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Background: Increasing evidence suggests the immune activation elicited by

bacterial outer-membrane vesicles (OMVs) can initiate a potent anti-tumor

immunity, facilitating the recognition and destruction of malignant cells. At

present the pathways underlying this response remain poorly understood,

though a role for innate-like cells such as gd T cells has been suggested.

Methods: Peripheral blood mononuclear cells (PBMCs) from healthy donors

were co-cultured with E. coli MG1655 Dpal DlpxM OMVs and corresponding

immune activation studied by cell marker expression and cytokine production.

OMV-activated gd T cells were co-cultured with cancer cell lines to determine

cytotoxicity.

Results: The vesicles induced a broad inflammatory response with gd T cells

observed as the predominant cell type to proliferate post-OMV challenge.

Notably, the majority of gd T cells were of the Vg9Vd2 type, known to respond

to both bacterial metabolites and stress markers present on tumor cells. We

observed robust cytolytic activity of Vg9Vd2 T cells against both breast and

leukaemia cell lines (SkBr3 and Nalm6 respectively) after OMV-mediated

expansion.

Conclusions: Our findings identify for the first time, that OMV-challenge

stimulates the expansion of Vg9Vd2 T cells which subsequently present anti-

tumor capabilities. We propose that OMV-mediated immune activation

leverages the anti-microbial/anti-tumor capacity of Vg9Vd2 T cells, an axis

amenable for improved future therapeutics.
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1 Introduction

Outer-membrane vesicles (OMVs) are spherical nanoparticles

(20-200 nm in diameter), derived from the outer membrane of

Gram-negative bacteria. Vesicle blebbing is a homeostatic

phenomenon; bacteria utilize OMVs for a wide variety of

functions including virulence, nutrient acquisition, and antibiotic

resistance (1). OMVs express many microbial-associated molecular

patterns (MAMPs) including lipoproteins, lipopolysaccharide

(LPS) and peptidoglycan, features that allow the vesicles to elicit a

robust immune response (2, 3). In fact, the immunogenicity

observed has encouraged significant research into the use of

OMVs as vaccines (4). This includes the clinical approval of

Bexsero, a meningococcal group B vaccine which contains OMVs

derived from N. meningitidis (5). More recently, the ability to

engineer OMVs has allowed the display of multiple microbial

antigens, enabling their adjuvant properties to be leveraged

against a range of pathogenic species (6–16).

To improve the clinical translation of an OMV construct,

bacterial strains have also been engineered to alleviate challenges

with manufacturing and toxicity. Through deletion of the pal

scaffold protein (Dpal), bacteria present a hypervesiculating

phenotype to significantly increase the production of OMVs (17).

In contrast, removal of lipid A acyltransferase (DlpxM) produces

LPS with a penta-acylated structure, exhibiting a reduced affinity for

the pattern-recognition receptor TLR4/MD-2 complex (18–20). In

doing so, bacteria and OMV DlpxM mutants induce a less potent

and more tolerable immune response (21–24).

Recent evidence indicates that the immunogenic properties of

OMVs can also initiate anti-tumor immunity. OMV challenge

elicits a sustained oncolytic response against various tumor types

in rodents (24, 25). OMVs can not only eradicate an engrafted

syngeneic tumor, but also induce the formation of an

immunological memory against subsequent challenge (24).

Furthermore, tumor neo-antigens expressed on OMVs have been

utilized to create a form of cancer vaccine, inducing a potent

antibody response in rodents across a variety of cancer types (26–

31). Despite major advances, the exact mechanism(s) defining

OMV-mediated anti-tumor immunity are yet to be determined.

In the present study, we sought to characterise the response of

peripheral blood mononuclear cells (PBMCs) from healthy donors

to E. coli MG1655 Dpal DlpxM OMVs. We identify Vg9Vd2 T cells

as major responders to OMVs with robust oncolytic properties.

Targeting the functional characteristics of Vg9Vd2 T cells offers

additional arsenal for improving future cancer immunotherapies.
2 Materials and methods

2.1 OMV preparation

OMVs from E. coli MG1655 Dpal DlpxM were isolated as

previous ly descr ibed (32) , wi th some modificat ions .

