
An Online Learning Method for Microgrid Energy Management
Control*

Vittorio Casagrande1, Martin Ferianc1, Miguel Rodrigues1 and Francesca Boem1

Abstract— We propose a novel Model Predictive Control
(MPC) scheme based on online-learning (OL) for microgrid
energy management, where the control optimisation is embed-
ded as the last layer of the neural network. The proposed MPC
scheme deals with uncertainty on the load and renewable gen-
eration power profiles and on electricity prices, by employing
the predictions provided by an online trained neural network
in the optimisation problem. In order to adapt to possible
changes in the environment, the neural network is online
trained based on continuously received data. The network
hyperparameters are selected by performing a hyperparameter
optimisation before the deployment of the controller, using a
pretraining dataset. We show the effectiveness of the proposed
method for microgrid energy management through extensive
experiments on real microgrid datasets. Moreover, we show
that the proposed algorithm has good transfer learning (TL)
capabilities among different microgrids.

I. INTRODUCTION

Microgrids are small-scale power systems consisting of
an interconnection of loads, generators and storage systems
operating together to reliably supply electricity to local
consumers. The uncertainty of renewable energy sources,
as well as dynamic and stochastic load demand pose a
major challenge to the scheduling of the microgrid operation.
The Energy Management System (EMS) is the controller
that computes the power flows in order to provide stable
delivery of power to loads while achieving other operational
goals, such as economic benefits. Model Predictive Control
(MPC) has been widely used in the literature to deal with
scheduling problems, e.g. in finance and for EMSs [3, 18],
due to its ability to enforce constraints and compensate
for uncertainties. In the EMS application, MPC requires
accurate predictions of system variables such as the load
power profile. These profiles are often difficult to predict
and may change over time, for example due to unforeseen
circumstances such as revamping of some elements. In
this paper, we present a learning-based MPC control for
microgrids energy management, adaptable to changes in the
environment.

Related work. MPC has been often adopted in the literature
for energy management purposes [27]. In this context, it
requires estimate of power and price profiles; therefore it is
often combined with a predictor forecasting these quantities.

*This work has been supported by the Engineering and Physical Sciences
Research Council (grants references: EP/W024411/1 and EP/R513143/1).
Martin Ferianc was sponsored through a scholarship from the Institute of
Communications and Connected Systems at UCL.

1Department of Electronic and Electrical Engineering,
University College London, London, United Kingdom
{vittorio.casagrande.19,martin.ferianc.19,
m.rodrigues,f.boem}@ucl.ac.uk

In [16] least-square support vector machine regression is
used to predict the unknown profiles. Neural networks (NNs)
are adopted in [21, 25] to obtain predictions of renewable
power, load demand and to compute the optimal energy
scheduling. The main drawback of the methods proposed
in [16, 21, 25] is that the predictors used in those works are
trained offline on a dataset composed of past observations
and subsequently the controller is deployed to the real
system, thus not being able to update the prediction model
where potential changes arise, such as aging, installation of
new equipment or sensors calibration [10]. Moreover, it is
assumed that a sufficiently long recording of the past power
profiles is available in the design phase. Reinforcement
Learning (RL) provides an answer to online model adaptation
and there are several proposed methods in the literature for
the energy management application. In [14, 22] RL is used
to compute the schedule of a battery in a microgrid system
while dealing with the stochastic nature of load demands,
renewable generators and electricity price. In [19] RL is
proposed as an alternative to MPC not requiring a prediction
model. Although RL is able to adapt to possible changes
in the system, there is in general no formal guarantee that
it may not drive the system state to unsafe conditions [24].
In this paper, the integration of OL algorithms with MPC
allows to overcome the aforementioned issues, by adapting
the learnt model and guaranteeing safety and constraints
satisfaction. There are several implementations of OL in the
literature which do not employ the obtained prediction for
control purposes. The authors of [23] propose an ensemble
that combines offline and online learning (OL) used for
load forecasting using passive-aggressive regression. In [10]
a Long Short-Term Memory (LSTM) model that is learnt
online together with the tuning of the hyperparameters is
proposed, but not allowing changes in the NN structure, for
load prediction. Similarly in [2] a method for online load
forecasting with uncertainty estimation is proposed. In [7]
a predictor is proposed for renewable energy generation
characterized by a high computational overhead since it is
retrained at the end of each day with all available data.

