
 

Probability-weighted ensemble support vector machine for intelligent  

recognition of moving wear debris from joint implant 

Yeping Peng a, Hongtao Yue a, Song Wang b, Guangzhong Cao a,*, Hongkun Wu c,*, 

Chaozong Liu d 

a Guangdong Key Laboratory of Electromagnetic Control and Intelligent Robots, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 

518060, China 
b Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China 
c School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia 
d Institute of Orthopaedics and Musculoskeletal Science, University College London, Royal National Orthopaedic Hospital, London HA7 4LP, UK 

 

 

A  B  S  T  R  A  C  T  
 

Friction-induced wear debris from joint implants are effective resources in investigating artificial joint wear and cellular immune response mechanisms. To improve the 

accuracy of wear debris analysis, an intelligent recog- nition method is developed for wear debris measurement under motion conditions. In this method, the 

multi- view image sequence of moving wear debris is captured to acquire the variations of aspect ratio, area, and roundness features. Then multiple SVM models are 

integrated to identify wear debris types based on weighted probability to improve the accuracy. The proposed method can achieve a classification accuracy of 

90.51%, which is better than HIVE-COTE2.0, MultiRocket, and other time series classification algorithms. This method can be applied to monitor wear status of 

artificial joint articulating surfaces. 
 

 

 

 
1. Introduction 

 
The artificial joint implanted in the human body will generate a large 

amount of wear debris due to the articulating motion. This process is 

regarded as a potential risk that will accelerate joint deterioration and 

induce biochemical reactions within cells, which can cause inflamma- 

tion, joint disease, and joint failure [1]. Therefore, the analysis of those 

wear debris is becoming an important method to investigate the wear 

mechanisms of artificial joint wear and the pathogenesis of wear debris 

caused disease [2,3]. Since different wear stages will produce different 

types of wear debris, the associated impacts on joint wear and risks to 

patients also vary. Extracting the quantities and morphological charac- 

teristics of wear debris, and examining their types could provide crucial 

information on the wear process developed inside the patient’s body 

[4–6]. 

To extract wear debris information, many image identification al- 

gorithms have been developed [7–9] in which image-based ferrography 

is most typical [10–12]. A WP-DRnet ferrography image classification 

network [13] was proposed to detect wear debris by integrating two 

convolutional neural networks (CNNs). Another feature fusion-based 

 
debris recognition network FFWR-Net was developed [14], which 

fuses the features extracted by deep learning and manual intervention, 

to identify five debris types such as cutting, fatigue, sphere, non-metal, 

and sliding. Another recognition method built on CNN and transfer 

learning (TL) can effectively identify cutting, stick, and fatigue wear 

debris [15]. An Inception-v3 model was also reported to address the 

overlapping problem in ferrography [16]. A CNN with three classifiers 

was developed to determine the fatigue, oxide, and spherical wear 

debris. Due to the small size, the scanning electron microscope (SEM) is 

often used to collect images of artificial joint wear debris. The 

morphological features such as equivalent circle diameter and aspect 

ratio then can be extracted for debris shape recognition. On this basis, 

logistic regression was applied to classify flake, fibrous, and granular 

artificial joint wear debris [4]. An automatic morphological residual 

convolutional neural network (M-RCNN) was also proposed [17] to 

identify flake, sphere, and band-like debris types. It should be noticed 

that the above-mentioned recognition algorithms are mainly applied for 

static wear debris and single-view identification. However, because the 

single-view image cannot provide comprehensive shape information, it 

is easy to produce errors in identifying irregular-shaped wear debris. 
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Fig. 1. Schematic diagram of the moving wear debris imaging system. 

