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ABSTRACT

This research presents a new approach for blind single-image
transparency separation, a significant challenge in image pro-
cessing. The proposed framework divides the task into two
parallel processes: feature separation and image reconstruc-
tion. The feature separation task leverages two deep image
prior (DIP) networks to recover two distinct layers. An exclu-
sion loss and deep feature separation loss are used to decom-
pose features. For the image reconstruction task, we minimize
the difference between the mixed image and the re-mixed im-
age while also incorporating a regularizer to impose natural
priors on each layer. Our results indicate that our method per-
forms comparably or outperforms state-of-the-art approaches
when tested on various image datasets.

Index Terms— blind image separation, deep image prior,
deep learning, computer vision

1. INTRODUCTION

Images composed of two half-transparent layers 1 are ubiq-
uitous in research and daily life, such as photos with reflec-
tions [1, 2, 3], double exposure photography [4], and MRI for
art investigations [5]. With the advancement of deep learn-
ing techniques, algorithms for separating these overlaid im-
ages have gained momentum [2, 3, 6]. However, many of
these algorithms are based on deep neural networks that are
trained in a supervised manner, which requires a large dataset
of paired overlaid images and their corresponding ground-
truths [1, 7, 8]. Unfortunately, such datasets are not always
readily available [5]. Additionally, these algorithms often rely
on strong assumptions, such as one of the layers being sim-
ple, smooth, or out-of-focus [1, 2, 3]. Furthermore, distri-
butional shifts between the training and testing samples can
result in suboptimal performance of supervised learning ap-
proaches [1, 2, 3, 7, 8]. To address these challenges, this pa-
per presents an unsupervised algorithm for separating over-
laid images composed of two natural image layers.

Denote I ∈ Rh×w×c as the overlaid image, which is com-
prised of two separate layers y1 and y2 ∈ Rh×w×c. Here, h,
w, and c represent the height, width, and number of channels

1In this paper, the word layer refers image layers unless specified other-
wise.

in the image, respectively. The overlaid image can be mod-
elled as the sum of its two underlying layers, as follows:

I = y1 + y2 (1)

The separation of y1 and y2 is an underdetermined prob-
lem without additional information. To ensure a successful
separation, we introduce two criteria:

1. Separation criterion: The features of the two layers
should be disentangled, with simple patterns on each
layer and minimal correlation across layers.

2. Reconstruction criterion: The remixed image should
be as similar as possible to the original overlaid image
and the separated layers should be as natural as possi-
ble.

Fig. 1. Overall framework of BITS-Net.

These criteria form the basis of our proposed algorithm. To
enforce the Separation Criterion, we employ separate DIP
networks [9] with independent random inputs and implement
an exclusion loss [1] on the recovered layers, as well as a deep
feature separation loss on the feature maps of the two DIP
networks. To meet the Reconstruction Criterion, we use an
ℓ1 reconstruction loss on the remixed image and incorporate a
natural prior for each separated layer. The proposed algorithm
is referred to as BITS-Net, which stands for Blind (Unsuper-
vised) Image Transparency Separation Network. The overall
structure of the proposed algorithm is depicted in Fig. 1. Ex-
periment results demonstrate that the proposed unsupervised
learning approach outperforms other state-of-the-art methods
such as DoubleDIP [10], and is comparable in performance to
supervised image separation algorithms including [1, 7].



2. RELATED WORK

Examples of image separation problems can be found in a va-
riety of studies such as reflection reduction, shadow removal,
and others [1, 2, 8, 3, 7, 10, 11]. In this work, we focus on the
challenging task of transparency image separation, which in-
volves separating an image with intricate patterns and details
that are more complex than reflections and shadows.

Most existing approaches to solving such tasks rely on su-
pervised learning, requiring the network to be pre-trained on
a large labeled dataset. For instance, Fan et al. [8] split the
image separation task into two subtasks: one subtask that in-
volves a supervised sub-network predicting the edge of the
target image, and another that reconstructs the target image
by leveraging the predicted edge maps. Zhang et al. [1] pro-
posed a supervised algorithm with three loss terms: a feature
loss based on a pre-trained VGG network, an adversarial loss,
and an exclusion loss. There are also other methods such as
the Blind Image Decomposition (BID) [7] which assumes that
the overlayed layers are from known categories. On the other
hand, the SILS method [11] utilizes the inherent properties of
unpaired overlayed and single-layer images. However, these
techniques necessitate pre-training the model on a substan-
tial training dataset. Additionally, these methods are limited
in their ability to handle more complex patterns as the losses
used may not guarantee good separation results when the pat-
terns become more intricate.

In contrast to the supervised learning approaches, Dou-
bleDIP [10] presents an unsupervised framework for general
image decomposition tasks, including image separation, seg-
mentation, and dehazing. This approach suggests that a suc-
cessful decomposition of images should fulfil three criteria:
(1) The re-composed image should closely resemble the orig-
inal overlaid image, (2) each separated layer should be as sim-
ple as possible, and (3) the recovered layers should be inde-
pendent of each other. However, as our later experiments will
demonstrate, these criteria are not sufficient to achieve high-
quality image decomposition.