Contributions. In this paper, we address the challenge of
dealing with uncertainty in microgrid systems under time-
varying conditions, by designing an innovative OL-based
control algorithm for microgrid energy management based
on a LSTM NN and MPC. In particular, the NN is trained
to forecast the future profiles of the renewable generator, load
and electricity price given their past values. The predictions
are employed by the MPC optimisation layer to compute
the amount of energy to be stored in the storage system

to minimise the cost due to energy trading. This work
builds on the preliminary work, presented in [5], where
the EMS design problem is addressed by embedding the
optimisation problem as the last NN layer [1] and training
the NN, online, end-to-end to optimise the ultimate control
performance instead of the prediction accuracy. In this paper
we further explore the capabilities of the OL algorithm by
designing a platform which allows to: (i) rigorously define
pre-training, validation and online training datasets; (ii) de-
fine different loss functions for the validation and online
training phase, considering for example profiles prediction
mean squared error (MSE), control task performance or a
combination of both; (iii) optimise learning hyperparameters,
including the structure of the layers of the NN. Moreover,
we design an online Stochastic Weight Averaging (SWA)
algorithm to improve the generalization performance of the
NN over time and make the NN more robust to changing
conditions or data outliers. We also explore the Transfer
Learning (TL) [26] capabilities of the algorithm. TL reuses
knowledge from a pre-trained model on a related problem
to save time, resources and data. In fact, in a real-world
scenario, the designer may not have access to data for each
specific microgrid beforehand during design phase. Extensive
simulation results on real microgrid datasets show the effec-
tiveness of the proposed architecture. We first demonstrate
the advantages of performing the training online, then we
show that our algorithm has good TL capabilities from one
microgrid dataset to another. Finally, we show that when
considering a novel microgrid system, by training online a
NN predictor that has already been trained on a different
microgrid dataset allows us to achieve overall lower total
electricity cost. The OL-based MPC code is available on
GitHub https://github.com/vittpi/ol-ems.

The remainder of the paper is structured as follows.
Section II describes the microgrid model and EMS. Sec-
tion III gives an overview of the OL-based control algorithm,
the online SWA and the hyperparameters optimisation. In
Section IV we present the simulation results on different
microgrid datasets. In Section V we draw the conclusions.

Notation. We use subscripts to denote time instants, i.e.
vt is the vector v at time t. We denote vk|t the value of the
variable v, k steps ahead of the time step t (i.e. at t + k).
The estimation of the variable v is denoted as v̂. So, the
estimation of the variable v, available at time t, k steps ahead
of time step t (i.e. at t+ k) is denoted as v̂k|t. We use bold
variables to denote time sequences of N samples, namely
vN |t = {vk|t}k∈{0,...,N−1} is the sequence v from time step
t to t+N − 1.

II. ENERGY MANAGEMENT SYSTEM
ARCHITECTURE

We start by giving an overview of the model of the
microgrid in Fig. 1. We then describe the online learning-
based controller which is composed of an online trained NN
predictor and an MPC optimisation layer.

μGridMPCNN

Controller

Fig. 1. The architecture of the EMS controller and the microgrid system.
The controller uses a NN to predict the future profiles of the electricity price
p̂T |t, the load P̂l

T |t and the renewable generator P̂r
T |t based on their past

values over the look-back window (pL|t−L, Pl
L|t−L

and Pr
L|t−L

). The
predictions are used by MPC to compute the power exchanged with the
storage system P s

t . The storage state is then fed back to the MPC.