 

To improve the accuracy of identifying irregular-shape wear debris, 

many recognition algorithms with multi-view image sequences were 

developed [5,18–20]. With the captured image, two-dimensional fea- 

tures of different angles are extracted to construct the three-dimensional 

representation of wear debris. A micro-channel video acquisition system 

can make use of hydrodynamic properties to keep the debris rolling. A 

microscope can then be used to capture multi-view images of the 

rotating wear debris [21]. The profile parameters of aspect ratio and 

equivalent circle diameter were extracted and used to construct 

three-dimensional features [22]. On this basis, an online wear debris 

identification method was reported, which integrates multi-information 

including three-dimensional features and colour features, and combines 

SVDD multi-classifier with K-means clustering and SVM classifier [23]. 

In addition, the decision tree dynamic identification model of "three 

layers and six elements" was formulated that allows online identification 

of wear debris against various mechanisms such as oxidation, cutting, 

and fatigue. To improve the accuracy of 3D feature extraction, a 

multi-view image sequence was also incorporated, whereby moving 

wear debris were detected and tracked to reconstruct their 3D models 

[19]. In another approach, structure from motion (SfM) and shape from 

shading (SfS) were used to achieve the sparse and dense reconstruction 

of debris surfaces, respectively [18,24]. The results show that those 

methods can reconstruct the wear debris at various angles and the error 

of the regional characterization parameters is less than 20%. Moreover, 

the three-dimensional (3D) surface of wear debris was also recon- 

structed through multi-view contour fitting and dense point cloud 

interpolation to obtain comprehensive features for wear debris analysis 

[20]. 

Although preliminary progress has been made in the research on 

wear debris identification, recognition of irregular debris under motion 

conditions is still rarely touched. Furthermore, debris adhesion may 

occur during their movements, which will lead to errors in wear debris 

feature extraction and recognition. In addition, the number of wear 

debris is often large, and it takes a long time to obtain their three- 

dimensional features by merely relying on 3D reconstruction. Espe- 

cially, in the field of artificial joint wear debris analysis, efficiency is 

preferred but there is limited attention to real-time monitoring. To 

develop a new real-time dynamic recognition algorithm, a moving wear 

debris identification method based on dynamic feature fusion is intro- 

duced in the current work. Firstly, detection and tracking of the moving 

wear debris to locate the target objects in different image frames are 

conducted to obtain the multi-view image sequences [20,21,25]. After 

that, the variation curves of debris area, aspect ratio, and roundness 

features are extracted from the image sequence. To distinguish four wear 

debris types from block, stick, sphere, and flake according to changes in 

the characteristic curve, it is needed to further extract the feature vector 

to represent the properties of the whole curve, where three SVM clas- 

sifiers are utilised. Finally, the classification results of the three SVM 

models are fused to determine the type of wear debris. 

The rest of this paper is organised as follows. The moving wear debris 

video acquisition system is introduced in Section 2. Section 3 contains 

the description of the cycle calculation and feature selection processes of 

the wear debris characteristic curve. Section 4 presents the wear debris 

classification method based on the weighted probability integrated SVM 

algorithm. The experiment and comparative results are described and 

discussed in Section 5. The conclusion is drawn in Section 6. 

 
2. Video acquisition of moving wear debris 

 
To obtain multi-view observations of moving wear debris, a moving 

wear debris imaging system is utilised and the schematic diagram is 

shown in Fig. 1 [20,21]. It includes three main modules: video acqui- 

sition, moving wear debris detection, and moving wear debris tracking. 

The video acquisition module (Fig. 1(a)) composes of an oil tank, a 

microfluidic pump, a flow channel, and a camera. When the system is 

working, the microfluidic pump provides a stable flow rate of 30 ml/h 

and flushes the wear debris into the flow channel. When the wear debris 

passes through the field of view of the camera, the videos are captured 

with the frame rate of 30 fps (frame per second). The image resolution is 

2736 × 1824 pixels. Fig. 1(b) shows one frame extracted from the video. 
The width of the field of view is 1332.45 µm. 

