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Abstract

The question of whether attention-related disorders such as attention-deficit/hyperactivity

disorder (ADHD) are best understood as clinical categories or as extreme ends of a spec-

trum is an ongoing debate. Assessing individuals with varying degrees of attention problems

and utilizing novel methodologies to assess relationships between attention and brain activ-

ity may provide key information to support the spectrum hypothesis. We scanned 91 neuro-

typical adolescents during rest using functional magnetic resonance imaging. We

conducted static and dynamic functional network connectivity (FNC) analysis and correlated

findings to behavioral metrics of ADHD, attention problems, and impulsivity. We found that

dynamic FNC analysis detects significant differences in large-scale neural connectivity as a

function of individual differences in attention and impulsivity that are obscured in static anal-

ysis. We show ADHD manifestations and attention problems are associated with diminished

Salience Network-centered FNC and that ADHD manifestations and impulsivity are associ-

ated with prolonged periods of dynamically hyperconnected states. Importantly, our meta-

state analysis results reveal a relationship between ADHD manifestations and exhibiting

variable and volatile dynamic behavior such as changing meta-states more often and travel-

ing over a greater dynamic range. These findings in non-clinical adolescents provide support

for the continuum model of attention disorders.

Introduction

Attention and impulsivity are continuously varying psychological processes influenced by

individual differences in genetics, personality, as well as cognitive and affective processing

[1,2]. Clinical evaluations of attention and impulsivity are designed to tease apart variation at
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the extreme end of said continuum, which is typically when attention disorders such as atten-

tion deficit hyperactivity disorder (ADHD) are diagnosed [3]. Adopting a strictly categorical

lens comes with drawbacks: it ignores that typically developing (TD) individuals show impor-

tant variation in attention and impulse-control that can lead to significant functional chal-

lenges [4]. A categorically-truncated view of population variance decreases data reliability,

validity and statistical power, making the identification of biomarkers for psychiatric condi-

tions less probable [5,6]. In addition, attention disorders such as ADHD have high comorbid-

ity rates with other psychiatric disorders, such as oppositional defiant disorders and anxiety

disorders [7,8]. One way to side-step these confounding problems is to examine the variation

of attention and impulsivity, and their associated neural mechanisms, within TD individuals.

Similar to other fields of developmental psychopathology [9,10], the present study adopts a

continuum approach towards attention-disorder related problems in order to contribute

meaningful insights into the neural signature of attention disorders.

Spatially distributed and functionally linked brain networks can be reliably identified dur-

ing adolescence [11]. Functional magnetic resonance imaging (fMRI) studies have increasingly

used the triple network theory framework to research how complex interactions between these

networks influence psychological processes in clinical populations [12–14]. The triple network

theory posits that atypical activity of three large-scale networks [15], the default mode network

(DMN), executive control network (ECN) and salience network (SN), underlies neurodevelop-

mental disorders. The DMN is arguably the most well-researched neural network, and is a

task-negative network associated with mind-wandering and social cognition (for reviews, see

[16,17]). It can be divided into the dorsal DMN (dDMN), including the anterior cingulate/

medial prefrontal cortices, and the ventral DMN (vDMN), including the posterior cingulate

cortex (PCC) and precuneus [17–19]. Attentional difficulties such as temporary lapses of atten-

tion [20] have long been associated with the DMN, so much so that ADHD was thought to be

a disorder of the DMN [21–23]. This claim was partly supported by research showing ADHD

populations have atypical functional network connectivity (FNC) within the DMN [23,24], dif-

ficulty suppressing DMN activation when switching from rest to task-focused cognitive activ-

ity [22], as well as abnormal functional connectivity between the DMN and cingulo-opercular

and occipital regions [25,26]. However, current literature is inconsistent, with studies showing

attention-related DMN hypo-connectivity [23,24,27], hyper-connectivity [28,29] as well as a

combination of both [30]. The remaining networks of the triple network theory, the ECN and

SN, are both task-positive networks involved in higher-order cognitive control; the ECN

encompasses the dorsal lateral prefrontal cortex and helps integrate sensory and memory

information, as well as regulate cognition, behavior and executive functions [31,32]. The SN is

anchored in the insular cortex and the anterior cingulate cortex (ACC), and responds to exter-

nal events that are behaviorally salient [33]. Importantly, both networks are distinct from the

dorsal attention network, which is comprised of the frontal eye fields and the intraparietal sul-

cus [34].

