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Abstract— In this paper we present a learning-based Model
Predictive Control (MPC) algorithm based on differentiable
optimisation layers. Recent works show that it is possible
to include an optimisation problem as a network layer in a
Neural Network (NN) architecture. Here the MPC optimisation
problem is integrated on the last layer of a NN which is used to
estimate the uncertain parameters of the objective function. The
NN is then trained online, end-to-end (E2E), based on previous
control actions performance. We show that directly targeting
the optimality of the control actions leads to improved control
results with respect to the standard method of estimating
the uncertain parameters and then perform the optimisation.
The effectiveness of the proposed method is illustrated on a
microgrid energy management problem where the future profile
of the electricity price is not known.

I. INTRODUCTION
Many control applications require to compute control

actions by solving partially-defined optimisation problems
that depend on unknown parameters that can be estimated
from data. A microgrid Energy Management System (EMS)
is a representative example of this problem, where the
controller has to plan the amount of energy to store in the
storage systems at each time step based on predictions of
unknown variables such as electricity price. The standard
procedure to solve these control problems is to first estimate
the unknown parameters and then provide the solution of
the estimation to the subsequent optimisation problem that
computes the control actions, according to the so-called
Predict then Optimise framework [12]. However, in recent
years, performance-based network training has proven to
outperform the Predict then Optimise approach [9, 24]. In
this setting the parameters of the network are adjusted aiming
at optimising the ultimate criteria on which the model is eval-
uated instead of targeting the estimation performance [21]. In
this paper we propose a performance-based self-tuning MPC
algorithm that relies on differentiable optimisation layers.
Recent works have shown that it is possible to include a
parametrised convex optimisation problem as a layer of a NN
by implicitly differentiating its optimality conditions [2]. The
network is then trained E2E updating its parameters based on
the optimality of the decisions. The novel idea in this paper
is to include the MPC optimisation problem in the learning
framework to allow the real-time operation. The resulting
algorithm combines the advantages of MPC and NNs. On
the one hand, MPC is a very successful control technique
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thanks to its ability to compensate for uncertainty and to
handle constraints. On the other hand, using deep NNs for
estimation of unknown parameters, allows to choose a model
structure that has the capability of approximating functions
with arbitrary accuracy [23].

In the literature the performance of MPC has been en-
hanced in many different ways taking advantage of machine
learning techniques, by learning or improving the prediction
model [26], or by obtaining explicit MPC laws to reduce the
computation time [11, 27]. Other works propose learning
techniques to adapt the parameters of the MPC optimisation
problem to improve its performance: in [15, 25] bayesian
optimisation is used to optimise an LQR controller (hence
without enforcing constraints on states and inputs); In [5] the
best linear model that approximates the nonlinear dynamics
of a robotic system is chosen using bayesian optimisation in
order to maximise the controller performance. Reinforcement
Learning is used in [30, 16] to tune weights and constraints
of the MPC. In [20] the differential predictive control method
presented in [10] is used to learn explicit NN policies for the
economic dispatch problem in order to speed computation
time up. On the other hand, in this paper, a NN is used
to online adapt the unknown optimisation parameters of
the MPC objective and such NN is trained in real time
to maximise the controller performance. The algorithm pro-
posed in this paper is based on the work on differentiable
optimisation layers presented in [2]. Differentiating through
the solution of a convex optimisation problem with respect
to its parameters allows to perform backpropagation through
convex programs. This can be used to learn convex optimi-
sation control policies [1]. In [4] a self-tuning MPC policy is
designed based on differentiable optimisation layers, where
the model is trained minimizing an imitation loss, hence
assuming that there is an expert system running alongside.
As opposed to these contributions, we propose an algorithm
which does not require an expert, instead online learns from
the optimality of its past control actions and hence it is
suitable for real-time implementation. In this paper we adopt
the proposed method to optimise the microgrid operation. To
do this, the EMS requires the predictions of variables like
the energy demand, the renewable power production and the
electricity price. In [28] least-square SVM regression is used
to forecast load demand and renewable power production;
in [18] the day-ahead solar energy is predicted by using
Monte Carlo simulation; in [17] a seasonal auto-regressive
integrated moving average model is used for wind and load
forecasting. Task-based E2E learning has been adopted in
[9] where the battery operation is scheduled with price



uncertainty and sub-optimal performance is obtained when
a NN model is trained by minimising the estimation error
instead of the energy cost. However, the NN proposed in [9]
is trained on a large dataset and it is not suitable for online
application. In contrast, we propose a method to overcome
this limitation, thus allowing an online implementation of
the E2E performance-based approach, where a training step
is performed at each sample time of the controller, taking
advantage of newly collected data. To the best of the Au-
thor’s knowledge, a performance-based learning approach
has never been used online to improve energy management
performance.