Ultracentrifugation was used to isolate OMVs via pelleting at

235,000 x g for 2 hours at 8°C using a fixed angle 45 Ti rotor
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(Beckman Coulter). Pellets were washed via resuspension in PBS

and pelleting again, before final resuspension in PBS.
2.2 OMV characterization

The size and concentration of OMVs was measured by

nanoparticle tracking using a NanoSight NS300 (Malvern

Panalytical) and analysed by NanoSight NTA software (Malvern

Panalytical). Where possible samples were diluted in PBS to obtain

between 20 and 80 particles per frame. Results consisted of five

measurements each using 60 second recordings. Camera sensitivity,

gain and detection threshold were set to 16, 10 and 4 respectively,

whilst samples were administered and recorded under controlled

flow using the NanoSight syringe pump and script control system.
2.3 PBMC stimulation with Escherichia coli
MG1655 Dpal DlpxM OMVs

Whole blood from six healthy donors (HD1-HD6) stored in

sodium citrate was purchased from Cambridge Bioscience and

delivered<24 hours after sampling. Upon receipt, PBMCs were

immediately isolated via ficol density gradient separation.

Samples were then washed in supplemented RPMI 1640 media

and PBS, before being resuspended in media for counting (NC3000

nucleocounter, Chemometec). All supplemented RPMI 1640 (Life

Technologies) contained, 10% heat-inactivated foetal bovine serum

(FBS) (One Shot, Gibco) and 2 mM L-glutamine (Gibco).

PBMCs were cultured in supplemented pre-warmed RPMI

1640 media at a density of 1x106/ml. Cells were dosed with 100

ml of E. coli MG1655 Dpal DlpxM OMVs at a concentration of

1x109/ml or 1x1010/ml to give a ratio of 1x103:1 or 1x104:1 (OMVs :

PBMCs) respectively. Samples were incubated for either 24 hours or

5 days at 37°C and 5% CO2, after which cells were pelleted for cell

surface marker analysis by flow cytometry, and the supernatant

used for cytokine analysis.

Quantification of cytokine production was determined by

ELISA. IFN-g analysis used an IFN gamma Human Uncoated

ELISA Kit (ThermoFisher Scientific). Granzyme B was measured

via an Ella Automated Immunoassay System (Ella, Protein Simple)

using a 16 x 4 Custom Simple Plex Assay Panel, performed as per

the manufacturer’s instructions. A custom ELISA array kit (Multi-

Analyte ELISArray, Qiagen) was also used to screen a panel of

cytokines and chemokines. For the ELISArray, cytokine

concentration was measured via absorbance at OD450nm

normalised to a positive control sample as directed by the

protocol provided.
2.4 gd T cell activation with Escherichia coli
MG1655 Dpal DlpxM OMVs

1ml of PBMCs (1x106/ml) from three healthy donors were

incubated for 10 days with either 2x1010 E. coli MG1655 Dpal
DlpxM OMVs (20000:1 ratio), 5 mM zoledronate (zoledronic acid
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monohydrate, Sigma-Aldrich) or PBS. In all cases, cells were also

supplemented with 100 IU/ml IL-2 (human IL-2 IS premium grade,

Miltenyi Biotec), which continued every three days along with re-

adjustment of media. At day 3, 500 ml media was added to each well

to increase the usable volume. Upon completion of each incubation,

PBMCs in each sample were stained for various markers and

analysed by flow cytometry (Supplementary Table 1).
2.5 Flow cytometry

Samples were washed twice in eBioscience flow cytometry

staining buffer (Invitrogen) and incubated in Fc-block (Human

TruStain FcX, Biolegend) for 15 minutes at room temperature.

After pelleting, cells were then stained for surface markers using

antibodies listed in Supplementary Table 1. Live cells were identified

using LIVE/DEAD Fixable Aqua Dead Cell Stain (Life

Technologies). After staining, cells were washed in staining buffer

and fixed in Cytofix buffer (BD Biosciences) for 30 minutes (4°C)

before analysis. Controls included unstained cells, as well as

antibodies affixed to UltraComp eBeads Compensation Beads

(Invitrogen) for compensation controls. Cells from each

experiment were stained with isotype controls of each antibody,

and stained heat killed cells (56°C, 15 mins) combined with live cells

(1:1) were used as a live/dead control. Fluorescence minus one

(FMO) controls were used to appropriately gate cell populations.
2.6 gd T cell isolation

