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In recent years, measurement protocols for the estimation of the total aggregate building heat transfer coefficient 
(HTC) have provided sufficient empirical evidence to indicate that buildings often do not perform as intended. 
However, little research has been carried out into the associated uncertainties. Within this context, this paper 
reviews sources of uncertainty associated with co-heating tests; characterises these uncertainties and their impact 
on HTC estimates; and devises a method for the calculation of HTC uncertainty. The method proposed was 
applied to 14 co-heating tests, showing estimated total uncertainty ranging between 2.2-21.1 W∕K (or 4.6-26.7% 
of the measured value) with a mean of 10.1 W∕K (or 8.7%). The natural variation of HTC and often-observed 
inaccuracy of design calculations (the ‘prediction gap’) suggest that more accurate measurements may be of little 
benefit. Additionally, results suggest that weather conditions, challenging building design and poor experimental 
technique can all significantly contribute to HTC uncertainty. However, when suitable buildings are tested by 
experienced technicians and under suitable weather conditions, HTC estimates from the co-heating protocol are 
likely to provide a useful tool to assess and understand real-world building fabric performance.
1. Introduction

In recent years, a series of field measurements have added to a grow-

ing body of empirical evidence that indicated that in-situ performance 
generally does not correspond to predicted performance and may vary 
significantly from predictions [1–4]. These measurements have also 
highlighted a lack of knowledge concerning the actual thermal perfor-

mance of buildings and the processes, systems and materials that can 
act to undermine (or sometimes improve) it.

Measurement protocols to estimate total aggregate building heat 
loss, or a building’s heat transfer coefficient (HTC), can provide a useful 
insight into fabric performance. Unlike discrete or disaggregate mea-

surement methods (e.g., in-situ U-value measurements, pressurisation 
testing), aggregate methods are capable of capturing all of the complex 
inter-related heat transfer that occur across the entire building fabric 
of a building, accounting for thermal bridges, junctions, defects, con-

vective bypasses, bulk air movement and other forms of non-uniform 
or more complex heat loss pathways. Although a number of aggregate 
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measurement methods exist, such as ISABELE [5,6], the PSTAR method 
[7–9] and the QUB method [10], the only method that has seen sig-

nificant application in the field to date is the co-heating test method 
[11,12]. It was first proposed in North America in the late 1970’s by 
Socolow [13], with the first documented description of the test method 
being published by Sonderegger et al. in 1979 [14]. The earliest docu-

mented use of the test method in the UK was in the mid 1980’s [15,16]. 
Since then the co-heating test method has been used frequently in build-

ing performance evaluations over the last two decades [e.g., 17–19], as 
well as for testing novel constructions [e.g., 20,21] and retrofit mea-

sures [e.g., 22]. Results have shown wide ranging performance, with 
estimates from previous tests undertaken in newly built dwellings in-

dicating that fabric heat loss under unoccupied test conditions is an 
average of 1.6 times higher than predicted [4].

Such findings have far-reaching consequences and would threaten to 
undermine efforts to cut energy demand in the domestic sector. How-

ever, interpreting measurements of a building’s performance without 
any accompanying estimates of uncertainty risks either overstating or 
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Nomenclature

Δ𝑇 Temperature difference between the indoor and external 
environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [K]

Δ𝑇𝑗 Temperature difference across party wall/floor j . . . . . [K]

𝜎(𝑇i) Standard deviation between temperatures recorded 
throughout the test building

𝜀 Additive error term

𝐴sw Equivalent solar aperture. . . . . . . . . . . . . . . . . . . . . . . . . . . [m2]

𝐴𝑗 Area party wall/floor j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m2]

𝐻 Heat transfer coefficient (HTC) of the building . . . [W∕K]

𝑛 Number of time samples (e.g., 24-hour periods) used for 
regression

𝑛s Number of sensors measuring a given variable

𝑃h Power supplied to heat up the indoor space . . . . . . . . . [W]

𝑞sw Global solar irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . [W∕m2]

𝑞𝑗 Estimated heat flow through party wall/floor j . . [W∕m2]

𝑡 Index of the time sample (1 ≤ 𝑡 ≤ 𝑛)

𝑇𝑒 External temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [K]

𝑇𝑖 Indoor temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [K]

𝑈 (⋅) Expanded uncertainty of the enclosed quantity (with a 
95 % bilateral confidence interval)

𝑢(⋅) Standard uncertainty of the enclosed quantity

𝑢sensor Specified uncertainty of the respective sensor
understating the size of any potential performance gap. As stated by the 
Joint Committee for Guides in Metrology “a statement of measurement 
uncertainty is indispensable in judging the fitness for purpose of a mea-

sured quantity value” [23]. In the absence of reasonable uncertainty 
estimates, many of the existing measurements of building heat transfer 
cannot be placed in context. This may lead to mis-characterisation of the 
building fabric performance gap; unfair comparisons between buildings, 
materials and construction methods; or mis-interpretations of repeated 
measurements upon the same building under different stages of retrofit.

For example, in order to understand the scale of the problem, in 
16 HTC estimates reported in two major building performance evalua-

tion programmes, just 3 had any accompanying uncertainty estimates 
[18,19]. Even in these cases, uncertainty estimates were based purely 
on statistical uncertainty estimates, ignoring both simple measurement 
uncertainties (e.g., sensor accuracy) and more complex uncertainties 
and systematic bias that may exist. Similar tendency to neglect esti-

mates of uncertainties associated with in-situ evaluation of building 
performance has also been observed more widely, including in in-situ U-

value measurements [e.g., 18,24,25], air permeability [e.g., 19,25] and 
ventilation measurements [e.g., 26,27,25]. Methods attempting to be-

gin to account for systematic uncertainties in HTC [6,28] and U-value 
[29] estimates have been developed recently, although they have not 
been widely adopted in industry.

The absence of uncertainty estimates may result from both a lack in 
established methods or guidance for estimating uncertainty, and more 
broadly a lack of understanding of the sources of uncertainty that may 
be present within test measurements [30,31]. This has resulted in a lack 
of confidence in the results obtained from co-heating measurements and 
has limited their application within industry [18,31], although other 
studies suggest there is scope for more widespread application [32,33]. 
These issues are not solely restricted to aggregate whole-house heat 
transfer measurements. Lack of clarity in overall methods for uncer-

tainty calculations, characterisation, and comprehensive and suitable 
uncertainty budgets have also been observed for example in U-value 
estimation from in-situ measurements. While the ISO 9869-1 [34] stan-

dard lists the main sources of uncertainties affecting the measurements 
and quantifies their proportional effect on the U-value, it does not detail 
how these percentages (generally stated as a fixed value) were eval-

uated or describe how more accurate values could be quantified in 
specific circumstances [29]. Further examples of uncertainty analysis 
using infrared methods can be seen within the appendix of ISO 9869-

2 [35].