Summing up, in this paper we propose a learning-based
MPC algorithm taking advantage of differentiable optimi-
sation layers and we tailor it for the microgrid energy
management problem. The controller is embedded in a NN
to estimate the optimisation objective parameters, while
optimising the ultimate control performance. To do this we
introduce a novel training algorithm and define a suitable
loss function. We compare the simulation results obtained
by minimising the performance-based loss function with the
results obtained by minimising a standard MSE loss function
and an hybrid loss function.

The remainder of the paper is structured as follows. Sec-
tion II gives a background on differentiable optimisation lay-
ers and introduces the proposed method. Section III describes
the microgrid model and characterizes the algorithm for the
specific energy management case study, Section IV reports
the simulation results and Section V draws the conclusions.

Notation. We use the subscript to denote time instants,
i.e. vt is the vector v at time t. We denote vk|t as the value
of the variable v, k steps ahead of time step t based on the
information available at time t. The estimation of the variable
v, k steps ahead of time step t (i.e. at t + k) is denoted as
v̂k|t. We use bold variables to denote time sequences of N
samples, namely vN |t = {vk|t}k∈{0,...,N−1} is the sequence
of values of v computed at time t for the next N steps.

II. DIFFERENTIABLE LEARNING-BASED MPC

In this section we give a background on the performance-
based framework and describe the proposed algorithm.

A. Background on performance-based learning

In the performance-based framework, machine learning
methods are used to improve the decisions computed through
the solution of an optimisation problem which is defined by
parameters that are estimated from data. In particular, we
consider a constrained optimisation problem it the form:

min
ξ

f(ξ, ω) (1a)

s.t. ξ ∈ C(ω) (1b)

where ξ is the optimisation variable, f is the objective
function, ω is a parameter vector and C is the constraint
set. The optimisation problem is integrated in the NN as the
last layer of the network. We assume to have a dataset of N
data points X = {ψi, ωi}Ni=1, where ψi is a feature tensor

and ωi is the associated target output. The goal is to use
supervised learning to estimate ω such that we compute the
optimal solution ξ∗(ω̂) that best matches the targeted optimal
solution ξ∗(ω) ideally obtained with the actual value of the
unknown parameter. This framework replaces the two stage
approach in which firstly the parameter vector ω̂ is estimated
from data ψi (minimizing a conventional loss function, e.g.
MSE), then such estimation is used to compute the solution
of the optimisation problem. In this case the accuracy of
the solution of the optimisation problem is not taken into
account during training, resulting in a sub-optimal solution.
Instead, integrating the optimisation problem as a network
layer allows to perform the training minimizing the ultimate
objective by introducing a loss function often denoted as
regret [21, 24]:

L(ω̂, ω) = fω̂(ξ
∗(ω̂))− fω(ξ

∗(ω)). (2)

Fig. 1 shows the architecture of the resulting network. The

min
ξ
f(ξ, ω)

s.t. ξ ∈ C(ω)

Neural network

LX

Fig. 1. End-to-End Predict and Optimise algorithm framework.

first challenge to implement this method is the computation
of the gradients required for the backpropagation algorithm
which implies the differentiation through the argmin func-
tion. Solution to this problem are provided in the literature
for quadratic programming [3, 9], linear programming [12]
and combinatorial problems [14]. The second challenge is
related to the real-time implementation for predictive control
applications. In particular, the future values of the unknown
parameter ω in the future, required to compute the cost in
the MPC horizon, are not known in advance, hence it is not
possible to calculate the second term of (2). In this paper we
deal with the second problem and we present the proposed
algorithm in the following subsection.