gd T cells were isolated from activated PBMCs using EasySep

Human Gamma/Delta T Cell Isolat ion Kit (StemCell

Technologies), according to the manufacturer’s instructions. The

isolated supernatant was then resuspended in supplemented

RPMI1640 media before use. To confirm isolation purity, cells

were analysed by flow cytometry and gd T cells identified as CD3+

abTCR- (Supplementary Table 1). This form of identification has

been shown to accurately determine gd T cells and was validated in

this study as matching the cell proportion when gating with CD3+

Vd1+ + CD3+ Vd2+ cells (Supplementary Figure 1). Isolated cells

were confirmed as >90% purity before use in further experiments

(Supplementary Figure 1).
2.7 gd T cell-mediated Nalm6 cell killing

To determine the killing capacity of gdT cells against Nalm6 cells,

2x105 Nalm6 cells (courtesy of Qasim Rafiq, Department of

Biochemical Engineering, UCL) were incubated with either 2x105

or 6x105 of zoledronate or OMV-activated gd T cells. To ensure a

sufficient cell number, PBMCs were activated for 14-days before

isolation of gd T cells, following the protocol described in section 2.4.

To identify Nalm6 cell killing, cells from each sample were stained for

expression of CD3, with Nalm6 cells identified as CD3+ abTCR+.
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2.8 gd T cell-mediated SkBr3 cell killing

The killing of SkBr3 cells (HTB-30, ATCC) was explored using

the MTS assay protocol described previously by Tokuyama et al.

(33). SkBr3 cells, cultured in DMEM Glutamax + 5% FBS, were

seeded overnight at 37°C and 5% CO2 in a 96-well plate at a density

of 1x104 cells per well. The media was then replaced with

supplemented RPMI 1640 containing 14-day activated and

isolated gd T cells (with either zoledronate or OMV stimulation)

at various effector to target (E:T) ratios, with media alone added as a

negative control. Wells containing gd T cells alone were used as gd T
cell controls, whilst wells with media alone were used as a blank.

After 18 hours, media containing the nonadherent gd T cells was

removed and replaced with fresh media containing the MTS reagent

(R&D systems). After a 3-hour incubation, optical density was

measured at 490 nm and % cytotoxicity calculated as follows:

1 −
OD490nm SkBr3 &   gdT cells −OD490nm  gdT cell control

OD490nm SkBr3 control −OD490nm media blank
3 Results

3.1 Escherichia coli MG1655 Dpal DlpxM
OMVs promote an inflammatory
immune response

OMV immunotherapy seeks to leverage local immune-

activation to facilitate tumor-cell recognition and lysis. It was

therefore important to first characterise the OMV-mediated

host immune response. This analysis was particularly necessary

to ensure the inflammatory response was not completely

abolished given the use of an OMV construct with reduced

immunogenic properties.

Despite the attenuated LPS provided by DlpxM, E. coliMG1655

Dpal DlpxM OMVs stimulated PBMC to generate a robust immune

response after 24 hrs. The immunogenic nature of the response was

characterised by the release of pro-inflammatory cytokines IL-1b,
TNFa and IL-6, as well as the anti-inflammatory cytokine IL-10

(Figure 1). We also observed the production of lymphocyte-

recruiting chemokines, RANTES (CCL5) and MIP-1b (CCL4).

Notably, the cytokine release profile did not indicate the

presence of cytokines associated with lymphocyte activation

including IL-2, IL-4, IL-5, and IL-17A. There was also no

discernible effect on the release of the myeloid chemoattractant

TGF-b1.
3.2 Escherichia coli MG1655 Dpal DlpxM
OMVs activate cytotoxic lymphocytes

Since lymphocytes produce IL-2 once activated, it is possible that at

24 hours the quantity produced was not sufficient for detection. The

incubation period was therefore extended to 5 days, with analysis
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focused on individual lymphocyte markers to determine cell-

specific activation.