Within this context, the research presented in this paper aims to 
address the issues identified by:

• Reviewing sources of uncertainty that may be associated with co-

heating measurements used to estimate a building’s HTC;

• Characterising these uncertainties and their impact upon the inter-
2

pretation of HTC estimates;
• Detailing a method for calculating uncertainties associated with co-

heating HTC estimates;

• Estimating uncertainties for existing co-heating tests to determine 
typical ranges and influencing factors.

2. The co-heating test and heat transfer coefficient evaluation

As previously stated, one of the most common experimental tech-

niques to evaluate the whole-building aggregate heat transfer (both 
fabric and background ventilation [36]) is the co-heating test [12,37]. 
During the test, which is normally performed in winter, thermostati-

cally controlled (using proportional, integral and derivative (PID) con-

trol) electric resistance heaters are deployed throughout the dwelling to 
maintain a constant indoor temperature (typically in the range of 20-

25 ◦C) and achieve an average temperature difference of at least 10 K
between the internal and external environment. Electric air circulation 
fans are simultaneously laid out to ensure a good air mix and min-

imise temperature stratification and dead zones. The electrical energy 
required during the test is monitored, as well as indoor temperatures 
and a range of external weather parameters, such as: air temperature; 
wind speed and direction; and incident solar radiation, ideally mea-

sured on the vertical plane of the building facade expected to receive 
the highest proportion of solar gains. Additional measurements (e.g., 
heat flux density through building elements, relative humidity, local 
wind conditions, etc.) may also be collected to gain further information 
on the thermophysical behaviour of the building fabric.

Owing to the quasi-stationary nature of the test, linear regression 
models are generally adopted to analyse the data collected and evaluate 
the aggregate heat transfer coefficient of the building. These models are 
based on a steady-state energy balance of the building:

𝑃h =𝐻 Δ𝑇 −𝐴sw 𝑞sw (1)

where 𝑃h is the power supplied to heat up the indoor space [W], 𝐻
is the heat transfer coefficient of the building [W∕K] (including both 
fabric and infiltration heat losses - typically, ventilation openings are 
sealed during testing), Δ𝑇 is the temperature difference between the 
indoor 

(
𝑇i
)

and external 
(
𝑇e
)

environments [K], 𝐴sw is the equivalent 
solar aperture [m2], 𝑞sw is the global solar irradiance [W∕m2].

Among the most common data analysis methods for the estimation 
of the whole-building aggregate heat transfer coefficient are the Siviour 
and multiple linear regression analysis methods [12]. The Siviour anal-

ysis adopts a bi-axial regression approach. At each daily sample 𝑡, the 
daily average global solar irradiance (independent variable) is plotted 
against the daily average electrical heating power (dependent variable), 
with both terms divided by the daily average temperature difference be-

tween the inside and outside [15]:

𝑃h,𝑡 𝐴sw 𝑞sw,𝑡
Δ𝑇𝑡
=𝐻 −

Δ𝑇𝑡
+ 𝜀𝑡. (2)
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The y-axis intercept of the regression line represents the heat transfer 
coefficient of the building, while the gradient is the ‘solar aperture’ – i.e. 
a quantity equivalent to a totally transparent area letting in the same 
solar energy as the whole building [38].

In the multiple linear regression (MLR) analysis method, the depen-

dent variable is represented by the daily averaged electrical power, 
while the independent variables are the daily average global solar ir-
radiance and the internal-to-external daily average temperature differ-

ence [12,16]:

𝑃h,𝑡 =𝐻 Δ𝑇𝑡 −𝐴sw 𝑞sw,𝑡 + 𝜀𝑡. (3)

In this method, the heat transfer coefficient is estimated by plotting the 
daily average temperature differences (independent variable) against 
the total daily average heating power (dependent variable), which in-

cludes both the electrical power and the solar heat input (independent 
variable) and calculated as the solar aperture multiplied by the mean 
global irradiance for each day. The linear regression line is forced 
through the origin, while the correlation coefficient between the global 
solar irradiance and the electrical power provides an estimate of the 
solar aperture.

Variations and extensions to this method exist. In some cases, MLR 
analysis includes daily averaged global solar irradiance and both inter-

nal and external daily average temperatures as independent variables. 
The HTC value is then calculated by weighting linear regression coef-

ficients identified for both internal and external temperatures [39]. In 
most cases, the linear regression coefficients are determined generally 
assuming an unbiased estimate, i.e. assuming that the heating power 
is nought if there are no temperature difference between internal and 
external conditions nor solar radiation, although systematically testing 
the significance of introducing a bias has been proposed [6].

Researchers have also developed dynamic test methods and forms 
of analysis, potentially offering some improvements on the steady-state 
method - particularly in terms of test length [6,9,40–42]. In addition, 
with the advent of smart-meters, there has also been interest in de-

termining the in-use HTC – i.e. determined from normally occupied 
dwellings [43–47]. While this paper addresses primarily steady-state 
methods that are deployed in unoccupied dwellings, there is significant 
cross-over between these different approaches to estimating a build-

ing’s HTC. As a result, outcomes of this work will be relevant to both 
dynamic and in-use test methods.

3. Review of uncertainties

In this section, evidence of the various sources of uncertainties in 
HTC estimates are systematically reviewed. These are classified into 
either measurement (section 3.2) or model (section 3.3) uncertainties. 
Before this, previous studies directly investigating uncertainty and self-

consistency are reviewed (section 3.1).

3.1. Studies into uncertainty and self-consistency

Few studies have directly aimed to investigate uncertainty in the co-

heating method itself, focusing instead on the results of measurements. 
In the earliest known work on self-consistency of co-heating measure-

ments, Everett [16] reported a range of 21% in HTC estimates across 
9 consecutive tests in the same dwelling, largely thought to be the re-

sult of unsuitable testing conditions. A series of tests on the same test 
dwelling under the UK National House Building Council (NHBC) field 
trial, reported the results obtained for 6 tests that were within 15% of 
the mean [28,30]. However, these estimates were not fully blind, ob-

tained from different test organisations using variations of the same test 
method and again across varying seasons and test conditions. Alzetto 
et al. [48] conducted a series of co-heating tests on a test house inside 
a controlled environmental chamber, concluding that retrofit measures 
3

could only be clearly observed when they represented at least a 10% 
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change to the HTC. In another study [49], also conducted within a con-

trolled environmental chamber, no statistically significant difference in 
the HTC was observed over three co-heating test phases with different 
internal/external temperature differences. Finally, across single night 
measurements, Lloyd et al. [50] reported uncertainties ranging between 
4-22% on tests at different stages of retrofit, again resulting in smaller 
improvements being not statistically significant.