In the motion detection module, the background of the video is 

established by the Gaussian mixture model (GMM) [26], then the 

moving wear debris are detected by background difference, as shown in 

Fig. 1(c). To acquire a multi-view image sequence of irregular shapes, 

debris tracking is required. In this work, the deep-sort method [27] is 

applied for moving debris tracking. The cascade matching algorithm is 

composed of Kalman filtering and the Hungarian algorithm to reduce 

the tracking error caused by object occlusion. An example of the moving 

wear debris tracking process can be seen in Fig. 1(d). In the figure, the 

number in the upper right corner is the identity (ID) index labelling the 

tracked wear debris. 
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Fig. 2. The flowchart of moving wear debris recognition. 

 

 
Table 1 

Characteristic parameters of a periodic curve. 

extracted from each frame. Characteristic variation curves are obtained 

that indicate the change of extracted features of the multi-view 

appearance of a tracked wear debris. Then the period of the character- 

 

 

Index 6 7 8 9 Table 1). Finally, a recognition model based on probability-weighted 
Feature Coefficient 

of variation 

Sample 

skewness 

The length of 

the longest 

continuous 

subsequence 
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mean value 

The length of 

the longest 

continuous 

subsequence 

above the 

mean value 

ensemble SVM is built to identify irregular wear debris. 

 

 
3.1. Extraction of multi-view feature sequences of wear debris 

 
During the wear processes of artificial joint, abrasive wear 

After the detection and tracking of moving wear debris, the image 

sequence under different viewing angles can be captured. It can be seen 

in Fig. 1(d) that the images of the same debris from different view angles 

show different profiles and morphological features. This indicates that 

multi-view image sequences can avoid the identification errors of 

irregular wear debris such as block and flake debris. It needs to be 

mentioned that the wear debris is extracted from the lubricants, such as 

normal saline, bovine serum, and PBS powdered, and then is dried to 

prepare oil samples with lubricating oil. This is to avoid the influences of 

different lubricants on wear debris image acquisition. Based on this 

imaging system, a moving wear debris recognition method is developed 

based on the captured multi-view image sequence and is introduced in 

the next section. 

 
3. Moving wear debris recognition method based on multi-view 

image sequence 

 
Fig. 2 is the flowchart of the proposed method for moving wear 

debris recognition. Given the multi-view image sequence as input, the 

debris features including aspect ratio, roundness, and area, are first 

commonly produces stick-like wear debris. Block- and flake-like wear 

debris is generally generated from fatigue wear process. In the adhesive 

wear stage, irregular block wear debris can be found. Correspondingly, 

four types of wear debris, block, stick, sphere, and flake, are often 

detected and recognized to analyse the wear mechanisms of artificial 

joints. 

In Fig. 3, ten viewing frames of each debris are displayed. It can be 

seen that the contours of the block-shaped wear debris are mostly 

irregular at different viewing angles; the stick-shaped debris are slender 

and have a large aspect ratio; the spherical debris are often showing 

circular or quasi-circular contours with greater roundness. The profiles 

of flake wear debris are more complex, suggesting that are irregular 

features in blocks, elongation sticks, and sphere-like circles shapes 

simultaneously in different viewing angles. 

Wear debris features are extracted from every image of different 

viewing angle to acquire the characteristic change curve. To incorporate 

the feature information from different profiles for effective recognition, 

area (A), aspect ratio (AR), and roundness (R) are selected to describe 

the changes. This is because the variation of aspect ratio and roundness 

is related to the debris types, especially for distinguishing stick and 

spherical wear debris, as shown in Fig. 4. It also can be seen from Fig. 4 

 

 
 

Fig. 3. Four common types of wear debris that are detached from artificial joints. 

Index 1 2 3 4 5 istic change curve is estimated using autocorrelation, whereby a single 

Feature Mean Variance Standard 

deviation 

Maximum Minimum period curve is generated. For the overall feature variation trend, the 

feature vector of each debris includes nine features (see Section 3.3, 
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Fig. 4. The feature curves of four types of wear debris shown in Fig. 3. 

 

that the debris area is strongly correlated with the size and contour 

shape, and the flake-like debris can be quickly distinguished by the area 

change at different viewing images. The three characteristic parameters 

are calculated as follows: 

maximum value in the sequence, and Xnor is the normalized feature 

sequence. 