E. coliMG1655 Dpal DlpxM OMVs induced a broad expression of

markers CD69, CD86 and CD107a across ab T cells, gd T cells and NK
Frontiers in Immunology 04
cells (Figures 2A-C; Supplementary Figures 2, 3). Activation marker

expression as a proportion of cells expressing themarker is presented in

Supplementary Figures 4, 5. The effect appeared to be concentration

dependant, with a low concentration of OMVs only inducing
B

C D E

A

FIGURE 2

E. coli MG1655 Dpal DlpxM OMVs activate ab T cells, gd T cells, and NK cells. Activation marker expression on ab T cells (A), gd T cells (B) and NK
cells (C), five days after stimulation of PBMCs with PBS (Mock), E. coli MG1655 Dpal DlpxM OMVs at 1x104 vesicles per cell (10000:1), and 1x103

vesicles per cell (1000:1). Data is presented from one donor and is representative of three donors (Supplementary Figures 2, 3). Expression measured
using median fluorescence intensity (MFI). Release of IFN-g (D) and granzyme B (E) by PBMC, five days after stimulation with E. coli MG1655 Dpal
DlpxM OMVs (OMV) at 1x104 vesicles per cell, or PBS (Mock). Data is presented from one donor and is representative of three donors (Supplementary
Figure 6). Data displayed as the mean ± SD from a representative experiment (n=3). ****P<0.0001, ***P<0.001, **P<0.01, *P< 0.05, analysed by one-
way ANOVA with Tukey’s post-test (A-C), and by unpaired Welsch’s t-test (D, E).
FIGURE 1

E. coli MG1655 Dpal DlpxM OMVs induce an inflammatory response. Heatmap of cytokines released by PBMC in response to stimulation with PBS
(Mock), E. coli MG1655 Dpal DlpxM OMVs at 1x104 vesicles per cell (10000:1), and 1x103 vesicles per cell (1000:1). Cytokine concentration measured
via absorbance at OD450nm. Blank space indicates absence of detectable cytokine. Data displayed as the mean of three replicates. ****P<0.0001,
***P<0.001, **P<0.01, *P< 0.05, analysed by one-way ANOVA with Tukey’s post-test. The P-value displayed indicates significance between the
respective OMV arm and Mock control.
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activation marker expression in NK cells. Most notable however was

the expression of CD107a, as this marker is present within lytic vesicles

and displayed on the cell surface upon degranulation. Expression

therefore suggests the cells were actively releasing cytotoxic factors;

the release of granzyme B as well as IFN-g was confirmed on further

analysis (Figures 2D, E; Supplementary Figure 6).

Overall, activation markers and cytokines induced by OMVs

suggest that the vesicles can induce an inflammatory milieu which

may not only recruit lymphocytes, but additionally activate the cells

to express a cytotoxic phenotype.
3.3 Vg9Vd2 T cells are the primary
lymphocyte to proliferate in response to
Escherichia coli MG1655 Dpal DlpxM OMVs

To investigate the effect of OMV-stimulation on the expansion

of cytotoxic lymphocytes, PBMCs were stimulated with either

OMVs or zoledronate. Of particular interest was the expansion of

gd T cells and NK cells, as their MHC-independent activation
Frontiers in Immunology 05
mechanisms provide an ability to recognize both bacterial and

malignant antigens simultaneously.

In line with the widespread activation of all lymphocytes

tested, there was a dramatic expansion of the total immune cell

population in response to OMVs. The PBMCs were seen to reach a

similar total concentration across all conditions (Supplementary

Figure 7), potentially due to limited resources inhibiting

further growth.

The proportion of ab T cells remained constant upon OMV

activation, relative to the pre-stimulated control (Figure 3A;

Supplementary Figure 8). In contrast, OMV + IL-2 activation

induced gd T cells to expand to around 35% of the total cell

population, significantly greater than the ~7% achieved with IL-2

alone (Figure 3B). This expansion was similar to that observed in

response to zoledronate + IL-2, a compound utilized for the specific

expansion of the Vg9Vd2 (Vd2+) subtype of gd T cells. Whilst it is

interesting to note that IL-2 alone facilitated the growth of the Vd1+

subtype within the gd T cell population, we observed a dominance

in the proportion of Vg9Vd2 T cells in response to both zoledronate

and OMV activation (Figure 3D).
B C

D E

A

FIGURE 3

Vg9Vd2 T cells proliferate significantly in response to E. coli MG1655 Dpal DlpxM OMVs. The relative proportion of ab T cells (A), gd T cells (B), and NK
cells (C) within the PBMC population before stimulation (Pre-stim), and after a 10-day expansion period stimulated with IL-2 alone (IL-2), OMVs with
IL-2 (OMV), and zoledronate with IL-2 (Zol). (D) Relative proportion of Vd1+ and Vd2+ sub-types within the gd T cell population. (E) Relative
proportion of CD56bright and CD56dim sub-types within the NK cell population. Data are presented as the mean ± SD (n=3). **P<0.01, *P< 0.05,
analysed by one-way ANOVA with Tukey’s post-test comparing each activation stimuli to the other.
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Since the overall cell number was similar to that seen with IL-2