Due to their shorter nature, the self-consistency of short term, dy-

namic, test methods have been evaluated more frequently. Repeated 
measurements using the PSTAR method on test cells, both outdoors and 
within an indoor controlled environment, reported a standard deviation 
within 5% of the mean [51,52]. However, these measurements were of-

ten on simplified, lightweight constructions, limiting the influence of 
some types of uncertainties. More recently, the QUB method has been 
found to show a maximum deviation of 4% in static laboratory condi-

tions [40], 11% in a numerical study, and 11% from co-heating based 
methods when carried out in real buildings and under full outdoor en-

vironmental conditions [53]. A further study assessing repeated QUB 
measurements of the same dwelling’s HTC, showed a deviation of 21% 
between 6 valid measurements [54]. Whilst these studies provide an in-

dication of the reproducibility and self-consistency of measurements, 
investigations into the underlying causes of uncertainty are limited. 
Developing an understanding of these issues therefore remains key for 
both limiting and defining suitable estimates of uncertainty.

To gauge the performance of real dwellings, measurements must be 
made in an uncontrolled external environment. This inevitably intro-

duces a number of uncertainties which are discussed on an individual 
basis in sections 3.2 and 3.3.

3.2. Experimental uncertainties in input variables

Initially, uncertainties associated with the measurement and deter-

mination of input parameters (i.e. 𝑃h, 𝑞sw, 𝑇i, 𝑇e) for equation (1) are 
reviewed. In all cases, improved experimental techniques can reduce 
these measurement uncertainties, although not eliminate them entirely.

3.2.1. Measurement of input parameters

Most simply, there are uncertainties associated with each set of 
sensors used to provide the inputs required in equation (1). For tem-

perature measurements (𝑇i, 𝑇e), measurement uncertainties may relate 
to the accuracy of instruments, sensor positioning, influence of radi-

ation and the accuracy of data logging systems [12]. Similarly, the 
accuracy of metering equipment (𝑃h) will influence the accuracy of 
HTC estimates, although as long as suitable equipment is used (includ-

ing the resolution of meters), the greater risk of uncertainty is likely to 
be associated with experimental mistakes that can lead to un-metered 
equipment, metering of equipment outside the building fabric or meter 
failures. Uncertainties within solar radiation (𝑞sw) measurements in-

clude calibration uncertainties, angular uncertainties, overshading and 
dirt on the sensor. However, as 𝑞sw is included as an independent re-

gression variable in the analysis and co-heating test measurements are 
undertaken in the winter months when 𝑞sw is at its lowest, any sys-

tematic uncertainties are likely to have a negligible impact upon HTC 
estimates [55].

In most experimental setups, multiple sensors are typically used to 
measure 𝑃h and 𝑇i, such that many of these uncertainties will reduce 
with the number of sensors deployed. As a result, with typically fewer 
sensors deployed and potentially a higher risk of errors from radiation 
and micro-climates, in many cases it will be the measurement of 𝑇e that 
has the most significant impact upon HTC estimates [55].

3.2.2. Internal temperature drifts and fluctuations

The steady-state model assumes constant internal temperatures, al-

though experimentally this can only be approximately achieved. Diffi-

culties may occur in achieving constant temperatures, particularly from 

solar gains rising temperatures above experimental set points [54]. This 



V. Gori, D. Johnston, R. Bouchié et al.

can be particularly problematic in low energy dwellings, such as Pas-

sivhaus [12,56].

Further, it is important that the analysis is only conducted after a 
test building has been sufficiently heat soaked and heated to quasi-

steady state conditions – i.e. discarding the heating up period where 
the thermal mass has not fully charged. Identifying this point, however, 
may not always be obvious from heating loads and temperature traces 
alone [55], with heat flow into heavier elements potentially missed 
by air temperature measurements. The addition of heat flux density 
measurements may assist in identifying when a building has reached 
equilibrium [55,57].

3.2.3. Achieving uniform internal temperatures

The energy balance described in section 2 assumes uniform inter-

nal temperatures and a single zone model of heat transfer. In practice, 
temperatures are likely to vary between zones, depending upon experi-

mental technique, external conditions and the characteristics of the test 
dwelling, with ±1K thought to be typical [58]. Stratification between 
floors [54] or poor mixing between restricted zones can act to increase 
this variation. This can introduce bias if the measured and averaged in-

ternal temperature does not match that experienced by all the different 
heat loss elements, particularly if sensor positions are not representa-

tive [6]. Test dwellings in which heat transfer is unevenly distributed 
across the building fabric may then act to highlight this non-uniformity 
[10]. Using different internal temperature weightings may vary HTC es-

timates by 2-8% when internal zonal temperatures vary [55]. Bauwens 
and Roels [37] state that tailored equipment is indispensable in order 
to avoid such issues.

3.2.4. Party wall heat transfer

The vast majority of dwellings in most regions have some form of at-

tached neighbouring dwellings. Ideally, these are ‘guarded’ during the 
test by heating the neighbouring dwelling to the same internal set-point 
temperature as the test dwelling [12]. In practice, this can never be per-

fectly achieved and some heat transfer will inevitably still occur. This 
can become particularly significant in highly connected dwellings (e.g., 
apartments, terraced houses) under conditions of poor control (e.g., 
no access or significant solar gains in adjoining dwellings), or when 
complex heat pathways exist in the party elements (e.g., convective 
bypasses). Corrections may be applied to the test data based upon tem-

perature traces or measured heat flux density [12,57]. However, even 
with these corrections and guarded heat transfer, the magnitude of this 
uncertainty within apartments has suggested they cannot be tested at 
scale [18,55].

3.3. Model uncertainties

Models are always abstractions of the natural system, with some 
less important variables and interactions left out whilst other relation-

ships are given in simplified forms. Within the physical model adopted 
to represent co-heating tests (section 2), steady-state aggregations and 
simplified heat flows are both adopted. Uncertainties resulting from 
such simplifications and approximations are termed ‘model uncertain-

ties’ and are reviewed below.