It can be seen from Fig. 4(a) that, for flake debris, the magnitude 

variation of the area between different viewing angles is larger than the 

x y other three types. In contrast, the area change of spherical debris is more 

A = λ 
∑ ∑ 

f (i, j) (1) stable. In Fig. 4(b), the aspect ratio curve of flake debris changes 

i=0 

 

AR = 
 L

 
W 

j=0  

 
(2) 

dramatically, while the curve of spherical debris smoothly changes 

around 1. Besides, the aspect ratios of stick debris in all viewing angles 

are larger than 1. For the roundness characteristics shown in Fig. 4(c), 

the spherical and stick-shaped wear debris changes are less than that of 

R = 
4Aπ 

P2 

 

(3) 

the flake and block debris. 

 

3.2. Single-cycle characteristic change curve extraction 
where x-y is the pixel coordinate, f(i, j) is the pixel value in the binary 

image of wear debris, f(i, j) = 1 when the pixel is located in the debris 

region; otherwise, f(i, j) = 0; λis the actual area of a pixel, L is the larger 

dimension of the smallest rectangle enclosing the debris profile, W is the 

smaller dimension of the smallest rectangle, and P is the debris contour 

perimeter. 

In Fig. 4, the area values are normalized by Eq. (1) to eliminate the 

influence of wear debris sizes during shape recognition, which is also 

compatible with the feature fusion with non-dimensional parameters of 

aspect ratio and roundness. 

 
Wear debris rotates in the flow chip due to laminar flow [20], so the 

debris feature curve shows a periodic trend. It can be seen from Fig. 4 

that the periodicity of flake, block, and stick wear debris is more 

noticeable than that of spherical ones. During the acquisition of the wear 

debris video, although the flow rate and the camera frame rate are 

constant, the speed of the wear debris varies due to its size and contour 

shape. The number of image frames of various debris can be different, 

which leads to different variation ranges and number of cycles in the 

feature sequences. 

Xnor 

 X  
= 

max 

(4) 
It also can be seen from Fig. 4 that different debris types have 

different number of frames in one rotation cycle. To eliminate the in- 

fluence of different periods on the feature curve, the characteristic of a 

where X = (x1, x2, …, xn) is the feature value sequence, Xmax is the single period is extracted because of similar characteristics between 

different periods. To this end, the period of the characteristic sequence 

X 
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Fig. 5. Periodicity calculated from autocorrelation. 

 

needs to be specified. Commonly used methods are Fourier transform 

[28] and the autocorrelation function [29]. Fourier transform is suitable 

for frequency domain analysis of arbitrary waveforms and has been 

widely used in many fields such as signals, images, and mathematics. 

The frequency approximation corresponding to the waveform with the 

largest variation amplitude can be selected to estimate the period of the 

time domain sequence. However, other waveforms with smaller ampli- 

tudes are also part of the time series and there are many of them, 

ignoring them directly will cause a large error in estimating the period. 

The autocorrelation function is the cross-correlation between a 

sequence and itself at different points in time and is often used to analyse 

time-domain signals. It can be used to describe the degree of similarity 

or correlation between a signal and itself at different times, which is 

defined as 

+∞ 

( ) = ( ) ( + ) (5) 
k=—∞ 

 

where x(k) is discrete-time signal sequence and m is the shift between 

two signals. 

When the correlation is strong, a peak appears in R(xx)(m). 

Therefore, the period of the original curve can be indicated by the in- 

terval between the extreme values in the autocorrelation sequence. 

Here, the autocorrelation function is used to calculate the period of the 

wear debris characteristic curve. Fig. 5(a) shows the area variation of 

block-shaped wear debris, which has obvious periodic characteristics. 

The frame number of one period is T = 85 manually counted according 

to the mirror image feature of rotating wear debris. Its corresponding 

autocorrelation result is shown in Fig. 5(b). The period is 84, which is 

only 1 unit away from the manually counting result. 