alone, it appears that the proliferation of Vg9Vd2 T cells in response

to OMVs was mostly at the expense of NK cell expansion

(Figure 3C). Their relative proportion in the experimental cell

milieu was not significantly different compared to the starting

population, though there was an apparent phenotypic shift to the

immunoregulatory CD56bright subtype. Given their similarity in

proportion however, it is likely that this preference to CD56bright

cells was driven at least in part through the effect of IL-2

supplementation (Figure 3E).
3.4 OMV-activated gd T cells retain their
tumor-killing capabilities

Though it was apparent that gd T cells respond to OMVs, it was

necessary to confirm their potential oncolytic activity despite the

microbial means of activation. Isolated gd T cells were expanded with

either OMVs or zoledronate, and their killing capacity determined

against a leukaemic (Nalm6) and breast cancer (SkBr3) cell line.

Indeed, OMV-activated gd T cells were able to effectively initiate cell

killing (Figure 4). Whilst inter-donor variability meant Nalm6 killing

at a 1:1 effector to target (E:T) ratio did not reach statistical

significance, the oncolytic capacity of OMV-expanded cells was

equivalent to that of cells activated with zoledronate. This killing

effect was also observed in SkBr3, again not significantly different to

that of cells activated with zoledronate (Figure 4).
4 Discussion

As highly immunogenic bacterial nanoparticles, OMVs can

encourage the recognition and destruction of malignant cells by

the host immune system (24, 25). Immunotherapeutic

development of OMVs has fostered a distinct need to further
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characterise the underlying immune response generated. Herein,

we demonstrated that Vg9Vd2 T cells are the primary

lymphocytes that respond to prolonged OMV exposure and

retain the capability to kill tumor cells post-activation. To

facilitate future clinical use, we leveraged Dpal and DlpxM
deletions to both improve vesicle production (by increasing

outer membrane flexibility) and reduce toxicity (through the

inactivation of lipid A).

Despite the attenuated toxicity afforded by DlpxM mutation,

OMVs fostered a robust inflammatory response with the potential

to recruit further lymphocytes to the site of activation. It is possible

that this immunogenic activation elicited by OMVs could itself

facilitate a therapeutic response. Exogenous induction of acute

inflammation has been proposed as means to re-structure the

immunological phenotype of the tumor microenvironment,

fostering an oncolytic response based around the polarisation of

macrophages to the anti-tumor, M1 phenotype (34). Interestingly,

the inflammatory factors observed in this research (e.g. IL-1b,
TNFa, RANTES, and MIP-1b) are primarily associated with

monocytes, including M1 macrophages, after stimulation with

both OMVs and bacteria (35–37).

Given their direct involvement in surveillance and killing, the

activation of cytotoxic lymphocytes is critical for an effective anti-

tumor response. Expression of markers CD69 and CD86 were

indicative of such activation across ab T cells, gd T cells and NK

cells in response to OMVs (38–40). Moreover, the vesicles elicited

a cytotoxic phenotype, characterised by degranulation and the

release of cytolytic factors granzyme B and IFN-g. The release of
IFN-g is particularly important in an immunotherapeutic context

given its role in Th1 differentiation, inducing apoptosis, and

upregulating cell-death inducing ligands (e.g. Fas-L and TRAIL)

(41–44).

The expansion of specific lymphocyte populations can

dramatical ly change the composit ion of the immune

environment, and as a result the ability to instigate an effective
BA

FIGURE 4

Vg9Vd2 T cells retain their oncolytic functionality after activation with E. coli MG1655 Dpal DlpxM OMVs. Oncolytic capacity of gd T cells after activation
with OMVs or zoledronate against Nalm6 (A), and SkBr3 (B) cancer cell lines. Background cell death of Nalm6 cells measured using media without the
addition of effector cells (Control), whilst SkBr3 killing is determined as a relative proportion of background cell death. Data are presented as the mean ±
SD (n=3). *P< 0.05, ns = non-significant, analysed by one-way ANOVA with Tukey’s post-test (A) or by paired Welsch’s t-test (B).
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anti-tumor immune response. Of particular interest was the role of

both gd T cell and NK cells, as they leverage MHC-independent

activation mechanisms and therefore are not restricted to microbial

targets upon activation with OMVs. Indeed, our study indicates that

gd T cells form a significant proportion of the local immune

microenvironment in response to OMV stimulation.