3.3.1. Measured solar radiation

Solar radiation measurements will provide an imperfect representa-

tion of the solar radiation received across a test building. This model 
uncertainty may lead to systematic errors in estimations of the HTC. 
Most significantly, the use of global horizontal radiation can fail to 
suitably distinguish between overcast and sunny days, causing a signifi-

cant underestimate in the estimated HTC, as much as 20W∕K [38]. Any 
systematic error should be reduced by positioning solar radiation sen-

sors in a vertical plane aligned with the facade exposed to the highest 
expected solar gains [38]. However, this will always be an imperfect 
4

representation of the solar radiation across multiple building surfaces 
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with different properties. Whilst vertical measurements are suggested 
in the protocol set out by Johnston et al. [12], evidence suggests this is 
not consistently followed [55].

3.3.2. Stored heat

Linear regression models assume the independence of aggregated 
data points (typically downsampled to 24-hour intervals, to minimise 
dynamic effects). Diurnal and day-to-day variations in internal tempera-

tures are known to impact short-term tests and overnight methods [59]. 
More significantly, in longer-term tests heat inputs from solar gains can 
result in heat being stored from one day to subsequent days [60]. This 
can lead to underestimates of the HTC and should be minimised through 
experimental and analysis techniques – principally by testing during 
appropriate weather conditions and adopting suitable aggregation in-

tervals, e.g., dawn-to-dawn to allow more time for solar radiation effects 
to attenuate [38,61]. Stamp et al. [38] suggest that changing the aggre-

gation interval can adjust HTC estimates by as much as 15%. This may 
particularly apply to heavyweight, highly glazed and low energy build-

ings [61,62], along with tests conducted in sunny periods. Furthermore, 
the mix of test weather may be important, particularly alternating over-

cast and sunny days [16,63], or the presence of successive sunny days 
which may have a high influence over HTC estimates.

3.3.3. Variations due to varying wind and stack pressures

Variations in wind speed and wind pressures may similarly vary in-

filtration and heat transfer rates across a test period [20]. External air 
flows are also known to impact external heat transfer coefficients in 
test cells [64], although this is likely to be less important in full-scale 
test houses. Similarly, varying indoor-to-outdoor temperature differ-

ences may result in changes to infiltration rates via the stack effect. 
Higher than normal temperature difference during testing was found 
to increase the HTC by 3–15 W∕K for two and three storey houses 
respectively [65]. These variations are not normally included in re-

gression models and will increase the dispersion of aggregated data 
points, notably non-linearly [55,66]. In such cases, these variations do 
not constitute standard measurement uncertainties but rather reflect the 
variation in the value of the measured parameter, the HTC.

3.3.4. Moisture effects

The presence of excess moisture in the building fabric may cause 
additional latent heat loads associated with evaporation, resulting in 
overestimates of the HTC. Within tests on recently completed dwellings, 
latent loads have been estimated as accounting for 9% [67,68], 10% 
[66] or between 2-9% [55] of total heating loads across the course of 
a test. However, such estimates are likely to themselves contain signifi-

cant uncertainty and it is likely to be a better strategy to avoid moisture 
loads rather than attempt to correct for them.

3.3.5. Non-direct heat transfer paths

The linear regression model assumes that heat transfer is directly re-

lated to the external air temperature. However, non-direct heat transfer 
paths may exist between a test building and surrounding elements at a 
different temperature to the ambient air, e.g., ground, attic or crawl 
spaces, garages, or radiant sky temperatures [21,37]. Depending on 
how strongly these may be coupled to the external temperature, they 
may constitute constant loss or gain terms. In many cases, these coupled 
loss terms may be small and their inclusion as separate terms is unlikely 
to yield improved results [37,55]. However, test cases exist where up to 
35% of the envelope has been coupled to the ground [55], which may 
impact the HTC estimation and potentially more importantly compar-

isons to predicted values [69].

3.3.6. Regression errors

Uncertainties may also be associated with the use of given regression 
techniques on the experimental data. Statistical checks may be per-
formed to identify appropriate regression techniques and subsequently 
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Table 1

Definition of uncertainties according to JCGM 100 [23] (unless otherwise stated).

Terminology Description

Measurand ‘Quantity intended to be measured.’

Measurement result ‘Set of quantity values being attributed to a measurand together with any other available relevant information.’

Measurement uncertainty ‘Non-negative parameter characterising the dispersion of the quantity values being attributed to a measurand, based on the information 
used.’ It includes definitional uncertainties and measurement errors.

Definitional uncertainty ‘Component of measurement uncertainty resulting from the finite amount of detail in the definition of a measurand.’ It represents the 
‘practical minimum measurement uncertainty achievable in any measurement of a given measurand’ even in case no measurement errors 
have been introduced by the monitoring process.

Natural Variation As natural systems change in time and place, so do the parameters of interest [72]. It can be considered a form of definitional uncertainty.

True / reference value Theoretical true value of the measurand. This can never be known and may itself vary (see natural variation and definitional uncertainty) or 
be influenced by the model used.

Measurement error ‘Measured quantity value minus a reference quantity value.’

Systematic measurement error ‘Component of measurement error that in replicate measurements remains constant or varies in a predictable manner.’

Random measurement error ‘Component of measurement error that in replicate measurements varies in an unpredictable manner.’

Model uncertainty ‘Uncertainty due to imperfections and idealizations made in physical model’ [72].

Type A evaluation of uncertainty ‘Method of evaluation of uncertainty by the statistical analysis of series of observations.’

Type B evaluation of uncertainty ‘Method of evaluation of uncertainty by means other than the statistical analysis of series of observations.’

‘Standard uncertainty Uncertainty of the result of a measurement expressed as a standard deviation.’

‘Expanded uncertainty Quantity defining an interval about the result of a measurement that may be expected to encompass a large fraction of the distribution of 
values that could reasonably be attributed to the measurand.’
validate this choice. Linear regression assumes the independence of data 
points. However, building dynamics and diurnal patters may mean this 
does not hold true. Time series plots of residuals can be inspected to 
see if any clear patterns are present. If patterns occur, it may indi-

cate that the linear model is oversimplified and thus inappropriate, and 
that more complex (or maybe dynamic) models describing additional 
physical mechanisms should be adopted. Specifically, tests concerning 
Gaussian residual hypothesis [70] and the lack of autocorrelation [39]

shall be undertaken. Else, linear regression techniques formally imply 
that the residuals are independent of time (homoscedasticity hypothe-

sis). It is good practice to check if the residuals are homoscedastic by 
plotting them as a function of time. The magnitude of the randomly 
fluctuating residuals shall not vary with time.