A. Microgrid model

In this Section we detail all the agents connected to
the microgrid, the block µGrid of Fig. 1, for more details
see [6]. The renewable generators are modelled as power
sources, collectively producing the power P r

t at each time
step in the microgrid. The loads are modelled as power sinks,
collectively drawing the power P l

t at each time step. We
assume that both the loads and renewable generators cannot
adjust the power they exchange with the microgrid. The
method can be easily extended to cover this case. The storage
is modelled as a first-order linear system [18]:

st+1 = (1− σ)st + ηc/dTsP
s
t (1)

where st is the charge level at time t, P s
t is the power

exchanged with the microgrid, σ ∈ [0, 1] is the self-discharge
rate of the battery, ηc/d is the energy conversion efficiency
of the battery for charging/discharging (ηc < 1 and ηd > 1)
and Ts is the controller sampling time. The power and the
charge level of the storage are constrained as follows:

−P s
M ≤ P s

t ≤ P s
M , sm ≤ st ≤ sM (2)

where P s
M is the maximum power that can be exchanged

with the microgrid, sM is the maximum charge level of the
battery and sm is the minimum charge level of the battery.
We assume the microgrid is connected to the utility grid and
it exchanges a power P g

t at each time step. All agents are
coupled by the power balance constraint:

P s
t + P g

t = P r
t − P l

t (3)

where it is assumed that P l
t and P r

t are positive, P s
t is

positive when the storage system is charging and P g
t is

positive when power is sold to the utility grid. The goal
of the EMS is to minimise the energy cost due to energy
trading with the utility grid, in mathematical terms:

∞∑
t=0

−ptP g
t (4)

where pt is the price of the energy at time t.

B. Neural network predictor

The proposed controller is based on a NN that is trained to
predict the future profiles of the electricity price, of the load
demand and of the renewable generator production given
their past values defined by a look-back window of length L.
In particular, we employ a standard LSTM-based recurrent
NN [12] (RNN) with a hidden size H and a number of
layers nlayers. We consider RNN in comparison to other types
of NNs because of their ability to capture dependencies in
time-series data, while having a relatively small number of
trainable parameters and a flexible input time window. We
design a single RNN for jointly forecasting all three uncertain
time series: load demand, renewable power generation and
electricity price profiles, so that the RNN is able to learn
correlations between the variables which can lead to richer
representations and more accurate predictions. We are aware
that different network architecture compositions can affect
the prediction performance, for example, using a separate NN
to predict each profile or input the NN’s profile prediction
into the next one in a cascaded fashion. Nevertheless, our aim
is to develop a general framework that can be applied even
to other architectures of networks. At each time step we feed
the RNN with the past values of the electricity price pL|t−L,
the load Pl

L|t−L and the renewable generator Pr
L|t−L over

the look-back window of length L and output the predictions
p̂T |t, P̂l

T |t and P̂r
T |t over the MPC prediction horizon of

length T . The prediction over the time horizon is obtained
by collecting the last hidden state of the RNN and feeding it
to a fully connected layer with a linear activation function.
The NN output dimension is T×3, containing the predictions
of the profiles over the MPC prediction horizon, while the
input dimension is L× 3.

C. Model predictive control

The controller computes the power that is bought from
the utility grid and the energy to store in the storage system
such that the total operating cost (4) of the microgrid is
minimised. At each time step the optimisation problem is
reformulated for the next optimisation horizon given the
feedback measures from the microgrid and the predictions
of the unknown profiles. The resulting problem is:

min
Pst

T−1∑
k=0

−p̂k|tP g
k|t (5a)

s.t. sk+1|t = (1− σ)sk|t + ηc/dTsP
s
k|t (5b)

− P s
M ≤ P s

k|t ≤ P s
M (5c)

sm ≤ sk|t ≤ sM (5d)