Patterns of FNC between the DMN, ECN and SN at rest overlap with patterns seen during

goal-directed behaviors [35–37], suggesting this triad of networks is important for regulating

attention, cognition and affect [38]. In particular, the SN is thought to allow for flexible cogni-

tive control by regulating interactions between the DMN and ECN [13,39]. Subsequently, the

failure to regulate DMN-ECN interactions is hypothesized to underlie task interference and

downstream attention problems [40]. Populations characterized by strong attention difficul-

ties, such as ADHD, consistently show deficits in engaging and disengaging the SN, ECN and

DMN compared to TD populations (for a meta-analysis, see [41]). Recent literature increas-

ingly suggests that FNC centered around the SN, rather than the DMN, may represent a neural

signature of childhood attention disorder symptoms [33,39,42].
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Dynamic FNC analysis is a systems neuroscience approach to quantifying how neural net-

works interact over time [43,44]. This analysis identifies different dynamic states that repre-

sents a distinct, cross-network activation pattern that participants oscillate in and out of over

time [43]. State-based metrics can be calculated from dynamic FNC analysis, such as mean

dwell time, which is the time spent in a certain state before switching to another, fraction time,

which reflects time spent in one state relative to the entire scan time and the number of transi-

tions, which indicates how often a participant changed states [43]. Importantly, a novel mea-

sure of dynamism also derived from dynamic FNC analysis is meta-state analysis, which

adopts a complex statistical approach and finer temporal resolution to calculate summary mea-

sures of brain dynamism. As compared to dynamic FNC analysis, meta-state analysis is better

able to capture the dynamic fluidity and range of large-scale neural connectivity [45].

The first study to adopt a dynamic approach to FNC in ADHD reported diminished con-

nectivity between the SN-DMN and the SN-ECN in young children with ADHD compared to

controls, which correlated with the severity of inattention symptoms [13]. It also revealed that

children with ADHD had less persistent brain states that lasted for shorter periods of time and

fewer cross-network interactions as compared to controls. This hallmark study contributed to

accumulating evidence that diminished SN-centered FNC plays a critical role in attention

problems in children. It remains unknown whether this pattern of FNC continues to be associ-

ated with attention and impulse-control problems in later developmental stages such as adoles-

cence. Adolescence is a formative developmental period with a unique mix of pubertal, social

and academic changes that influence neural and psychological maturation [46]. Despite their

overall stability, large-scale brain networks undergo subtle reorganization during adolescence

(for review see [47]) at the same time that attention-related functional impairments are often

diagnosed. Given its unique window of analysis, dynamic FNC analysis may represent a key

methodology for exploring the properties of time varying neural connectivity and its relation-

ship to attention problems and impulsivity during adolescence.

Despite a long-standing debate on whether ADHD should be reclassified as a spectrum dis-

order, it is unknown whether ADHD symptomology correlates with FNC patterns in TD ado-

lescents. To assess this, we scanned TD adolescents during rest and assessed both static and

dynamic patterns of FNC. We followed a precedent set by a recent dynamic FNC study with a

dimensional approach to clinical disorders [48] and assessed how FNC patterns related to

ADHD manifestations, attention problems and impulsivity. We hypothesized that dynamic

FNC would allow for the detection of activation patterns obscured in time-averaged FNC,

namely that TD adolescents with greater attentional difficulties and impulsivity would show

more variability in cross-network interactions as assessed by dynamic state metrics as well as

meta-state features. In line with previous research in clinical populations [13], we expected a

continuation of diminished SN-centered connectivity in adolescents with higher up on the

spectrum of attention-disorder related impairment.

Materials and methods

Participants

We recruited 91 TD adolescents between the ages of 12 and 17 years (mean age = 15.4 ± 1.7

years, 42 females) from Geneva, Switzerland, and surrounding regions. Inclusion criteria

included no previous psychiatric diagnosis, epilepsy, or neurological disorders, no intellectual

impairments (based on the Cubes and vocabulary subtests of the Wechsler Scales of Intelli-

gence for children (WISC-IV [49])) and normal or corrected-to-normal vision. Participants

received financial compensation, and written consent was obtained from their parents or legal

guardians under protocols approved by the local ethical commission (Commission Centrale
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d’éthique de la Recherche des Hôpitaux Universitaires de Genève) and in accordance with the

Declaration of Helsinki. From the original sample, 9 participants were excluded for excessive

movement, defined as a maximum displacement (rotation or translation) of more than 3.0

mm during the fMRI scan. An additional 2 participants were excluded for incomplete behav-

ioral data, resulting in a final sample of 80 adolescents (average age = 15.6 ± 1.6 years, 38

females). There were no behavioral differences in terms of attention nor impulsivity between

the 80 included participants and 9 excluded participants (S1 Table). Demographic and behav-

ioral data for included participants can be found in Table 1.