Further, ordinary linear least squares regression assumes uncertainty 
is only present in the dependent variable. The presence of uncertainty 
within the independent variable of regression models may lead to at-

tenuation bias and a tendency to underestimate the HTC. Stamp [55]

suggests this is likely to be negligible, or only becomes significant when 
significant error exists in regression variables, which will then dom-

inate the overall uncertainty. Legendre [71] gives various conditions 
to be checked to validate the possibility of using ordinary linear least 
squares regression by comparing normalised uncertainties on both de-

pendent and independent variables.

4. Characterising uncertainties

A variety of uncertainties have been reviewed in the previous sec-

tion, each with various implications for heat transfer estimates, the re-

producibility of measurements, and comparisons to either the estimated 
HTC from in-situ measurements in other buildings or the HTC from de-

sign calculations. Therefore, this section looks to provide a framework 
to categorise different sources of uncertainty. In Table 2, the type of un-

certainty and its impact upon HTC estimates are presented, alongside 
a description of when such uncertainties are likely to be most signifi-

cant – i.e. for which building characteristics and under what weather 
conditions.

The impact of each uncertainty can be categorised in two ways. 
Firstly, in regards to the difference between the experimentally esti-

mated HTC and the theoretical ‘true’ value of the HTC (see Table 1 for 
definitions). This measurement error could then be defined as system-

atic or random in nature. Systematic uncertainties (listed in Table 2) 
5

occur from both model uncertainties (e.g., stored heat, solar measure-
ments, assumed linear heat transfer) and experimental uncertainties 
(e.g., party wall heat transfer, sensor measurement errors, non-constant 
and non-uniform internal temperatures). Other sources of uncertainty 
may simply increase the random error in HTC estimates – i.e. the dis-

persion of daily data points. Examples here include varying infiltration 
rates or dynamic external temperatures.

Alternatively, the impact of a source of uncertainty can be assessed 
in regards to its impact when interpreting the results, either between 
tests or to design values. In such cases, even if the previous measure-

ment uncertainty is negligible – i.e. the difference between estimated 
and ‘true’ values do not significantly diverge – uncertainty may remain 
when comparing between values. For example, successive tests on the 
same dwelling should not be expected to yield the same results if they 
take place under different wind conditions and therefore experience dif-

ferent infiltration rates across their respective test periods. Likewise, a 
design calculation under average infiltration rates will diverge from a 
field test under significantly different conditions. Without careful addi-

tional measurements and modelling of these effects the two cannot be 
sufficiently reconciled.

It is crucial to recognise that the ‘true’ HTC is not a constant parame-

ter but rather varies naturally. For example, the HTC is expected to alter 
with varying infiltration rates, fabric moisture content, long wave sky 
losses and heat loss to the ground (Table 2). Uusitalo et al. [72] define 
this type of variation in a measurand as ‘natural variation’, whilst this 
can be classed more broadly as ‘definitional uncertainty’ – i.e. the un-

certainty in the definition of the parameter that is trying to be measured 
(Table 1). In other words, this can be described as the uncertainty in the 
definition of the HTC when natural variation is not understood. The nat-

ural variation does not create a traditional measurement error between 
the measured and true values. Instead, the result is definitional uncer-

tainty between either tests 1 and 2 performed on the same dwelling 
or between tests A and B performed on different dwellings when the 
external environmental conditions vary between tests.

The term ‘definitional uncertainty’ can be applied to this type of 
natural variation but also more broadly. For example, uncertainty may 
exist in the definition of the HTC in terms of the fabric moisture content 
when a test was conducted or due to degradation of the fabric over 
time. In a further example, the HTC measured via a co-heating test is 
defined by a uniform internal temperature, with all external elements 
therefore exposed to the same internal air temperatures. However, in an 
occupied dwelling, natural gradients will exist both between and within 

zones. As such, the two HTCs are definitionally different and cannot 
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Table 2

Sources of uncertainty, their impacts and when they are likely to occur.

Uncertainty Description Type Impact Upon HTC 
Estimate

Uncertainty in comparisons to 
other test / predictions

When

Stored heat Solar gains stored across 
24-hour aggregation 
intervals.

Model uncertainty 
(analysis)

Systematic 
(underestimate)

If systematic error occurs Sunny, warm periods, heavyweight, 
highly glazed dwellings. Successive 
sunny days.

Solar measurement Imperfect representation 
of incident solar gains 
across different surfaces.

Model uncertainty 
(analysis)

Systematic If systematic error occurs E.g., use of horizontal measurement 
for dwelling with significant 
south-facing gains.

Dynamic external 
temperature

Causing dynamic heat 
flow.

Model uncertainty Random (increased 
dispersion of data 
points)

Not significant in multi-day 
co-heating tests

High diurnal swings; impact limited 
to short test periods.

Varying infiltration Varying infiltration rates 
from stack and wind 
pressures.

Model uncertainty 
(natural variation 
in true HTC)

Random (increased 
dispersion of data 
points)

If test weather differs 
between tests or from design

Dwellings with high proportion of 
infiltration losses; periods of high 
wind/ Δ𝑇 .

Sky temperature Varying long-wave 
radiation to changing 
effective sky 
temperature.

Model uncertainty 
(natural variation 
in true HTC)

Random (increased 
dispersion of data 
points)

If test weather differs 
between tests or from design

Varying cloud cover; uninsulated 
roofs. Influence limited to short test 
periods and overnight analysis.

Moisture - latent load Additional heating for 
latent load.

Model uncertainty 
(natural variation 
in true HTC)

Definitional If building condition differs 
between tests or from design

Excessive moisture (e.g., new builds 
with wet finishes).

Moisture - thermal 
conductivity

Unknown moisture 
content alters thermal 
conductivity.

Model uncertainty 
(natural variation 
in HTC)

Definitional If building condition differs 
between tests or from design

Moisture sensitive constructions (e.g., 
solid wall, fibrous insulation); new 
builds with wet finishes.

Party heat transfer Heat transfer across 
party walls/ floors.

Experimental 
uncertainty

Systematic (dependent 
upon direction of net 
heat flow)

If systematic error occurs Apartments, terraced or 
semi-detached dwellings, particularly 
where control of adjacent spaces is 
limited.

Uncoupled 
temperatures

Heat loss driven by 
𝑇ground and 𝑇sky .

Model uncertainty Definitional If uncoupled temperatures 
vary between test or from 
design assumptions

Cases with attics, garage, basement, 
large ground floor area.

Sensor measurement 
error

Due to sensor error (e.g., 
calibration).

Experimental 
uncertainty

Systematic If systematic error occurs Inaccurate sensors, influence of 
radiation, limited number of sensors 
deployed.

Non-uniform internal 
temperatures

Representativeness of 
single average in 
analysis.