P g
k|t + P s

k|t = P̂ r
k|t − P̂ l

k|t (5e)

s0|t = st (5f)

where T is the MPC prediction horizon and p̂k|t, P̂ l
k|t

and P̂ r
k|t are respectively the k steps-ahead predictions the

price, the load and the renewable generator. The objective
function (5a) is the finite horizon approximation of the
cost (4) computed using the predicted price profile over the

next T steps. The constraints (5b)-(5d) represent the storage
dynamics (1) and the storage power and charge limits (2).
Constraint (5e) is the power balance (3). Lastly (5f) is the
feedback. The decision variable Ps

T |t is the future power
schedule of the storage system predicted at time t. Once
computed Ps,⋆

T |t, the control law is defined as P s
t = P s,⋆

0|t .
The storage system state at t+1 and power exchanged with

the utility grid at time t are computed using (1) and (3):

st+1 = (1− σ)st + ηTsP
s,⋆
0|t (6)

P g
t = P r

t − P l
t − P s,⋆

0|t (7)

where P r
t and P l

t are the actual powers produced by the
renewable generator and drawn from the load respectively.

III. ONLINE TRAINING AND VALIDATION
ALGORITHM

In this Section, we present the online training algorithm
and the procedure for hyperparameter optimisation.

A. Online training

The weights of the NN are updated at each step using the
OL algorithm. The NN outputs a prediction of the values of
the unknown profiles over T steps given their past L values.
We now define a training set, validation set and a test set to
be used at each time step. We denote the input tensor of the
NN at time step t as ψ∗

t ∈ RB∗×L×Fin where ∗ ∈ {tr, val, te}
is the training, validation or test data, B∗ is the size of the
batch of data used for ∗ and Fin is the number of input
features. In this work, by feature we mean the profile of price,
load or renewable. In the general case, a feature can be any
piece of data that improves the prediction performance. The
corresponding output tensor is denoted as ω∗

t ∈ RB∗×T×Fout ,
where Fout is the number of output features; for example,
Fout = 3 if we predict the price, the load and the renewable
generator profiles. The test targets ωtest

t are not required for
learning purposes at time step t since they are only used
to assess the prediction performance. By setting Btest = 1,
we define the test input and output tensors for feature f as
ψtest
t =

[
fL|t−L

]
, ωtest

t =
[
fT |t

]
. Hence, at time step t,

the NN predicts the future values of the unknown profiles
ω̂test
t . Such values are passed to the optimiser to compute

the current control action. As opposed to the test targets,
the training and validation targets are required to update the
network weights and hyperparameters. Hence the training
and validation samples must be selected among the past
values. The training and validation input and output tensors
are defined as ψval

t =
[
fL|t−T−L−i

]
, ωval

t =
[
fT |t−T−i

]
and ψtr

t =
[
fL|t−T−L−Bval−j

]
, ωtr

t =
[
fT |t−T−Bval−j

]
,

where i = 1, . . . , Bval−1 and j = 1, . . . , Btr−1. Since ωtr
t

and ωval
t are composed only of past samples, these tensors

are available at time t and thus can be used for learning
purposes. The network can be trained by minimising any
properly designed loss function, such as (i) the standard
prediction mean square error (MSE) loss function, or (ii) the
control cost function, or (iii) a combination of these, as
proposed in [5]. At time step t+1 the training, validation and

time

time

time

t t + Tt − L

t − T
t − T − L

t − T − 1
t − T − 1

t − T − L − 1

ψtestt ωtestt

ωvaltψvalt

ωtrtψtrt

Test set

Validation set

Training set

Fig. 2. Visualisation of the data splitting in training, validation and test in
the case L = 4, T = 3, Btr = 1 and Bval = 1 at time step t. Each black
square represents a feature sample ft. Samples highlighted in blue are the
inputs of the NN, samples highlighted in orange are the NN targets.

test sets are shifted forward by one step. The data splitting
is visualised in Fig. 2.