Questionnaires

Participants completed the Achenbach Youth Self Report [50] (YSR), which assesses behav-

ioral problems in the previous 6 months using a 3-point scale (0 = not true to 2 = very true).

Subscales include attention problems, attention deficit/hyperactivity, somatic complaints,

social problems, thoughts problems, anxiety/depression, withdrawal/depression, rule-breaking

behavior and aggressive behavior. The attention deficit/hyperactivity subscale is one of the

YSR’s DSM-oriented subscales and while it was not designed to be a perfect equivalent of the

DSM’s ADHD criteria, it has nonetheless been found to be an accurate screener for ADHD.

Due to the present study’s focus on attentional difficulties, the two most relevant YSR subscales

were selected from a version of the YSR validated for French-speakers [51], namely attention

problems and attention deficit/hyperactivity. Participants also completed the Urgency-Pre-

meditation-Perseverance-Sensation Seeking (UPPS) Impulsive Behavior Scale [52] a self-

report questionnaire measuring four facets of impulsivity. The four facets are sensation seek-

ing, lack of deliberation, lack of perseverance and urgency, all of which have been validated in

diverse populations including TD children and adolescents [53–55], TD adults [56,57] as well

as various clinical populations [58,59]. Given the large age range of our sample, we controlled

for developmental effects by correlating all behavioral measures with age. No significant results

were found.

Data acquisition

Anatomical and functional resting-state imaging data were acquired on a 3T Siemens Trio

scanner. The T1-weighted sequence was collected with a 3D volumetric dimension using the

following parameters: TR = 2500 ms, TE = 3 ms, flip angle = 8˚, acquisition matrix = 256 x

256, field of view = 22 cm, slice thickness = 1.1 mm, 192 slices. An 8-minute resting state fMRI

sequence was used during which subjects were asked to fixate their eyes on a white cross

shown on a black screen, let their thoughts wander and refrain from falling asleep. We verified

that participants kept their open during the scan using an in-scanner eye-monitor and, after

the completion of the resting state scan, all participants were asked to describe their experience

of the resting state scan and to disclose if they had fallen asleep at any point during the scan.

Head movement was minimized with a vacuum cushion constraint. 200 BOLD images were

acquired using the following parameters: TR = 2400 ms, TE = 30 ms, 38 axial slices, slice thick-

ness = 3.2 mm, flip angle = 85˚, acquisition matrix = 94 x 128, field of view = 96 x 128.

Data analysis

fMRI data preprocessing. For each participant, the first 10 functional volumes were dis-

carded to control for equilibration effects of the T1 signal and functional volumes were manu-

ally reoriented to place the origin at the anterior commissure. fMRI data were preprocessed in

a standardized manner using Data Processing Assistant for Resting-State fMRI (DPARSF)

software (http://rfmri.org/DPARSF) [52] implemented using MATLAB [53]. DPARSF is
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based on Statistical Parametric Mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm) and the

Resting-State fMRI Data Analysis Toolkit (http://www.restfmri.net) [54]. More specifically,

data were realigned, slice-timing corrected, co-registered to respective structural images of

each subject and segmented. Six rigid body motion parameters, white matter and cerebrospi-

nal fluid signal were regressed out. Images were normalized using Diffeomorphic Anatomical

Registration using Exponential Lie algebra (DARTEL) to create a population-specific template,

which was then spatially normalized to standard stereotaxic space based on the Montreal Neu-

rological Institute (MNI) coordinate system. Spatial smoothing was applied using an isotropic

Gaussian smoothing kernel with a full width at half maximum (FWHM) of 5mm to decrease

noise and data was filtered using a temporal band-pass (0.01–0.08 Hz) to reduce the effect of

low-frequency noise such as respiration, and high-frequency noise such as cardiac activity.

Group ICA analysis. Preprocessed images were analyzed using the Group ICA of fMRI

Toolbox (GIFT) software package (v4.0b; Medical Image Analysis Lab, University of New

Mexico; http://icatb.sourceforge.net/groupica.htm). 29 independent components (ICs) were

assumed, based on dimension estimation with minimum description length of the data. Group

ICA was performed on fMRI data in three steps: data reduction, ICA, and back reconstruction.