Model uncertainty Systematic (either 
direction)

If internal test conditions vary 
/ If temperature weighting 
different from design

Tight floor plans, high gains/ heat 
loss zones; insufficient equipment set 
up.

Operational errors Due to experimental set 
up (e.g., elevated 𝑇i, 
fans).

Experimental 
uncertainty

Systematic If test conditions (Δ𝑇 ) differ 
between tests or to design

𝑇set higher than design 𝑇i.

Non-constant internal 
temperature

Unstable internal 
temperatures, or 
deviation from quasi 
steady-state conditions.

Experimental 
uncertainty

Systematic 
(underestimate when 
warming, overestimate 
when cooling)

If systematic errors occur Poor experimental control; solar 
gains; inclusion of initial warm up 
period.

Regression errors Attenuation bias. Model uncertainty Systematic 
(underestimate)

If systematic errors occur High error in independent variable 
(𝑄solar or 𝑄Δ𝑇 ).
be considered equivalent. No matter the accuracy of the measurement 
itself, this definitional uncertainty between the two cases will remain.

Table 2 lists when each source of uncertainty is likely to have the 
most significant impact. It can be seen that heavyweight, highly glazed 
and low heat loss dwellings are intrinsically more prone to measure-

ment uncertainties. Uncertainties will further increase in sunny test 
periods and those with high external temperatures. The impact of un-

certainties can also vary significantly according to the distribution of 
weather or more specifically sunny and dull days. An absence of dull 
days – i.e. those with little solar influence – can increase the influence of 
solar-related uncertainties. It is for these reasons that both Everett [16]

and Lowe and Gibbons [63] recommended that a test should comprise 
at least two sunny days and two dull days (with no sunny days preced-

ing them). Similarly, sunny days acting as outliers can have significant 
influence over HTC estimates. A worst-case scenario might be an ab-

sence of very dull days along with a pair of successive sunny days, the 
second of which would be systematically biased by stored heat from the 
first.

5. Framework for estimating uncertainty

To better evaluate the significance of these uncertainties, and to 
quantify their contribution to overall uncertainty estimates, a method 
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for estimating uncertainty in the estimated HTC is presented here. This 
method is then applied to a range of previously conducted tests, with 
results presented in section 6.2.

5.1. Overall approach to uncertainty estimates

Initially, an approach for estimating measurement uncertainty can 
be defined by adopting the overall principles defined in JCGM 100 [23]

and BSI PD 6461-4 [73], and previously applied to thermal characteri-

sation methods in the PASLINK network [60].

To conduct this uncertainty analysis, first the uncertainty in each 
input variable needs to be estimated (section 5.1.2). However, it can 
be suggested that such an approach does not fully incorporate all un-

certainties covered in Table 2. As such, the statistical uncertainty – i.e. 
that determined through the regression analysis – may also be calcu-

lated as described in section 5.1.3. Combining this with the previously 
estimated measurement uncertainty provides an estimated total uncer-

tainty (section 5.1.4).

5.1.1. Process for estimating measurement uncertainty

The general approach is to define the uncertainty (𝑢) in each in-

put variable defined in equation (1) (e.g., 𝑢(𝑇i)) and create maximum 
(𝑇i + 𝑢(𝑇i)) and minimum (𝑇i − 𝑢(𝑇i)) error cases for each variable. Re-

gression analysis as described in section 2 should then be carried out 

to create maximum and minimum error cases (e.g., 𝐻(𝑇i + 𝑢(𝑇i)) and 
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Table 3

Example estimations of uncertainty in inputs variables.

Input Error Source Type Uncertainty calculation

𝑇i Calibration B 𝑢(𝑇i)calib =
𝑢sensor√

𝑛𝑠

𝑇i Spatial Variation A 𝑢(𝑇i)spatial =
⎧⎪⎨⎪⎩
√

𝑛

𝑛−2
𝜎(𝑇i )√

𝑛𝑠
if 𝑛 < 30

𝜎(𝑇i )√
𝑛𝑠

if 𝑛 > 30

𝑇e Calibration B 𝑢(𝑇e)calib = 𝑢sensor

𝑃h Calibration B 𝑢(𝑃h)calib =
𝑢sensor√

𝑛𝑠

𝑃h Party Wall A 𝑢(𝑃h)pwall =
⎧⎪⎨⎪⎩
∑𝑛

𝑗
(𝑞𝑗 𝐴𝑗 ) ∗((
𝑢(𝑞𝑗 )
𝑞𝑗

)2
+
(

𝑢(𝐴𝑗 )
𝐴𝑗

)2
) 1

2

∗∗

=
⎧⎪⎨⎪⎩
∑𝑛

𝑗
(𝑈𝑗 𝐴𝑗 Δ̇𝑇𝑗 ) ∗((
𝑢(𝑈𝑗 )
𝑈𝑗

)2
+
(

𝑢(𝐴𝑗 )
𝐴𝑗

)2 ( 𝑢(Δ𝑇𝑗 )
Δ𝑇𝑗

)2) 1
2

∗∗

𝑞sw Calibration B 𝑢(𝑞sw)calib =
𝑢sensor 𝑞sw√

3

∗ = if 𝑞 uncorrected.
∗∗ = if 𝑞 corrected for party wall heat transfer.

𝐻(𝑇i − 𝑢(𝑇i)). The impact upon estimates of 𝐻 can be defined by the 
sensitivity coefficient, e.g., 𝑐(𝑇i).

𝑐(𝑇i) =
𝐻(𝑇i + 𝑢(𝑇i)) −𝐻(𝑇i − 𝑢(𝑇i))

2 𝑢(𝑇i)
. (4)

Uncertainty from all inputs can then be combined to give the overall 
measurement uncertainty in 𝐻 :

𝑢(𝐻)meas =
√

[𝑐(𝑇i) 𝑢(𝑇i)]2 + [𝑐(𝑇e) 𝑢(𝑇e)]2 + [𝑐(𝑃h) 𝑢(𝑃h)]2 + [𝑐(𝑞sw) 𝑢(𝑞sw)]2 (5)

5.1.2. Estimating uncertainty in input variables

The process described in section 5.1.1 requires the estimation of the 
uncertainties in the input variables (𝑃h, 𝑞sw, 𝑇i, 𝑇e) to incorporate the 
different uncertainties in each (previously identified in section 3). In 
some cases, this can take the form of Type A uncertainty analysis (Ta-

ble 1), based upon statistical analysis of measurements. Alternatively, 
some form of expert knowledge or past experience may be required to 
define estimated uncertainties, taking the form of Type B uncertainty 
analysis. This may include manufacturer specifications, calibration un-

certainties, or assumptions based upon expert knowledge. The com-

plexities of this latter approach are discussed in section 7.2. Example 
estimations of uncertainty in input variables are provided in Table 3; a 
uniform distribution is assumed for 𝑢(𝑞sw)calib in this example.