B. Online Weight Averaging

The goal of the online learning algorithm is to react to sud-
den changes in the environment (e.g. in the electricity price),
while retaining the knowledge acquired in the previous time
steps. Hence, to make the learning process more robust to
sudden changes in the environment and in the input signal,
we implement an online variant of the SWA [13] applied
to OL-based controllers. In [13] a method to improve the
generalization capabilities of NNs for offline learning, by
considering the final model as the average over the last N
training iterations, is proposed. Here we adapt the algorithm
to an OL scenario, where an average model is updated at
each step. In particular, we denote θt the NN weights at
times t and θ∇t the weights after the gradient update at time
step t, γ is the moving average decay factor, and θavgt , θavgt+1

are the moving averages of the weights. We update the
weights for the next time step θt+1 every δ time steps. During
initialization, we set θavg0 = θ0 and then at each step we
update the average model and the current model through
a moving average as θavgt+1 = γθavgt + (1 − γ)θ∇t The OL
deployment scenario requires updating θavg at every time
step, since we do not know the last N training iterations
in advance as in [13]. To adjust the learning algorithm’s
sensitivity, one can tune the hyperparameters γ and δ. γ
and δ control how much the current model relies on the
average model θavgt , which is a smoothed version of the
current model θt. The γ regulates the content of the preserved
weights e.g. γ = 0.9 means that 0.9 magnitude of the average
is preserved 0.1 is the weighting of the current model at
time step t. The δ regulates how often the current model is
replaced with the average model e.g. δ = 10 means that every
10 time steps t we reset the current model to be equal to the
average model. Setting the current model θt+1 to the average
model θavgt+1 aims at promoting the generalization capabilities
of the NN, by resetting its optimization pathway, which

prevents the network from getting stuck in local minima or
being oversensitive to abrupt changes in the input signals.

C. Hyperparameter optimisation

In addition to finding the optimal NN architecture, it is
necessary to tune/set the hyperparameters of the learning
algorithm to the specific problem at hand. Here we utilise
the Hyper Parameter Optimisation (HPO) using the syne-
tune [20] library. More specifically, we formulate the HPO
in terms of the domain dataset D1 and wall-clock time budget
C to find the best hyperparameters and architecture under C
by minimising a chosen loss function using the validation set.
Given the winning model M∗, this model and its associated
hyperparameters can then be deployed on the continuation
of D1 for online training, as done in the experiments in
Section IV. Furthermore, M∗ and its configuration can be
used to initialise the model to be learnt on a different dataset
D2, as shown in the experiments for TL validation.

IV. EXPERIMENTAL RESULTS

In this Section, we describe the experiments designed
to show the effectiveness of the proposed method. All
the experiments have been repeated 3 times with different
random seeds and the Tables represent the mean results with
a single standard deviation. The microgrids are composed of
the agents described in Section II-A: load, renewable gener-
ation, storage system and connection to the utility grid. We
used Python 3.6.8, PyTorch 1.10.1 [17], PyTorch Lightning
1.5.10 [9], syne-tune 0.2 [20] and cvxpylayers 0.1.5 [1]. The
comparison between different simulations is based on two
performance indices: (i) the total cost, computed through (4)
over all the simulation steps; (ii) the MSE on the test set,

computed as
∑

ft∈{pt,P rt ,P lt}

S∑
t=0

T−1∑
k=0

(
ft+k − f̂k|t

)2

, where S

is the number of simulation steps, ft+k is the feature sample
of the test set at time t+ k and f̂k|t is the prediction of f .