In the data reduction step, the data of each participant was reduced using principal component

analysis (PCA). The data was then concatenated into a group and reduced again using PCA

analysis. In the ICA step, the data underwent IC estimation. IC estimations were stabilized by

repeating the ICA algorithm 20 times using ICASSO (http://research.ics.tkk.fi/ica/icasso). The

Iq index from ICASSO was used to validate IC decomposition stability and only stable compo-

nents with an index Iq value greater than 0.8 were retained. Finally, GIFT uses GICA1 back-

reconstruction to create subject-specific time courses and spatial maps. For a schematic repre-

sentation, please refer to Fig 1.

Table 1. All participants demographic and behavioral data. Demographic data, means and standard deviations for all behavioral measures of interest for included and

excluded participants.

Group N NFemales Mean Std. Deviation

Age Included 80 38 15.64 1.63

Excluded 9 6 15.51 1.62

IQ (WISC-IV, Cubes Standardized Score) Included 80 38 10.74 3.23

Excluded 9 6 9.89 3.69

YSR Attention Problems Included 80 38 57.19 6.85

Excluded 9 6 61.27 12.17

YSR ADHD Included 80 38 57.00 6.67

Excluded 9 6 58.55 4.69

YSR Internalizing Included 80 38 51.93 9.92

Excluded 9 6 53.81 12.56

YSR Externalizing Included 80 38 56.23 8.84

Excluded 9 6 58.09 9.43

UPPS Urgency Included 80 38 2.46 0.66

Excluded 9 4 2.36 0.43

UPPS Lack of Premeditation Included 80 38 2.21 0.63

Excluded 9 4 2.38 0.75

UPPS Lack of Perseverance Included 80 38 2.04 0.64

Excluded 9 4 2.20 0.85

UPPS Sensation Seeking Included 80 38 2.82 0.64

Excluded 9 4 2.90 0.80

https://doi.org/10.1371/journal.pone.0279260.t001
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Identification of resting state networks. Valid networks of interest were identified by

visual inspection and confirmed by spatial correlations with publicly-available functional net-

work templates [61] (http://findlab.stanford.edu/functional_ROIs.html). For each network of

the triple network theory, the IC with the largest correlation coefficient was chosen (S3 Table).

In accordance with our hypothesis, 6 ICs were chosen (ICs 22, 13, 7, 11, 14 & 27) that corre-

sponded to the following 6 networks: dorsal DMN (dDMN), posterior ventral DMN

(pvDMN), posterior dorsal DMN (pdDMN), right ECN (rECN), left ECN (lECN) and the SN

(for a schematic representation, please refer to Fig 1). Additional networks such as the basal

ganglia, auditory, language, sensorimotor, visuo-spatial, and visual were also identified but not

used in further analysis because they were outside the scope of the triple network theory.

Static FNC analysis. Static FNC analysis was conducted using the MANCOVAN

toolbox in GIFT (v4.0b; Medical Image Analysis Lab, University of New Mexico; http://icatb.

sourceforge.net/groupica.htm). Analyses followed step-by-step procedures described in previ-

ous studies [62]: first, each subject’s time course was detrended, de-spiked and filtered using a

fifth-order Butterworth low-pass filter with a cutoff frequency of 0.15 Hz. Age, sex, frame-wise

displacement and each subject’s motion parameters (rp�txt) were included as nuisance covari-

ates [12]. For each participant, a correlation map was produced by computing the correlation

coefficient r between the time series of each pair of ICs (the ICA algorithm assumes that the

time courses of cortical areas within one component are synchronous [63]). Given that we had

six networks of interest, a total of fifteen different pair-wise combinations of inter- and intra-

network connectivity were obtained.

Static FNC statistical analysis. Before running statistical analysis on static FNC results,

we transformed r values into z-scores using Fisher’s transformation. We verified the data was

normally distributed and used Pearson correlations to correlate each participant’s measure of

functional network connectivity with behavioral scores of attention problems and ADHD

manifestations (as measured by the YSR subscale [50]) and impulsivity (as measured by the

UPPS Impulsive Behavior Scale [52,64]. Correlation results were corrected for multiple com-

parisons for univariate analyses (for both number of IC pairs and number of behavioral ques-

tionnaires) using the false discovery rate (FDR; p<0.05). All statistical analyses were

performed in RStudio (http://www.rstudio.com/).