The different error sources for each input variable may be combined 
in quadrature, given they are independent and uncorrelated, to give the 
total uncertainty in each input:

𝑢(𝑇i) =
√

𝑢2(𝑇i)spatial + 𝑢2(𝑇i)calib . (6)

5.1.3. Statistical uncertainty

Uncertainty may also be estimated as an output of the chosen re-

gression model. Thébault and Bouchié [6] provide details of how the 
applicability of the vertical ordinary least squares approach may be as-

sessed and provide uncertainty estimates for identified parameters (i.e. 
the slope and the intercept) depending on the variance of the residuals. 
For Siviour analysis, statistical uncertainty may be estimated assum-

ing a vertical ordinary least squares approach. Dependency may be 
reformulated using the Pearson coefficient 𝑟2 and variances on both de-

pendent and independent variables (𝑃h∕Δ𝑇 and 𝑞sw∕Δ𝑇 ). The resulting 
standard uncertainty is:

𝑢(𝐻)stat =
√
Var(𝐻), (7)

where: ∑𝑛
𝑋2
7

Var(𝐻) = Var(𝐴sw)
𝑖=1 𝑖

𝑛
. (8)
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In the case of Siviour analysis, 
∑𝑛

𝑖=1𝑋
2
𝑖

𝑛
represents the sum of the squared 

independent variable 𝑞swΔ𝑇 across n data points, divided by the number 
of data points. The variance in the solar aperture is then calculated as:

Var(𝐴sw) =
Var( 𝑃h

Δ𝑇 )(1 − 𝑟2)

Var( 𝑞swΔ𝑇 )(𝑛− 2)
, (9)

with 𝑟2 defined by:

𝑟2 =
Cov( 𝑃h

Δ𝑇 ,
𝑞sw
Δ𝑇 )

2

Var( 𝑃h
Δ𝑇 )Var(

𝑞sw
Δ𝑇 )

. (10)

5.1.4. Total derived uncertainty

The residuals seen in data points, on which the statistical uncer-

tainty is estimated, result from various sources of uncertainty. This in-

cludes, for example, some random sensor errors that have already been 
accounted for within measurement uncertainty estimate. However, sta-

tistical uncertainty alone would not account for an outdoor temperature 
sensor that had a large offset. Conversely, estimates of measurement 
uncertainty as described in sections 5.1.1 and 5.1.2 may not be able to 
incorporate all uncertainties reviewed in section 3, or to account for the 
number, fit and distribution of data points seen in Figs. 1 and 2. There-

fore, neither the statistical uncertainty nor the estimated measurement 
uncertainty fully capture all expected uncertainties. To avoid double 
counting for some sources of uncertainty, within this paper the statisti-

cal and measurement uncertainties are combined in quadrature:

𝑢tot =
√

𝑢2meas + 𝑢2stat . (11)

The estimates should be then expressed as expanded uncertainty 
across an increased confidence interval (where 𝑘 depends on the de-

sired confidence level:

𝑈tot = 𝑘𝑢tot . (12)

Here 95% confidence intervals (approximately 𝑘 = 2, assuming the er-

rors are normally distributed) are judged reasonable and adopted.

6. Application of uncertainty estimates to existing tests

6.1. Description of data set

To evaluate the range of expected uncertainties with co-heating 
tests and the key components, the approaches to uncertainty estimates 
detailed in section 5.1 are applied to 14 co-heating tests previously con-

ducted by the authors. Some details of specific cases or larger datasets 
can be found in previous publications [4,20,55,69,74,75], although 
anonymity is preserved in some cases here. Relevant summary details 
can be found in Table 4. The case studies do not constitute a representa-

tive sample but, as it can be seen in the table, they provide an overview 
of a range of different buildings and tests carried out by the authors. Siv-

iour analysis is used, with 24-hour aggregation periods. Previous work 
has suggested little difference between Siviour and MLR approaches and 
little benefit in adopting longer aggregation intervals [55]. Therefore, 
only the Siviour analysis will be reported in the following, for clarity 
and conciseness.

6.2. Results

Table 5 summarises the estimated HTC for each test, alongside the 
estimated statistical, measurement and total uncertainty. Both measure-

ment uncertainty and statistical uncertainty are seen to vary signifi-

cantly between tests. The expanded measurement uncertainty (at 95% 
confidence intervals, 𝑘 = 2) 𝑈meas varies between 1.7 and 23.8 W∕K, 
with an average value of 9.6 W∕K or 4.8% of the measured value. Sim-

ilarly, the statistically estimated uncertainty, 𝑈stat varies between 1.0 

and 14.7 W∕K, with an average value of 7.0 W∕K or 6.4%. Added in 
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Fig. 1. Siviour analysis and error estimates from the D4 Test. Large statistical uncertainty is related to the horizontal solar measurement.

Fig. 2. Siviour analysis of D1 test, where south-facing vertical solar measurements, combined with a mix in dull any sunny days, results in a lower overall uncertainty.

Table 4

Details of buildings and tests used for uncertainty analysis.

ID Type Duration When Notes

D1 Detached 12 days Feb [30]

D2 Detached 15 days Jan -

S1a Semi 9 days Jan -

S1b Semi 12 days Mar Repeat of S1a after cavity 
insulation

D3 Detached 5 days Jan Passivhaus [55]

D4 Detached 15 days Dec Horizontal solar 
measurement

T1 End-terrace 34 days Nov/Dec Passivhaus bungalow, 
adjacent to T2 [75]

T2 Mid-terrace 31 days Nov/Dec Passivhaus bungalow, 
adjacent to T1 [75]

T3 End-terrace 13 days Jan Passivhaus [75]

S2 Semi-detached 56 days Oct/Nov/Dec Adjacent to S3 [75]

S3 Semi-detached 56 days Oct/Nov/Dec Adjacent to S2 [75]

D5 Detached 19 days Feb Bungalow [75]

S4 Semi-detached 13 days Mar/Apr [75]

D6 Detached 11 days Dec/Jan Horizontal solar 
measurement [75]

Table 5

Estimated HTC (using the Siviour analysis) and associated uncertainty estimates 
(at 𝑘 = 2).