Alternatively, there are methodologies that make use of
multiple images, such as flash and no flash pairs [12], images
with different focus settings [13], and images with different
reflections [14]. Nonetheless, these techniques entail the ac-
quisition of multiple images, which are often difficult to ob-
tain in a single shot and thus fall outside the scope of this
study.

3. PROPOSED APPROACH

We break down the image separation problem into two par-
allel tasks: feature separation and image reconstruction.
Specifically, the feature separation task focuses on separating
various features and patterns into separate layers, while the
image reconstruction task aims to recover each distinct layer
to appear as natural as possible, and the re-mixed image to

be as close as the original overlaid image. To achieve these
goals, we formulate the loss function as follows:

L = LSep + LRecon (2)

where LSep evaluates the effectiveness of the feature separa-
tion, and LRecon assesses the quality of the separated layers
and the re-mixed image. We will now elaborate on the design
of these two terms.

3.1. Feature Separation LSep

In order to achieve feature separation, we introduce three
key notions. Firstly, each separate layer should have a sim-
ple pattern. This is accomplished through the use of a DIP
network [9] for each layer. Secondly, the correlation be-
tween each layer should be low, which is ensured through
the implementation of an exclusion loss [1] on the outputs
from different DIP networks. Finally, the latent features of
each separate layer should be mutually independent, which
is achieved by implementing a deep feature separation loss
on the feature maps of intermediate layers within the DIP
networks. It is worth noting that although the concepts of
simple patterns within each layer and minimizing the corre-
lation between each layer have been previously introduced in
the DoubleDIP framework [10], our experiments have shown
that these alone are not sufficient to produce effective image
separation results.

Specifically, we use a DIP network DIPi to recover the
distinct layer yi of the mixed image, represented by ŷi =
DIPi(zi; Θi). Here, Θi refers to the learnable parameters of
this DIP network and zi is a noise input. The feature maps
of DIPi are denoted as ϕi = {ϕi,k}k∈[K], where ϕi,k rep-
resents the feature map of the kth intermediate network layer
of DIPi. [K] is the set {1, ...,K} with K denoting the num-
ber of intermediate layers of DIPi. The loss function of the
feature separation task is formulated as follows:

LSep =α1 · LossExcl(ŷ1, ŷ2)+

α2 · LossFeat(ϕ1,ϕ2)
(3)

where LossExcl is the exclusion loss [1] that minimizes the
correlation between the gradients of ŷ1 and ŷ2. LossFeat

is the deep feature loss, which enforces the exclusion loss on
the feature maps of the intermediate network layers of the DIP
networks. α1 and α2 are hyperparameters. The deep feature
loss is defined as follows:

LossFeat(ϕ1,ϕ2) =
∑
k∈κ

LossExcl(ϕ1,k,ϕ2,k) (4)

where κ is a set of pre-defined intermediate layers for com-
puting the deep feature separation loss.



3.2. Image Reconstruction LRecon

To resolve the image reconstruction task, a conventional ap-
proach would be to minimize the ℓ1-loss between the origi-
nal overlaid image I and the re-mixed image Î . Meanwhile,
we embed natural prior in to the reconstructed layers such
that the recovered layers are close to natural imagesIn par-
ticular, we incorporate the Regularizer by Denoising (RED)
approach [15] into each DIP network. RED has been shown
to be an effective regularizer that can tackle any image in-
verse problem through the exploitation of the well-developed
image denoising engine [15, 16]. Given a denoiser f(·), the
RED regularization function is defined as follows:

ρ(x) =
1

2
xT (x− f(x)) (5)

where x is a reconstructed image to be regularized.
Finally, the loss function for image reconstruction is ex-

pressed as follows:

LRecon = ∥I − Î∥1 + λ1 · ρ(ŷ1) + λ2 · ρ(ŷ2) (6)

where ρ(·) represents the RED regularizer, which is defined in
eq. (5). λ1 and λ2 are the weights of the regularizers. ŷ1 and
ŷ2 are the outputs of the DIP networks and Î is the re-mixed
image.

3.3. Overall Objective and Optimization

The overall training objective is combined with the aforemen-
tioned feature separation loss and the image reconstruction as
follows:

min
Θ

L = α1 · LossExcl(ŷ1, ŷ2)

+ α2 · LossFeat(ϕ1,ϕ2)

+ ∥I − Î∥1 + λ1 · ρ(ŷ1) + λ2 · ρ(ŷ2)

(7)

where Θ represents the learnable parameters of the overall
DIP networks. The overall structure is shown in Fig. 1.

To optimize this objective function, we use the Alternat-
ing Directions Method of Multiplier (ADMM) method, which
has been shown to have faster and better convergence [17, 18].
For simplicity, we denote the first three terms in Eq. (7) as L1.
By ADMM, Eq. (7) is reformulated as follows:

min
Θ,ỹ1,ỹ2

L1 + λ1ρ(ỹ1) + λ2ρ(ỹ2)

s.t. ỹ1 = ŷ1, ỹ2 = ŷ2

(8)

This reformulation involves introducing auxiliary variables ỹi

to split the network estimation ŷi in L1 and ρ, where i ∈
{1, 2}. The ADMM solver provides iterative update rules [16]

given by:

ŷ
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ỹ
(j+1)
1 = 1

λ1+µ1
(λ1f(ỹ
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where u1 and u2 represent the Lagrange multipliers and
µ1, µ2 are the ADMM free parameters. The variables u1 at
the (j + 1)th ADMM iteration are represented as u

(j+1)
1 .