Datasets description. We paired two data sources to create
datasets for our experiments. The first provides is the EMSx
benchmark dataset [15] that collects the power profiles for
renewable production and load demand, as well as storage
characteristics of two different microgrids, we considered the
recordings of industrial sites 10 and 12 between 01/01/2016
and 07/10/2017. The second data source is the ENTSO-E
Transparency Platform dataset [8, 11] that collects the day-
ahead electricity price, for each European bidding zone, we
employed the price profile of IT-Centre-North of the same
time range as the power profiles. The storage parameters are
provided in the first dataset: (sM [kWh], ηc, ηd, P

s
M [kW])

are (400, 0.95, 1.05, 100) and (800, 0.95, 1.05, 200) for site
10 and 12. All data samples have been normalised in the
range 0-1, we recognize that, in an OL scenario, the normal-
isation factors are not available beforehand, nevertheless the
normalisation factors can be inferred from past recordings.
The other numerical values used for simulations are as:
Ts = 1h, T = 24, L = 168, sm = 0.1sM , σ = 0.0042,
s0 = 200kWh, Btr = Bval = 1, nlayers = 1. We

TABLE I
COMPARISON OF PERFORMANCE OF DIFFERENT CONTROLLERS

Site Controller Cost
[
e
]

MSE

10
OL-MPC 285,681 ± 36 1.007 ± 0.028

1yOL-MPC 285,962 ± 150 1.563 ± 0.028
noSWA 285,829 ± 368 0.990 ± 0.006

12
OL-MPC 59,770 ± 45 1.203 ± 0.019

1yOL-MPC 60,741 ± 345 3.530 ± 0.094
noSWA 59,745 ± 182 1.082 ± 0.013

selected the hyperparameters of the NN for each industrial
site using the procedure explained in Section III-C using
random search [4] with 4 CPU workers for a maximum
time of 3 hours. The optimised hyperparameters are the
learning rate, the weight decay, δ, γ and H which are
(3.38×10−4, 1.88×10−4, 400, 7.07×10−1, 48) and (3.31×
10−3, 8.88× 10−5, 50, 8.00× 10−1, 48) for site 10 and 12.

Online learning experiments. The goal of these experi-
ments is to show how the OL algorithm is able to adapt to
changing environment conditions. To this end, we compare
our controller, denoted as OL-MPC, with another controller
denoted as 1yOL-MPC. For this controller the weights θt
are updated until time step t̄. After this the training is
stopped and the network weights are not updated anymore
θt̄+k = θt̄. For this simulation we set the learning stop
time after the first year of simulation and we continue the
simulation for the next 10 months. Simulation results are
shown in Table I. Notably, the proposed controller OL-MPC
outperforms the 1yOL-MPC due to its ability to adapt to
substantial changes in the profiles. For example, consider the
price profile in Fig. 3 between 20 December 2016 and 14
January 2017. The blue and green profiles are respectively
the first predicted sample p̂1|t by the OL-MPC and the 1yOL-
MPC. The vertical red line indicates the moment in which the
training is stopped. While our OL-MPC algorithm is able to
adapt to this change, the values predicted by the 1yOL-MPC
remain in the same range.

20 Dec 2016 30 Dec 2016 14 Jan 2017

50

100

150

p
(t
)

[e
/M

W
h] Ground Truth

OL-MPC
1yOL-MPC

Fig. 3. Ground truth and predicted price profiles obtained using the OL-
MPC and the 1yOL-MPC.

SWA experiments. The experiments reported in this Sec-
tion are related to the online implementation of the SWA
algorithm. In particular, we show that enabling the SWA
throughout the simulation decreases the variability of the
obtained performance. Table I reports the cost and the MSE
obtained simulating the EMS in site 10 and 12, the controller
is denoted as noSWA. In order to compare fairly the results
of these experiments with the ones presented in the previous
Section, we re-run the HPO optimising only the learning rate,
the weight decay and H and disabling the SWA algorithm.

TABLE II
TRANSFER LEARNING RESULTS

D1 D2 Cost
[
e
]

MSE

12 10
NO TL 286,124 ± 13 1.185 ± 0.044
Only TL 286,617 1.597
OL+TL 285,295 0.345

10 12
NO TL 59, 387± 342 1.066 ± 0.021
Only TL 59,867 9.113
OL+TL 57,995 3.460

The mean value of the results, for both MSE and cost, are
similar to the OL-MPC controller, however, the variability
increases by disabling the SWA.