 
3.3. Extraction of feature vector from single-cycle characteristic change 

curve 

 
According to the characteristic changes, different types of wear 

debris may have similar feature curves. For instance, the aspect ratios of 

block and stick debris are similar. To effectively distinguish the wear 

debris, the debris features are extracted from the single-cycle charac- 

teristic change curve. Accordingly, nine features are selected to form a 

feature vector to describe the distribution of the debris features, as 

shown in Table 1. 

 
 

 
 

Fig. 6. Schematic diagram of the base SVM classifier for wear debris recognition. 
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∑ ∑ i|x) =  j=1,j=∕i ,  i = 1, 2, ., N (6) 

 

 
 

Fig. 7. Integrated classifier for dynamic recognition of wear debris. 

 

3.4. Wear debris recognition by probability-weighted ensemble SVM 

 
Fig. 4 shows that different types of wear debris have different fea- 

tures. Erroneous identification can be caused if only one feature is used 

to identify irregular debris. Thus, it is necessary to fuse multiple features 

(area, aspect ratio, and roundness) to recognize moving wear debris. A 

base classifier is trained for the recognition of each feature, and then the 

prediction results of the three base classifiers are fused using the 

weighted probabilistic ensemble method [30] to identify the wear debris 

types. 

There are many feature classifiers available for this purpose, such as 

SVM, Bayesian, and decision tree. Among them, SVM finds the hyper- 

plane to distinguish different types and is suitable for small sample 

classification. Hence, SVM is used to construct the base classifier of wear 

debris. In order to extend SVM for multiple-class classification, "one vs 

one" and "one vs rest" methods are commonly used [31]. The "one vs 

rest" method is easy to cause sample imbalance, and the training time is 

long, whereby the "one vs one" method is selected here to build the 

model as shown in Fig. 6. The input vector can be the aspect ratio, area, 

or roundness. Thus, a total of six SVM models are built to identify four 

types of wear debris, including block, stick, sphere, and flake. 

Since there are six sets of SVM classification outputs from the base 

classifier, it is necessary to map the output of each SVM to the posterior 

probability [32], and then calculate the weighted distribution through 

the Voting module block. The probability of each type is determined, 

and the one with the highest probability is regarded as the final output of 

wear debris type. 

The Voting module, shown in Fig. 6, fuses the output probability 

values of the six SVM classifiers. The pairwise coupling method [33] and 

the voting method [34] are commonly used. However, the pairwise 

coupling method needs to be combined with an optimization algorithm 

to solve the optimal value, which is not ideal for real-time identification. 

The voting method is simple to calculate and runs faster, and is calcu- 

lated from: 

 
Table 2 

The sample distribution of different wear debris types. 

Type Block Stick Sphere Flake Overall 

Training samples 163 162 166 169  660 

Testing samples 89 26 11 32 158 
 

 

 
 

 
Fig. 8. The monitor system interface of moving wear debris. 

 
It can be applied in time series classification, so it is selected as the 

ensemble method. The method first performs cross-validation on each 

base classifier in the training data and then obtains the probability 

output of each base classifier. Finally, the weighted fusion of the pre- 

diction results is performed to obtain the final wear debris recognition. 

To determine the weighted exponent parameter, the classification ac- 

curacy of different power series can be compared and assess the statis- 

tical results [30]. For the dataset obtained in our experiment, the 

identification accuracy of wear debris was the highest when the order of 

the power series is 4. 

( ∑N
 

Pij(i|j; x) 
 

4. Experiments and discussion 
N 

k=1 

N 

j=1,j=∕k 
Pkj(k|j; x)  

4.1. Sample data 

where Pij(i|j; x) represents the probability that the sample x is classified 

to the i-th class when the classifier is trained by the i-th and the j-th 

classes samples. 

