for those who live in apartment
buildings with thin walls between flats. Unauthorized access
into WiFi systems in a person’s home could also be used to
track their presence at home as well as their activities when at
home. The risk is especially high given the increasing cases of
cyber crimes globally. There is the possibility that criminals
will integrate localization or activity information from WiFi
systems gained illegitimately with other personal data, e.g.
accessed on the dark web or similarly unlawful sources of
personal data, for more targeted attacks on individuals. We
suggest a two-pronged solution to mitigate this risk. First, we
recommend the use of state-of-the-art technical approaches
for security. For example, sensing information from either
transmitter or receiver should be encrypted. Random channels
could also be used for communication as part of the guard
against unauthorized surveillance. Systems can further be set
up such that their owners need to give explicit permission (e.g.,
based on hardware encryption) for ambient sensing purposes.
Second, we advocate for increased transparency and public
awareness regarding WiFi sensing and its associated risks.
Through widespread education about this technology and its
risk, individuals, regulators, and other stakeholders could be
empowered to make informed decisions that protect personal
data privacy.
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