Transfer learning experiments. We now show that the
proposed algorithm is suitable for TL, by showing that the
control performance improves if the NN is pre-trained on
an available dataset before the controller deployment. We
show here that the combination of TL and OL allows to
achieve the lowest cost. We assume to have two different
industrial site datasets, we use the same price profile for
both the datasets, D1 which is available before the controller
deployment for EMS design and D2 which is not available
before the controller deployment and represents the new
microgrid for which the controller has been commissioned.
We run three different experiments: (i) we use the dataset
D1 only for hyperparameters optimisation and train the NN
on D2 using our algorithm. This experiment is denoted in
Table II as NO TL; (ii) we optimise hyperparameters and
train the NN on D1 and we then deploy the controller on
D2 disabling the OL. This experiment is denoted in Table II
as only TL; (iii) we test the combination of OL and TL. The
dataset D1 is used for both hyperparameters optimisation
and pre-training. The controller is then deployed to dataset
D2 where the training continues. This experiment is denoted
in Table II as TL+OL. For all the experiments data samples
are normalised using normalisation factors of D1. Simulation
results are reported in Table II. It is clear that pre-training
the NN on an available dataset has a beneficial effect on
the control performance since results of Table II are similar
to the results of the OL-MPC in Table I even though the
hyperparameters have not been optimised for dataset D2

specifically. However, it is clear that the combination of
OL and TL allows to achieve the lowest cost. It should
be noted that the total cost of OL+TL in Table II is even
lower than the one obtained using OL-MPC in Table I even
though the NN hyperparameters in the OL+TL case are
not optimised for D2. We indirectly attribute this result to
the online SWA procedure which led the network’s weights
towards generalization beyond a single dataset.

V. CONCLUSION

The paper proposes a novel learn-based MPC scheme for
microgrid energy management that uses an online trained
NN with SWA. The NN predicts load, renewable generation,
and electricity prices, and optimizes the control actions
accordingly. The proposed method is tested on real mi-
crogrid datasets and shows promising results in terms of

cost reduction and transfer learning capabilities. As a future
work, we plan to investigate the role of the loss function
both for the HPO and for online training, by comparing
prediction optimisation and end-to-end optimisation, thus
directly minimising the control performance instead of the
prediction error, or combining different loss functions.

REFERENCES

[1] Akshay Agrawal et al. “Differentiable convex opti-
mization layers”. In: Advances in neural information
processing systems 32 (2019).

[2] Verónica Álvarez, Santiago Mazuelas, and José A
Lozano. “Probabilistic load forecasting based on adap-
tive online learning”. In: IEEE Transactions on Power
Systems 36.4 (2021), pp. 3668–3680.

[3] Alberto Bemporad, Laura Puglia, and Tommaso Gab-
briellini. “A stochastic model predictive control ap-
proach to dynamic option hedging with transaction
costs”. In: Proceedings of the 2011 American control
conference. IEEE. 2011, pp. 3862–3867.

[4] James Bergstra and Yoshua Bengio. “Random search
for hyper-parameter optimization.” In: Journal of ma-
chine learning research 13.2 (2012).

[5] Vittorio Casagrande and Francesca Boem. “Learning-
based MPC using Differentiable Optimisation Layers
for Microgrid Energy Management”. In: 2023 Euro-
pean Control Conference (ECC) (Accepted). IEEE.
2023.

[6] Vittorio Casagrande et al. “Resilient Microgrid Energy
Management Algorithm Based on Distributed Opti-
mization”. In: IEEE Systems Journal ().

[7] Michelangelo Ceci et al. “Spatial autocorrelation
and entropy for renewable energy forecasting”. In:
Data Mining and Knowledge Discovery 33.3 (2019),
pp. 698–729.

[8] ENTSO-E. Transparency platform. URL: https :
/ / transparency . entsoe . eu. (Accessed:
14.03.2022).