Dynamic FNC analysis. We conducted dynamic FNC analysis using the tapered sliding

window approach [43,44] to identify distinct, time-varying patterns of FNC. Critically, we

chose to model our analysis based off of parameters used in recent dynamic FNC studies

[12,43,65], including one that also adopted a dimensional approach towards clinical disorders

[48]. In accordance with said studies, a rectangular window (width 15 TRs or 36 seconds) was

convolved with a Gaussian of sigma 3 TRs and slid in steps of 1 TR across concatenated time

courses, resulting in 160 time-windowed domains per subject. A separate FNC matrix was

computed as the pairwise correlation between networks of interest (6 network x 6 networks)

for each of the 160 time-windowed domains (per subject). In total, the dynamic FNC data was

made up of 12800 windowed FNC matrices (80 participants � 160 windowed FNC). These win-

dowed FNCs capture the changes in covariance between our 15 networks during the duration

of the scan. Other important statistical measures included the graphical LASSO algorithm

[66], which was used to improve the estimation of correlations among time-courses with short

time domains, as well as a penalty on the L1 norm of the precision matrix to increase sparsity.

The regularization parameter was optimized for each subject by evaluating the log-likelihood

of unseen data (subject’s covariance matrices) in a cross-validation framework. For a sche-

matic representation, please refer to Fig 1.

Clustering analysis. K-means clustering was applied to windowed FNCs for both

dynamic FNC and meta-state analysis. For dynamic FNC, we used the k-means algorithm
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with the L1 distance (Manhattan distance) to run clustering analysis [48], a validated approach

used to identify which FNC states had most commonly occurred during rest [43,67]. K-means

was run on all subjects’ dynamic FNC data with the number of clusters ranging from two to

eight. Parameters for k-means included 10 cycles of clustering with a maximum of 200 itera-

tions for reaching a solution. The elbow criterion was then applied to the resulting cluster

index to estimate the optimal number of clusters, which was K = 4. The four clusters, also

referred to as FNC states, described the four connectivity patterns that subjects move between

over time. Given that every subject’s trajectory between the four FNC states was different, it is

important to note that not every subject entered every state. Based on the dynamic FNC states,

three metrics characterizing each participant’s dynamic behavior during the scan were calcu-

lated. These behavioral metrics include mean dwell time (MDT), which is the time spent in a

certain state before switching to another one, fraction time (FT) which is the time spent in one

state relative to the entire scan time and the number of transitions (NT), which represents how

often participants changes between different dynamic states.

Meta-state analysis. The difference between dynamic FNC analysis and meta-state analy-

sis begins after the sliding window has dissected data into windowed FNC matrices. Rather

than assigning each windowed FNC to one dynamic state as done in dynamic FNC analysis,

meta-state analysis models each windowed FNC as weighted sums of maximally independent

connectivity patterns [45]. These connectivity patterns are then discretized using quartile dis-

cretization. The discretized connectivity pattern distance vectors are referred to as meta-states

[14]. Four indices of connectivity dynamism can be calculated from meta-states, namely i) the

number of distinct meta-states the subjects occupied during their scans (meta-state number);

Fig 1. Illustration of major data analysis steps. A) Group ICA analysis was run on preprocessed subject data, resulting in

29 independent components (C = 29), 6 of which were identified as ICs in the DMN, ECN and SN. GICA1 back-

reconstruction was used to estimate the time courses (Ri) and spatial maps (Si) for each subject. B) The sliding window

approach was used to estimate dynamic FNC as the series of correlation matrices from windowed portions (W) of Ri,

resulting in a concatenated data matrix of all IC-IC paired correlation values over time. C) K-means was performed on the

concatenated data matrix as outlined in Allen et al., 2014. The optimal cluster number was k = 4 and each windowed FNC

was assigned to a cluster. Each cluster centroid (also known as state) is represented by a correlation matrix. Clustering

analysis allows for quantifying dynamic FNC through measures such as Mean Dwell Time and Fraction Time. This figure

was adapted from El-Baba and colleagues [60].

https://doi.org/10.1371/journal.pone.0279260.g001
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ii) the number of times that subjects switched from one meta-state to another (meta-state

changes); iii) the largest distance between two meta-states that subjects occupied (meta-state

span); and iv) the total distance traveled by each subject through the state space (meta-state

total distance).

Dynamic FNC statistical analysis. Dynamic connectivity was assessed through three sep-

arate analyses, namely dynamic FNC, state-based metrics, and meta-state metrics. Statistical

tests between each of these analyses and behaviors of interest (Attention Problems and ADHD

Manifestations, as measured by the YSR [50], and impulsivity, as measured by the UPPS

Impulsivity Scale [52,64]), were computed using RStudio (http://www.rstudio.com/).