According to Eq. (6), the probability of wear debris in each category 

can be predicted, and the maximum probability is taken as the output 

result. Since the multi-view image features include area, aspect ratio, 

and roundness, it is necessary to establish three base classifiers. An in- 

tegrated classifier is established to incorporate the identification results 

of the three features, as shown in Fig. 7. The weighted probabilistic 

ensemble method [30] based on cross-validation has been shown to be 

an effective classifier ensemble method. 

 
Experiments of ball-on-disc friction pairs under reciprocation motion 

were carried out to collect wear debris samples. The friction pairs were 

made of artificial joint materials. The balls were prepared using stainless 

steel, and the disks were made of Ti6Al4V. To simulate the motion 

conditions of joint implant, the sliding frequency was set to 2 Hz, and 

the stroke was 4 mm [35,36]. However, most of the produced wear 

debris in the sliding modes are flake-like types. Hence, the four kinds of 

wear debris were manually collected from different experiments to 

avoid the influence of imbalance data on the effeteness of classifier 

training. A total of 660 collected samples were manually labelled for 

P 
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Fig. 9. Recognition results of the Inception Time method. 

 
 

 

Fig. 10. Recognition results of the HIVE-COTE2.0 method. 

 

training and their distribution is shown in Table 2. 

After training the classifier, videos of moving wear debris were 

captured to test the performance of the proposed dynamic recognition 

method. There are 158 debris samples were captured for testing and 

their distribution also shown in Table 2. The wear debris whose equiv- 

alent diameters are larger than 10 µm is determined as target objects for 

counting and recognition. Fig. 8 shows the monitor system interface of 

moving wear debris. When the wear debris move in the field of view of 

the camera multi-view images are captured for target debris detection 

and tracking. When the debris pass through the field boundary dividing 

line, debris counting is performed and then the debris is recognized 

based on the image sequence features. 

 
4.2. Experimental results 

 
To assess the performance of the proposed method, other time series 

classification methods including Inception Time [37], HIVE-COTE2.0 

[38], and MultiRocket [39] are employed for comparative analysis. 

4.2.1. Qualitative analysis 

The dynamic recognition results obtained from the four classification 

algorithms are shown in Fig. 9 — 12. For ease of visualisation, the partial 

regions of debris recognition are cropped. It is observed that the four 

methods can be used to identify the block, stick, sphere, and flake wear 

debris under motion conditions. However, identification errors are still 

noticed. In Fig. 9(c) and Fig. 9(e) of the Inception Time providing re- 

sults, the stick debris (ID 1897) is identified as flake, and the flake debris 

(ID 1813) is identified as stick. Meanwhile, the stick debris (ID 1897) is 

determined as flake by HIVE-COTE2.0; flake debris with ID 1813 is 

determined as stick by the MultiRocket method, as shown in Fig. 10 and 

Fig. 11, respectively. Besides, in Fig. 10(j), Fig. 11(j), and Fig. 12(j), the 

HIVE-COTE2.0, the MultiRocket, and the proposed method falsely 

detected the block wear debris with ID 3565 as flake type. This is 

because flake-like and block-like debris have similar contours especially 

when they are blurry. 

 
4.2.2. Quantitative analysis 

For further analysis of the performance of different debris recogni- 

tion algorithms, the precision, recall and F-measure values are utilised to 
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Fig. 11. Recognition results of the MultiRoket method. 

 
 

 

Fig. 12. Recognition results of the proposed method. 

 

evaluate the recognition accuracy. The definitions are shown in Eqs. 

(7–9). The Precision indicates how many positive samples are correctly 

predicted, and the Recall indicates the probability of being predicted as 

positive samples among all samples. 

highest accuracy, Precision (90.51%), Recall (90.51%), and F-measure 

(90.51%) of all wear debris, as compared with the other three methods. 

For the failing cases, false recognition can also be caused by the low 

resolution of image frames, the similar contour information of different 

 
Precision 

  TP  

= 
TP + FP 

(7)
 

viewing images, and the insufficient image frames of irregular debris. 