[9] William Falcon and The PyTorch Lightning team.
PyTorch Lightning. Version 1.4. Mar. 2019. DOI: 10.
5281 / zenodo . 3828935. URL: https : / /
github.com/Lightning-AI/lightning.

[10] Mohammad Navid Fekri et al. “Deep learning for load
forecasting with smart meter data: Online Adaptive
Recurrent Neural Network”. In: Applied Energy 282
(2021), p. 116177.

[11] Lion Hirth, Jonathan Mühlenpfordt, and Marisa
Bulkeley. “The ENTSO-E Transparency Platform–A
review of Europe’s most ambitious electricity data
platform”. In: Applied energy 225 (2018), pp. 1054–
1067.

[12] Sepp Hochreiter and Jürgen Schmidhuber. “Long
short-term memory”. In: Neural computation 9.8
(1997), pp. 1735–1780.

[13] Pavel Izmailov et al. “Averaging weights leads to
wider optima and better generalization”. In: arXiv
preprint arXiv:1803.05407 (2018).

[14] Ying Ji et al. “Real-time energy management of a
microgrid using deep reinforcement learning”. In:
Energies 12.12 (2019), p. 2291.

[15] Adrien Le Franc et al. “EMSx: a numerical benchmark
for energy management systems”. In: Energy Systems
(2021), pp. 1–27.

[16] Alessandra Parisio, Evangelos Rikos, and Luigi
Glielmo. “A model predictive control approach to
microgrid operation optimization”. In: IEEE Trans-
actions on Control Systems Technology 22.5 (2014),
pp. 1813–1827.

[17] Adam Paszke et al. “Pytorch: An imperative style,
high-performance deep learning library”. In: Advances
in neural information processing systems 32 (2019).

[18] Ionela Prodan, Enrico Zio, and Florin Stoican. “Fault
tolerant predictive control design for reliable micro-
grid energy management under uncertainties”. In: En-
ergy 91 (2015), pp. 20–34.

[19] Naren Srivaths Raman et al. “Reinforcement learning-
based home energy management system for re-
siliency”. In: 2021 American Control Conference
(ACC). IEEE. 2021, pp. 1358–1364.

[20] David Salinas et al. “Syne Tune: A Library for Large
Scale Hyperparameter Tuning and Reproducible Re-
search”. In: First Conference on Automated Machine
Learning (Main Track). 2022. URL: https : / /
openreview.net/forum?id=BVeGJ-THIg9.

[21] Bharatkumar V Solanki et al. “Including smart
loads for optimal demand response in integrated en-
ergy management systems for isolated microgrids”.
In: IEEE Transactions on Smart Grid 8.4 (2015),
pp. 1739–1748.

[22] Ganesh Kumar Venayagamoorthy et al. “Dynamic
energy management system for a smart microgrid”. In:
IEEE transactions on neural networks and learning
systems 27.8 (2016), pp. 1643–1656.

[23] Leandro Von Krannichfeldt, Yi Wang, and Gabriela
Hug. “Online ensemble learning for load forecasting”.
In: IEEE Transactions on Power Systems 36.1 (2020),
pp. 545–548.

[24] Kim P Wabersich and Melanie N Zeilinger. “Safe
exploration of nonlinear dynamical systems: A predic-
tive safety filter for reinforcement learning”. In: arXiv
preprint arXiv:1812.05506 (2018).

[25] Tiancai Wang, Xing He, and Ting Deng. “Neural
networks for power management optimal strategy in
hybrid microgrid”. In: Neural Computing and Appli-
cations 31.7 (2019), pp. 2635–2647.

[26] Fuzhen Zhuang et al. “A comprehensive survey on
transfer learning”. In: Proceedings of the IEEE 109.1
(2020), pp. 43–76.

[27] Muhammad Fahad Zia, Elhoussin Elbouchikhi, and
Mohamed Benbouzid. “Microgrids energy manage-
ment systems: A critical review on methods, solu-
tions, and prospects”. In: Applied energy 222 (2018),
pp. 1033–1055.