Dynamic FNC analysis output a matrix for each dynamic state, which consisted of correla-

tion coefficients (r values) for each of the 15 IC-IC pairs, for each participant who entered that

state. We stabilized variance by using the Fisher transformation to convert r values into z-

scores. We then conducted Pearson correlations between the 15 IC-IC pairs and our 6 behav-

ioral metrics of interest, for each of the four dynamic states. The results of this correlation anal-

ysis were corrected for multiple comparisons (360 comparisons) for univariate analyses using

the false discovery rate (FDR; p<0.05).

We obtained 3 state-based metrics for each participant for each state (MDT, FT, and NT).

We made one matrix with each participant’s state-based metrics for all 4 states (MDT state 1,

MDT state 2 etc.) and behavioral data and ran Pearson correlations and corrected for multiple

comparisons (1440 comparisons) for univariate analyses (FDR; p<0.05).

We obtained 4 meta-analysis metrics (meta-state number, meta-state changes, meta-state

span & meta-state total distance). We made one matrix with each participant’s meta-state data

and behavioral results ran Pearson correlations. The results of this correlation analysis were

corrected for multiple comparisons (1920 comparisons) for univariate analyses (FDR;

p<0.05).

Results

Static FNC results & behavioral correlations

During rest, the three ICs of the DMN (vDMN, pdDMN, and pvDMN) were most strongly

correlated with themselves, as were the two ICs of the ECN (rECN and lECN) (Supplementary

Materials, S1 Fig). The posterior components of the DMN had weak positive correlations with

both the SN and rECN. The ECN and SN were neither correlated nor anti-correlated with

each other. No correlations between static FNC and behavioral measures survived multiple

comparison correction.

Dynamic FNC results

Dynamic FNC analysis revealed that time-varying FNC in our sample could be represented in

4 distinct states (Fig 2) rather than a single, static state [48]. State-1 was the most frequent,

with an average fraction time of 37%, and represented a dynamic state in which posterior

DMN and ECN were harmonically connected and segregated from the SN. ICs in State-1

shared weak positive correlations with each other, except for the posterior DMN, which was

strongly correlated within itself (pdDMN-pvDMN) and with the right ECN (pdDMN-rECN).

74 out of the 80 participants spent time State-1. State-2 was the second most frequent state

with an average fraction time of 24%. It displayed patterns of resting state activation typically

seen in time-averaged FNC, with strong positive correlations within nodes of the DMN and

the ECN, respectively, anti-correlations between the DMN-ECN and moderately strong corre-

lations between the DMN-SN. 66 out of 80 participants spent time in State-2. State-3 had an

average fraction time of 20% and showed positive connectivity between all networks. 54 out of
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80 participants spend time in State-3. Finally, State-4 had an average fraction time of 19% and

can be defined by a strong and isolated synchronization between the pvDMN-SN; both the

pvDMN and SN were either not correlated or anti-corrected with the remaining ICs namely

the dDMN, pdDMN and ECN, which were, in turn, positively correlated amongst themselves

correlated with each other. 50 out of 80 participants spend time in State-4. Importantly, to con-

firm our results were not majorly driven by motion difference among the participants. we cal-

culated Pearson correlations between the rate of occurrence of each dynamic state and mean

framewise displacement of our participants. We found no significant correlation (S3 Table).

Associations between dynamic FNC, state-based metrics and behavior

To assess relationships between dynamic FNC and behavior, we computed Pearson correla-

tions between each dynamic state (State-1, State-2, State-3 and State-4) and behaviors of

Fig 2. Dynamic FNC results. Correlation matrices showing the fraction time and pattern of cross-network functional

connectivity (represented using z-scores) of each of the four dynamic FNC states. 74 participants entered State-1, 66

participants entered State-2, 54 participants entered State-3, and 50 participants entered State-4. dDMN = dorsal default

mode network; pvDMN = posterior ventral default mode network; pdDMN = posterior dorsal default mode network;

rECN = right executive control network; lECN = left executive control network; SN = salience network.

https://doi.org/10.1371/journal.pone.0279260.g002
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interest, namely, Attention Problems & Manifestations of ADHD (as measured by the YSR [50])

and impulsivity (as measured by the UPPS Impulsivity Scale [52,64]. Results revealed that, unlike

the static connectome, dynamic connectivity patterns did correlate with variations seen in behav-

ior. This was illustrated by two behavioral scores that correlated with diminished SN-lECN func-

tional connectivity during State-1: first, Manifestations of ADHD correlated with diminished

FNC between the SN and the lECN (p = .02, r = -.38) and second, Attention Problems also corre-

lated with diminished FNC between the SN and the lECN (p = .01, r = -.39) (Fig 3). No other cor-

relations survived correction for multiple comparisons (FDR; p<0.05).