This indicates that the established probability-weighted ensemble SVM 

is more suitable for the dynamic recognition of artificial joint wear 

Recall = 
  TP 

 

TP + FN 

F — measure = 2 × 
Precision × Recall 

Precision + Recall 

(8) 

 
 

(9) 

debris from lubricants. In addition, moving wear debris imaging is also 

needed to improve the image quality for feature extraction. 

 
4.2.3. Efficiency analysis 

To evaluate the capability of on-line wear debris monitoring, the 

processing efficiencies of four recognition methods are tested. The 
where TP represents the number of positive samples that are recognized 

as positive ones, FP is the number of negative samples that are recog- 

nized as positive ones, and FN is the number of positive samples that are 

recognized as negative ones. 

The debris recognition results of different methods are shown in 

Table 3. It can be seen that the F-measure values obtained by the 

Inception Time, the HIVE-COTE2.0, and the MultiRocket are 85.44%, 

82.91%, and 74.05%, respectively. The proposed method shows the 

computer setup contains a Windows 10, 64-bit operating system, a CPU 

of Core i9–9900 K, 3.6 GHz, 32 GB RAM, and a GPU of 8 GB GeForce 

RTX 2080. The running times of the four debris recognition methods are 

shown in Table 4. It shows that all the algorithms have close efficiency. 

The processing rate of the proposed method is 10.5 fps, which is slightly 

faster than that of the HIVE-COTE2.0 (9.1 fps) and the MultiRocket (9.9 

fps). The Inception Time achieves the highest efficiency of 11.9 fps 
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Table 3 

The debris recognition results of different methods. 

Model Debris type TP FP FN Precision Recall F-measure 

Inception Time Block 76 4 13 95.00% 85.39% 89.94% 

 Stick 25 11 1 69.44% 96.15% 80.65% 

 Sphere 10 0 1 100.00% 90.91% 95.24% 

 Flake 24 8 8 75.00% 75.00% 75.00% 

 Overall 135 23 23 85.44% 85.44% 85.44% 

HIVE-COTE2.0 Block 76 7 13 91.57% 85.39% 88.37% 

 Stick 25 10 1 71.43% 96.15% 81.97% 

 Sphere 10 0 1 100.00% 90.91% 95.24% 

 Flake 20 10 12 66.67% 62.50% 64.52% 

 Overall 131 27 27 82.91% 82.91% 82.91% 

MultiRocket Block 68 9 21 88.31% 76.40% 81.93% 

 Stick 23 17 3 57.50% 88.46% 69.70% 

 Sphere 11 5 0 68.75% 100.00% 81.48% 

 Flake 15 10 17 60.00% 46.88% 52.63% 

 Overall 117 41 41 74.05% 74.05% 74.05% 

Proposed Block 79 4 10 95.18% 88.76% 91.86% 

 Stick 25 6 1 80.64% 96.15% 87.72% 

 Sphere 9 0 2 100.00% 81.82% 90.00% 

 Flake 30 5 2 85.71% 93.75% 89.55% 

 Overall 143 15 15 90.51% 90.51% 90.51% 

 
 

Table 4 

Comparison of operating efficiency of different models. 
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because its program processing can be accelerated using the GPU. To 

guarantee the efficiency of moving wear debris processing, the video is 

captured for 5 min and then paused for 10 min. 

 
5. Conclusion 

 
A method is proposed for dynamic identification of multi-view 

feature sequences of artificial joint wear debris based on probability- 

weighted ensemble SVM. The multi-view feature sequence of wear 

debris is obtained by detecting and tracking the objects in videos, 

whereby the feature change curve is then extracted. The curve is clas- 

sified by the probability-weighted integrated SVM algorithm, and then 

the corresponding types of wear debris (block, stick, sphere, and flake) 

are obtained. The method is tested with a large number of abrasive wear 

samples and compared against reliable time series classifiers. The 

experimental results show that the proposed method can obtain better 

classification performance. Moreover, the method also shows a faster 

running speed, which suggests an alternative solution for the online 

condition monitoring of wear debris. 
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