gd T cells are unique in their ability to recognize antigens in an

HLA-unrestricted manner, responding to broad markers of

microbial presence and endogenous cell stress through both the

gd T cell receptor as well as various cytotoxicity and NK cell

receptors (e.g. NKG2D) (45–49). The Vg9Vd2 subtype recognizes

both microbial antigens as well as metabolites of the mevalonate

biosynthetic pathway (e.g. isopentenyl pyrophosphate (IPP)) (47,

50, 51). This dual activation allows OMVs to respond to microbial

antigens whilst retaining the ability to kill, providing a direct

mechanism by which OMV challenge induces anti-tumor

immunity. In fact, Vg9Vd2 T cells possess a variety of unique

characteristics that make them ideally poised for leveraging as a

cancer immunotherapy tool; features including, broad antigen

recognition, antibody-dependent cellular cytotoxicity (ADCC),

and professional antigen presenting capabilities (33, 52–55).

Whilst the exact mechanisms of OMV-activation require deeper

investigation, it is hypothesised that the metabolite HMB-PP (an

intermediate of the methylerythritol 4-phosphate pathway) present

in E. coli can stimulate gd T cells. This can occur both directly (via

BTN3A/CD277 interaction) and indirectly through the

accumulation of endogenous pyrophosphates (e.g. IPP) in

surrounding immune cells (47, 51, 56, 57). TLR4 receptor is also

expressed on gd T cells and can be further modulated in response to

bacterial antigen presentation via dendritic cells (58, 59). Since

OMVs display a large array of TLR agonists, a direct mechanism of

OMV-mediated gd T cell activation is also likely, though this

hypothesis warrants further investigation. Given the direct and

indirect pathways that govern gd T cell activation, many of which

are yet to be fully understood, identifying the specific mechanism of

OMV-mediated stimulation will require significant research beyond

the scope of this paper. Despite this, a full appreciation could allow

for a more precise manipulation of the anti-tumor response.

It must also be considered that the deliberate induction of an

acute inflammatory response by OMVs may lead to adverse

toxicity. IL-6 and TNFa have both been implicated as playing

significant roles in the development of a cytokine storm, suggesting

a risk of such events in response to OMV-stimulation (60).

However the unique characteristics of OMVs may mitigate such

toxicity. The broad engagement of innate receptors enables a

concurrent induction of regulatory pathways, evidenced by the

release of IL-10, which can suppress the release of IL-6 and

TNFa particularly from monocytes (61). Furthermore, the use of

an DlpxMmutant strain expressing penta-acylated LPS can alleviate

the toxicity risk through its reduced immunogenic properties.

Indeed, OMVs derived from a similar strain failed to induce any

observable toxicity in rodents (24).

Importantly though, the poor recapitulation of CRS in rodent

models makes judgement of the OMVs safety profile complicated.
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Rodent studies may therefore overstate the reduced immunogenic

benefit of penta-acylated LPS. It is also unclear that the IL-10

released can successfully limit adverse immune responses and may

even facilitate tumor progression by suppressing anti-tumor

macrophages within the TME. Consequently, understanding the

toxicity profile of OMVs should be prioritised when it comes to

future development of the concept.

Similar to the use of an DlpxM mutant to provide an improved

toxicity profile, it is also possible to tailor the OMV immune

response to improve its therapeutic effect. In contrast to the use

of mammalian extracellular vesicles (EVs) (62), tumor antigen

expression on OMVs offers a means to leverage the OMV

backbone as an antigen-adjuvant vehicle, thus providing robust

and sustained anti-tumor immunity (26–31). Given the expansion

of gd T cells in response to OMVs, their professional antigen

presenting capacity may also be exploited to facilitate the cross-

presentation of displayed antigens. In fact, functionalisation of

OMVs through the expression of various proteins may also serve

to modulate the gd T cell response, evidenced through the

presentation of checkpoint inhibitors on both mammalian and

bacterial EVs (63, 64). Overall, our findings support the

hypothesis that Vg9Vd2 T cells are a crucial component of the

OMV anti-tumor immune response, providing new opportunities

to design more effective OMV-mediated immunotherapies.
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