We also assessed relationships between state-based metrics and behavior. Results revealed

that mean dwell time in State-3 correlated with both ADHD manifestations, as measured by

the YSR [50] (p = .03, r = .30), and impulsivity, as assessed by the Lack of Perseverance subscale

of the UPPS-S [52,64] (p = .02, r = .33). No other correlations survived correction for multiple

comparisons (FDR; p<0.05).

Associations between meta-states and behavior

Meta-state analysis revealed positive associations between ADHD manifestations, as measured

by the YSR [50] and the number of times participants changed meta-states (p = .04, r = .24) as

well as the total distance (p< .01, r = .35). No other correlations survived correction for multi-

ple comparisons (FDR; p<0.05).

Discussion

This study assessed whether dynamic FNC analysis could detect meaningful relationships

between large-scale brain networks and ADHD manifestations, attention problems and impul-

sivity in TD adolescents, that were obscured in static FNC. Only one study to date has used the

triple-network model of cognitive control to test the hypothesis that SN-centered interactions

are impaired in ADHD [13] and no study has assessed how time-varying interactions relate to

attention disorder-related symptoms in TD adolescents.

Overall, our results suggest that dynamic FNC is a sensitive approach to underpinning fine

alterations in large-scale neural circuits and their behavioral correlates in non-clinical popula-

tions. We found no significant relationship between behaviors associated with attention disor-

ders and static FNC patterns in TD adolescents. Static FNC analysis is a well-known

methodology that has been linked to behaviors associated with clinically diagnosed attention

disorders [13], the present lack of findings suggests our sample size of TD adolescents may not

have been adequately large enough to detect what may be relatively small effects. To assess

whether a different approach would yield results, we conducted dynamic FNC analysis which

revealed 1) that network interactions between the DMN, ECN and SN in our sample could be

optimally represented through four dynamic states (Fig 2) and 2) that there is enough variation

within TD populations to allow for detection of relationships between large-scale networks

and behaviors associated with attention disorders.

Most participants entered and spent the most time in State-1, which showed strong connec-

tivity within the posterior DMN and between the DMN-ECN along with a complete absence

of SN-centered connectivity. Remarkably, within this dynamic state, we were able to observe

lower FNC between the SN-ECN in participants with higher scores for attention problems.

This lends additional evidence that SN-centered connectivity contributes to clinical manifesta-

tions of attentional disorders (see recent review [68]). The anterior insula, a hub within the SN

[33], is believed to play a crucial role in mediating switching between the ECN and the DMN.

The SN-ECN connectivity specifically is thought to signify the detection of salient stimuli by

the anterior insula and subsequent signaling to the ECN to recruit recourses necessary for
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attentionally demanding tasks [33,69]. Previous research has linked aberrant activation the

SN, including the anterior insula, to ADHD [70]. In the present study, the similarity of dimin-

ished SN-centered connectivity to behavioral measures of both ADHD and Attention Prob-

lems may suggest that the former is being driven by the latter. Moreover, the fact that we can

Fig 3. Association between FNC in dynamic state-1 and attention problems. Pearson correlations revealed that

participants’ T-Scores for Attention Problems (as measured by the YSR) correlated with diminished functional

connectivity between the Salience Network and the left Executive Control Network during Dynamic State-1 (No other

correlations survived correction for multiple comparisons (FDR; p<0.05).

https://doi.org/10.1371/journal.pone.0279260.g003
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observe attention-related impairments in the SN-ECN in TD populations suggests that this cir-

cuit may be most relevant to attention problems in ADHD and could potentially be influenced

by aberrant structural connectivity between the SN-ECN. We also find results relevant to

impulse-control/hyperactivity seen in ADHD: in our sample, participants higher up on the

spectrum of both ADHD manifestations and impulsivity problems spent longer in the hyper-

connected State-3 before switching to another state. This finding uncovered by dynamic FNC

analysis suggests two things: first, that while all TD adolescents may enter and leave hypercon-

nected states during rest, such states are more stable in adolescents with increased ADHD

manifestations. Second, given that State-3’s mean dwell time also correlated with increased

impulsivity, having prolonged periods of time where large-scale neural networks are hyper-

connected to each other may be specific to the hyperactive manifestations of ADHD.