Eq. (9) is solved by training the network via a gradient de-
scent algorithm, such as the Adam optimizer [19]. Eq. (10)
is derived from the fixed point solution in [15]. Eq. (11) is
a straightforward update for the Lagrange multipliers. The
iterative update rules continue until convergence is achieved.

3.4. Implementation Details

The proposed algorithm is implemented using PyTorch 2 and
follows a similar architecture as the DIP network presented
in [9, 10]. To stabilize the learning process, the same in-
put perturbations and data augmentation techniques outlined
in [10] are employed. The network is optimized using the
Adam optimizer [19] with a learning rate of 0.008. The num-
ber of ADMM iterations is set to 8, 000. The overall model
converges within approximately 20 minutes when run on a
server with an NVIDIA Tesla V100 GPU.

4. EXPERIMENTS

In this section, we experimentally compare the proposed
method with state-of-the-art algorithms, including BIDeN [7],
Zhang et al. [1], and DoubleDIP [10]. It should be noted that
BIDeN and Zhang et al.’s methods are supervised. The
overlaid images used in our experiments are generated by
combining two images randomly selected from the Set5 and
Set14 datasets [20] using the mixing function specified in
Eq. (1). We provide both qualitative and quantitative evalua-
tions, with the latter measured by widely used metrics in the
literature [10, 21], namely peak signal-to-noise ratio (PSNR)
and structural similarity index measure (SSIM). The default
setup published on GitHub is used to generate unmixed im-
ages by BIDeN, Zhanget al., and DoubleDIP. Our proposed
algorithm is fine-tuned through grid search, with α1 = 0.01,
α2 = 0.001, λ1 = λ2 = 0.5, and µ1 = µ2 = 0.5.

2Code will be made available upon acceptance.



Fig. 2. Ablation study.

In order to better showcase the contribution of BITS-Net,
we conduct an ablation study as shown in Fig. 2. The up-
per figures show the separated layers obtained using different
components of BITS-Net, while the lower figures display the
corresponding training curves. Different methods are color-
coded, with red indicating the overall BITS-Net results, green
representing BITS-Net without natural prior, blue for BITS-
Net without deep feature loss, and pink indicating the use of
Double-DIP algorithm only. The results show that the over-
all BITS-Net method produces the best visual and numerical
outcomes when separating the baby-bird overlaid image. Re-
moving either deep feature loss or natural prior leads to a de-
cline in performance, but all methods still perform better than
DoubleDIP.

We compare our proposed BITS-Net with state-of-the-
art methods on overlaid banana+tomato images. As shown
in Fig. 3 and Table. 1, BITS-Net outperforms the competi-
tors with significant improvements in PSNR and SSIM, as
well as visually more natural and better-separated features.
Notably, our unsupervised method also outperforms super-
vised methods such as Zhang et al. and BIDeN. Compared
to DoubleDIP, BITS-Net learns cleaner, sharper, and better-
separated features, as shown in Fig.3(b) and (c). Table. 1
shows improvements of up to 9.15 dB in PSNR and 0.32 in
SSIM.

5. CONCLUSION

In this work, we study the single image transparency sep-
aration problem by dividing it into two parallel tasks: (1)

(a) visual comparison of separation results. GT means ground truth.

(b) Feature maps of y1 by DoubleDIP and BITS-Net.

(c) Feature maps of y2 by DoubleDIP and BITS-Net.

Fig. 3. Qualitative comparisons: (a) the separation results
by various methods. The quantitative comparisons are shown
in Table. 1. (b) the feature maps of iamge layer y1 from the
second-to-last network layer of the DoubleDIP and our BITS-
Net. (c) the feature maps of image layer y2.

Table 1. Quantitative comparisons of the experiment pre-
sented in Fig. 3.

Metrics Zhang BIDeN DoubleDIP BITS-Net
et al [1] [7] [10]

PSNR of y1 13.71 14.81 12.12 18.46
PSNR of y2 9.30 15.73 12.11 18.45
SSIM of y1 0.59 0.52 0.58 0.71
SSIM of y2 0.44 0.56 0.63 0.76

the feature separation task and (2) the image reconstruction
task. In particular, for the feature separation task, we (a) de-
ploy separated DIP networks and (b) impose exclusion loss
and deep feature separation loss to ensure the recovered lay-
ers have simple patterns, small correlations, and independent
latent features. For the image reconstruction task, we (a) en-
force ℓ1 loss on the re-mixed image and (b) impose an explicit
regularizer to promote the natural recovery of each layer. The
overall model is optimized by the ADMM algorithm for bet-
ter stability. Experiments show that our proposed unsuper-
vised BITS-Net method outperforms other state-of-the-art ap-
proaches, including supervised ones.
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