B. Proposed methodology

We consider a scheduling problem solved by an MPC
algorithm. The MPC problem is formulated as follows:

min
uT |t

T−1∑
k=0

J(uk|t, ω̂k|t) (3a)

s.t. xk+1|t = Axk|t +Buk|t (3b)
xk|t ∈ X,uk|t ∈ U (3c)
x0|t = xt (3d)

where T is the prediction horizon, xt ∈ Rn is the system
state, ut ∈ Rm is the system input, X ⊂ Rn is the state
constraint set, U ⊂ Rm is the input constraint set and
ω̂k|t ∈ Rp is the estimation of the unknown parameter



ωk|t. We omit here the terminal constraint since in this
paper we only consider the scheduling problem and assume
that the microgrid stability is guaranteed by lower level
controllers. Moreover we assume that the cost function (3a)
and constraints (3c) are convex hence resulting in a convex
optimisation problem. Once the optimal solution u∗

T |t(ω̂T |t)
is found, the control law is defined as ut = u∗0|t. The
current estimation of the unknown parameter ω̂T |t over
the prediction horizon T is estimated online using a NN
according to the framework presented in Section II-A. We
consider a NN like the one of Fig. 1, taking at each time
step a feature tensor as input and computing the related
optimal control action. Given a certain look-back window,
we define the feature tensor ψt ∈ RL×F where F is the
number of learning features. For example, the input feature
tensor may include the past observations of the unknown
parameter ωL|t−L and the past values of the system state
xL|t−L. In the forward pass the NN takes the feature tensor
ψt as input and computes the optimal control sequence u∗

T |t.
New data samples are collected at each time step, and enter
the network training process at each algorithm iteration. We
now define the loss function L and the training set Xt at
time step t. Since the loss function is defined as the regret
function in Eq. (2), where the functions fω̂ and fω are the
MPC cost functions evaluated with the estimated and actual
values of the parameter ω respectively, we can compute it
only for the past time steps because the future values of ω
are unknown. The loss function is defined as:

L(ω̂T |t−T ,ωT |t−T ) =

T−1∑
k=0

J(u∗k|t−T , ω̂k|t−T )−

J(u∗k|t−T , ωk|t−T ) (4)

The first term, J(u∗k|t−T , ω̂k|t−T ) is the value of the objective
function computed at t − T using the estimation of the
unknown variable. The second term J(u∗k|t−T , ωk|t−T ) is the
value of the objective function computed at t− T using the
real values of ω. In other words, the first term is computed
using the NN available at time step t, while the second term
is computed solving the optimisation problem (3a)-(3d) with
the past true values of the parameter ω. To compute the
loss (4) we need to compute the current output of the network
(first term) and the target output (second term). Hence we
need a dataset composed as Xt = {ψt−T ,ωT |t−T } where
ψt−T is used to compute the first term as the output of
the NN and ωT |t−T is used to compute the second term
by solving (3a)-(3d). Fig. 2 shows the samples required in
the forward and backward pass at each time step t.

The algorithm can be divided into three steps:
1) compute the loss function (4). To do this we need:

(i) the predicted sequence u∗
T |t−T (ω̂T |t−T ) at time step

t−T computed using the current NN with input ψt−T ;
(ii) the sequence u∗

T |t−T (ωT |t−T ) which in theory could
have been computed at t − T if the future values of
the unknown parameter were known. This is computed
at time step t, solving the MPC optimisation problem,
once the true unknown parameter has been measured.

time

t t + Tt − L

t − Tt − T − L

L T

TL

ω̂T |tψt

ψt−T ωT |t−T

Forward pass

Backward pass

Fig. 2. Set of samples Xt used at each algorithm iteration. In this example
the prediction horizon is 3 and the look back window length is 5. Samples
marked with a red spot are used in the forward pass. Samples marked with
a blue spot are used in the backward pass.

2) compute the gradients via backpropagation and update
the network parameters.

3) feed the network with the feature tensor ψt and compute
the control action.

The second step of the algorithm requires the computation of
the gradient of the loss function with respect to the parame-
ters of the network, thus involving differentiation through the
optimisation layer. Since the optimisation problem (3a)-(3d)
is convex in our case, the method proposed in [2] is used.

III. MICROGRID ENERGY MANAGEMENT

In this section we describe the model of the microgrid
used to evaluate the proposed method in simulation.

A. Microgrid model

We consider a microgrid model similar to [8] composed of
a load, a renewable generator, a connection to the utility grid
and an energy storage system. The goal is to design an MPC
algorithm ensuring to meet load demand while minimizing
the energy cost for the microgrid. Renewable generators are
characterized by a power profile P̄ r

t , i.e. the power that is
produced by the renewable generator at each time step. The
load is characterized by a profile P̄ l

t that is the power demand
at each time step t. We model the storage system, similarly
to [29, 28] as a first-order linear system:

st+1 = (1− σ)st + ηTsP
s
t (5)

where st is the state of charge of the storage system, σ ∈
[0, 1] is the self-discharge rate of the battery, η ∈ [0, 1] is
the energy conversion efficiency, Ts is the sample time of
the controller and P s

t is the power exchanged between the
storage and the microgrid. The power that the storage system
can inject or draw from the grid is limited by its maximum
value P̄ s:

−P̄ s ≤ P s
t ≤ P̄ s (6)

and each storage capacity is limited as:

s ≤ st ≤ s̄. (7)



Microgrids are connected to the utility grid and exchange a
power P g

t at each time step. To ensure power balance in the
microgrid, the following constraint is enforced:

P g
t = P̄ r

t − P̄ l
t − P s

t . (8)

In other words, the amount of power that is injected in the
microgrid has to be equal to the amount of power that is
drawn from the microgrid. In case of complex microgrid
topologies power flow constraints can be enforced as in
[8], however in this paper we only consider power balance
constraints. Our goal is to fulfill the load demand minimising
the total energy cost. To do this we take advantage of
the storage system that is capable of storing energy when
renewable power production is high or prices are low. The
controller objective is to minimise the cost:

∞∑
t=0

−ptP g
t , (9)

where pt is the electricity price at time t and the minus sign
has been introduced since power is positive when it is sold to
the utility grid. Eq. (9) cannot be used as objective function
since electricity price is unknown in the future time steps.
In the MPC framework this cost is approximated by a finite
horizon problem which can be computed online:

T−1∑
k=0

−p̂k|tP g
k|t (10)

where p̂k|t is the prediction of the electricity price.

B. Neural network architecture

In this paragraph we give the details of the NN employed
for the microgrid energy management problem. The NN
architecture is chosen depending on the unknown param-
eters of the optimisation problem. In our case, since we
deal with price profiles we make use of LSTM networks
which are suitable to deal with data sequences. The NN
employed for this work is designed as follows: (i) LSTM
layers; (ii) dense layer; (iii) convex optimisation layer. LSTM
networks are recurrent NNs that are often used for time
sequence forecasting. The last layer of the NN is a convex
optimisation layer that takes the estimated future price profile
as input and computes the optimal power profile for utility
grid connection and the storage system. The optimisation
problem (3a)-(3d) is formulated as:

min
Pst

T−1∑
k=0

−p̂k|tP g
k|t (11a)

s.t. sk+1|t = (1− σ)sk|t + ηTsP
s
k|t (11b)

− P̄ s ≤ P s
k|t ≤ P̄ s (11c)

s ≤ sk|t ≤ s̄ (11d)

P g
k|t = P̄ r

k|t − P̄ l
k|t − P s

k|t (11e)

s0|t = st (11f)

where (11b) is the system model, (11c) and (11d) are the
power and state limits, (11e) is the power balance constraint

and (11f) is the current state of the storage system. Note
that in constraint (11e) we use the true future values of the
load and renewable generator profiles since in this work we
assume that the power profiles are known in advance. Once
the optimal solution Ps,∗

T,t is found, the control law is defined
as P s

t (p̂T,t) = P s,∗
0|t . The optimisation is repeated at the

following time step with the new price prediction and initial
condition. Moreover, at each step, before computing the
control action, a training step of the network is performed.

C. Network training

By defining a suitable training set and loss function we
train the NN online. In this subsection, first we introduce
the loss function and then the training set that are used for
the EMS. Our method employs a performance-based loss
function as in Eq. (4) differently than the standard MSE loss
function. The MSE loss is:

LMSE =
1

T

T−1∑
k=0

[
pk|t−T − p̂k|t−T

]2
(12)

and it is used as a benchmark to assess the controller
performance by estimating the price profile with a NN based
on this loss function and subsequently using this estimation
in the optimisation. Instead, the proposed performance-based
(or task-based) loss function is defined as:

Ltask =

T−1∑
k=0

[
pk|t−TP

g
k|t−T (pT |t−T )−

p̂k|t−TP
g
k|t−T (p̂T |t−T )

]
, (13)

where P g
k|t−T (p̂T |t−T ) is the estimated power exchanged

with the electricity grid given the price profile prediction
p̂T |t−T predicted given the information available till time t.
Similarly P g

k|t−T (pT |t−T ) is the power exchanged with the
electricity grid computed at time t when the full sequence of
the electricity price pT |t−T is known. We now describe the
training dataset Xt. The input feature tensor ψt is composed
of the past electricity prices and the system state:

ψt =
[
pL|t−L sL|t−L

]
. (14)

The feature tensor ψt is used for the forward pass, whereas
the tensor ψt−T is used for the training step. The optimisa-
tion parameter ω̂T |t−T is the future price profile p̂T |t−T .