Critically, we present evidence of enhanced global dynamic activity over an extended

dynamic range, reflected by increasingly volatile meta-states that change more often and travel

a greater total distance, in adolescents with increased ADHD manifestations. Meta-state analy-

sis aims to account for as much information within each windowed FNC as possible by creat-

ing a vector representing the distance of each windowed FNC to each dynamic state [45] and,

in doing so, circumvents issues with the more conservative dynamic state-based metrics,

which assign every windowed FNC to its most highly correlated state. If dynamic FNC analysis

is viewed as a more comprehensive, process-focused extension of static FNC analysis, meta-

state analysis can be viewed as a similar continuation of dynamic FNC. Assessing the number

of unique meta-states and other meta-state metrics may allow for the detection of subtle rela-

tionships between attention and FNC that state-based dynamic metrics, which are compara-

tively more conservative, only capture in clinical samples. Here, we present results indicating

the continuation of that same finding in TD adolescents. In other words, previous dynamic

FNC studies have shown that children with ADHD oscillate between a greater number of

dynamic FNC states and have more variable network interactions than TD children [13]. In

the present study, we present evidence that this phenomenon is not restricted to categorically

defined, clinical ADHD, but that non-clinical adolescents higher up on the spectrum of atten-

tion dysfunction also follow volatile patterns of changing meta-states more often and trending

towards oscillating between a greater number of meta-states than adolescents lower down on

the same continuum. We also show that the total distance traveled by each subject through the

state space (the sum of the L1 distances between successive meta-states, i.e., meta-state total

distance) was greater for participants higher up on the attention problem continuum. When

taken with our previous findings, we show that as ADHD manifestations increase, adolescents

tended to spend more time in a state of hyperconnectivity while also traveling over an

increased dynamic range, once again supporting the pattern of increased volatility associated

with attention disorders.

We acknowledge the present study has several limitations. Future studies should aim to

include behavioral instruments measuring attention problems and impulsivity that are less

dependent on participant self-report. This is particularly the case for ADHD populations [71],

for whom it is important to include performance tasks sensitive to attentional disturbances

such as the continuous performance test (CPT) [72]. Future studies should also aim to include

measures of hyperactivity, a core symptom in attention-related disorders, especially during

adolescence. In terms of task validity, we instructed participants to let their mind wander with-

out falling asleep during the scan. We used an in-scanner eye monitor to ensure they did not

close their eyes but did not include questionnaires about thoughts or cognitions afterwards to

get an indication of their scan experience, which could have influences static and dynamic

connectivity [73]. It is important to underline that we did not directly compare static to

dynamic FNC and therefore cannot state that dynamic FNC is better suited to uncovering
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trends in non-clinical populations. In terms of the applicability of the present results, it is of

high importance to repeat these analyses in populations with and without clinical ADHD and

to do so longitudinally. Pursuing such analyses will bring further insights into the clinical states

of ADHD and its presentations, and into common clinical and theoretical challenges such as

comorbidity in ADHD and functional outcomes along development. While out of the scope of

the present study, another interesting avenue for future research would be using dynamic FNC

to assess heterogeneous presentations of attention disorders such as ADHD.

Overall, our results add to accumulating evidence that we, as individuals, all fall somewhere

on a spectrum ranging from highly attentive/motor-impulse controlled to highly inattentive/

hyperactive-impulsive [74,75]. We show dynamic FNC analysis yields a process-focused

understanding of large-scale neural connectivity and its association to attention problems and

impulsivity. Our results in TD adolescents are consistent with clinical ADHD literature,

underlying the importance of re-evaluating attention disorders like ADHD as being best con-

ceptualized as extreme ends of a spectrum rather than categorically defined disorders.
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8. Gillberg C, Gillberg IC, Rasmussen P, Kadesjö B, Söderström H, Råstam M, et al. Co-existing disorders

in ADHD—Implications for diagnosis and intervention. Eur Child Adolesc Psychiatry Suppl. 2004; 13

(1):80–92. https://doi.org/10.1007/s00787-004-1008-4 PMID: 15322959

9. Tanzer M, Derome M, Morosan L, Salaminios G, Debbané M. Cortical thickness of the insula and pre-
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