IV. NUMERICAL RESULTS

We consider a microgrid composed of 4 components:
(i) a load; (ii) a renewable generator; (iii) an energy storage
system; (iv) the connection to the utility grid. Electricity price
data has been downloaded from the “ENTSO-E Transparency
Platform” [13, 19] and refer to the IT-Centre-North bidding
zone in 2017. The load and renewable generator profiles refer
to the site 15 of the EMSx benchmark dataset [22], provided
by Schneider Electric, collecting historical observations of
real microgrids in the United States and in Europe. The price
profile is presented in Fig. 3. Other numerical values used for
this simulation are: Ts = 1h, T = 12, L = 24, s = 0kWh,
s̄ = 400 kWh, P̄ s = 100 kW, σ = 0.0042, η = 0.95.
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Fig. 3. Electricity price profile.

We consider three different loss functions to train the NN:
1) the MSE loss as in Eq. (12), used as benchmark;
2) the task-based loss proposed in Eq. (13);
3) a hybrid loss obtained as a weighted sum (w1, w2 ∈ R)

of the MSE loss and the task-loss:

Lhybrid = w1Ltask + w2LMSE (15)

The NN trained with the MSE-based loss function is com-
posed of a LSTM layers and a dense layer. The net-
work input feature tensor ψt = pL|t−L is composed
of the past electricity prices in the look back window.
We compare the simulation results obtained for different
combinations of the network hyperparameters: (i) hidden
dimension nh ∈ {2, 10, 20} ; (ii) number of LSTM lay-
ers nl ∈ {1, 2}; (iii) weights w1 and w2 of Eq. (15),
(w1, w2) = {(0.1, 1), (10, 1)}. Clearly the MSE and task loss
functions can be obtained from the hybrid loss function by
setting (w1, w2) equal to (0, 1) and (1, 0), respectively. We
evaluate the NNs on three performance indicators. Firstly, to
describe the network complexity, we compute the memory in
kilobytes (memory cost) required to store the NN parameters.
Networks with less parameters are preferred since they re-
quire less memory for storing weights and less computational
power [7]. As a second performance indicator, we compute
the total energy cost of the last 20% of simulation steps
(as this allows to disregard of potential initialisation or pre-
training advantages) as in (9):

Cost =
1000∑
t=800

−ptP g
t (16)

In Fig. 4 we compare the controller performance for different
values of the hyperparameters. The colour of the points
is used to specify the loss function adopted for network
training. We also compare the performance with respect to
the “prescient” controller, that is a controller solving (11a)-
(11f) with a perfect knowledge of the future price profile.
This controller achieves a total cost of −9.62 e. In the x
axis we represent the required memory for storing the NN
weights. In the y axis we represent the total cost (16) and
the MSE of the one-step ahead prediction: MSE(pt+1, p̂1|t).
Not surprisingly the MSE cost indicator of the NNs trained
minimising the MSE loss function is lower, however the
control performance in terms of energy cost of the networks
trained with the task and hybrid-based loss functions is
superior. We now analyse more in detail one controller for
each type of loss function. We consider one of the best

controller for each type (represented by squares in Fig. 4)
and we run 10 different simulations. For every type of loss
we choose the NN controller with hidden dimension nh = 2
and number of LSTM layers nl = 1. Table I contains the
details on the hyperparameters, the MSE and the total cost for
each controller. The controller trained with task-based loss
achieves a good performance with a low variability. Using the
hybrid loss allows to achieve better results in terms of control
and estimation performance but the variability is higher. The
performance using the MSE loss is worse than the other two
methods even though a lower prediction MSE is achieved.

Loss function w1 w2 MSE cost Energy cost
MSE 0 1 74.83±17.35 32.46±5.61
task 1 0 134.93±16.25 25.27±3.80
hybrid 10 1 142.20±40.47 22.87±10.97

TABLE I
NUMERICAL RESULTS OF 10 RUNS FOR EACH CONTROLLER.
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Fig. 4. Energy cost and MSE cost results.

V. CONCLUSIONS
In this paper we presented a novel learning-based MPC

algorithm and we showed its effectiveness in the microgrid
energy management case study. The method is based on
differentiable optimisation layers and allows to train a NN,
based on past data, to improve controller’s performance.
Simulation results show that the proposed method allows
to achieve better performance than the standard MSE-based
approach. As a future work, we want to explore the algorithm
capabilities in the case of model uncertainty. In [6] we
expand the purpose of this work, by removing the assumption
that the renewable generator and load profiles are known.
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