Case HTC 𝑈meas 𝑈stat 𝑈tot 𝑈tot Predicted

(W∕K) (W∕K) (W∕K) (W∕K) (%) (W/K)

D1 71.3 3.8 4.4 5.8 8.2 68.4

DER 227.1 9.6 13.4 16.4 7.2 203.4

S1a 249.8 15.5 14.3 21.1 8.5 83.4

S1b 147.9 8.3 4.2 9.3 6.3 83.4

D3 56.2 3.0 14.7 15.0 26.7 64.6

D4 125.6 6.6 14.0 15.5 12.4 83.8

T1 47.4 2.1 2.6 3.4 7.1 43.4

T2 39.0 1.7 2.6 3.1 8.0 36.6

T3 47.2 1.9 1.0 2.2 4.6 39.6

S2 128.1 5.8 2.9 6.4 5.0 95.1

S3 116.6 5.1 2.9 5.9 5.0 92.6

D5 222.4 9.4 7.2 11.8 5.3 134.9

S4 142.9 7.0 5.8 9.1 6.4 113.3

D6 144.7 8.2 7.3 16.8 11.6 135.0

Average 6.1 7.0 10.1 8.7

quadrature (according to equation (11)), one of these terms often domi-
8

nates 𝑈tot . The value of 𝑈tot is again seen to vary significantly, between 
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Table 6

Measurement uncertainty in each input variable, along with the respective contribution 
to uncertainty. Uncertainties and contributions are stated in their expanded form (𝑘 = 2).

Case 𝑈 (𝑇i) 𝑈 (𝑇e) 𝑈 (𝑃h) 𝑈 (𝑞sw) 𝑐.𝑈 (𝑇i) 𝑐.𝑈 (𝑇e) 𝑐.𝑈 (𝑃h) 𝑐.𝑈 (𝑞sw)
(◦C) (◦C) (W) (W/m2) (W∕K) (W∕K) (W∕K) (W∕K)

D1 0.4 0.7 33.1 4.4 -1.8 2.8 2.0 0

-2.6% 3.9% 2.8% 0%

D2 0.3 0.6 87.1 5.7 -3.6 6.9 5.7 0

-1.6% 3.0% 2.5% 0%

S1a 0.7 0.7 208.0 1.2 -9.6 7.4 9.2 0

-4.0% 3.1% 3.9% 0%

S1b 0.5 0.7 123.8 2.3 -3.2 4.5 6.4 0

-2.3% 3.2% 4.6% 0%

D3 0.4 0.7 29.6 0.7 -1.1 2.2 1.7 0

-1.9% 3.9% 3.0% 0%

D4 0.5 0.7 58.5 0.8 -3.4 4.8 3.1 0

-2.7% 3.8% 2.5% 0%

T1 0.2 0.6 23.4 1.8 -0.5 1.6 1.3 0

-1.1% 3.3% 2.8% 0%

T2 0.2 0.6 20.8 1.8 -0.3 1.2 1.1 0

-0.8% 3.2% 2.9% 0%

T3 0.2 0.6 35.2 0.6 -0.4 1.1 1.5 0

-0.9% 2.4% 3.2% 0%

S2 0.3 0.6 66.1 1.5 -1.7 4.2 3.5 0

-1.4% 3.3% 2.7% 0%

S3 0.2 0.6 60.5 1.6 -1.3 3.7 3.2 0

-1.1% 3.2% 2.7% 0%

D5 0.2 0.6 117.9 1.6 -2.4 6.7 6.0 0

-1.1% 3.0% 2.7% 0%

S4 0.2 0.6 141.2 2.6 -1.2 3.5 5.9 0

-0.9% 2.4% 4.1% 0%

D6 0.2 0.6 141.2 2.6 -2.0 3.5 5.9 0

-1.4% 2.4% 4.1% 0%
2.2 and 21.1 W∕K, with an average value of 10.1 W∕K or 8.7% of the 
estimated HTC.

The size of uncertainty estimates should be placed in the context 
of the discrepancies they are trying to detect. The average uncertainty 
estimate of 13% compares to an average difference between measured 
and predicted HTCs of 36%, with 10 predicted HTCs sitting outside 
of the uncertainty bands of the estimated HTC and four showing good 
agreement and sitting within. This will be discussed in more detail in 
Section 7.1.

These results demonstrate the significant variability in uncertainty 
estimates associated with a given test. Underlying reasons for this can 
initially be explored by examining components of measurement uncer-

tainty. In Table 6, the measurement uncertainty in each input variable 
is reported alongside the associated contribution to uncertainty (equa-

tion (4)). It is worth noting that the contribution to uncertainty from 𝑞sw
is always zero, as measurement uncertainty as applied via equation (4)

does not impact HTC estimates with 𝑞sw included as an independent re-

gression variable. Uncertainties associated with global solar irradiance, 
including stored solar gains and model uncertainties associated with 
the measurements relationship to solar gains are however significant. 
Difficulties in characterising them are covered in section 7.2.

Particular cases may be picked out. For example, S1a has a contri-

bution to uncertainty from 𝑇i of -9.6 W∕K (or 4.0% of the estimated 
HTC). In this case, the accuracy of sensors and number of sensors de-

ployed is similar to other tests. Therefore, this is largely due to poorer 
internal air mixing. The average standard deviation of internal air tem-

peratures was reported as 1.8 ◦C across the test period, compared to 
an average of 0.7 ◦C from all tests. Here, poor experimental control is 
being penalised in the uncertainty estimate.

Amongst tests with party walls (S1a, S1b, S2, S3, T1, T2) contribu-

tions to uncertainty from party walls can be higher, with additional 
uncertainty associated with uncontrolled heat loss/gain across these 
party walls or floors. However, only a small increase in the contribu-

tion of uncertainty from 𝑃h is seen in these cases. This indicates that 
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with careful experimental control, in carefully guarded, semi-detached 
dwellings this party wall heat transfer may not be as significant as other 
contributions to uncertainty.

For some of the cases reported in Table 5 the estimated statistical un-

certainty is significantly higher than the measurement uncertainty (e.g., 
D3, D4, D6). D3, at just 5 days, is one of the shortest tests. This fact, 
combined with mainly dull days (maximum daily 𝑞sw = 14.6 W∕m2 , 
compared to average maximum of 86.9 W∕m2) leads to significantly 
higher statistical uncertainty. In other cases (e.g., D4, D6), the solar ra-

diation measurement was made in a horizontal plane. This, along with 
potentially leading to an underestimate of the HTC, also tends to lead 
to a higher statistical uncertainty (see Fig. 1). In some cases, statistical 
uncertainty is very low (e.g., D1). In this case a wide range in solar ra-

diation and external temperature were captured over 12 days, resulting 
in lower overall uncertainty (Fig. 2).

7. Discussion

7.1. Comparisons of predicted and measured values

In most cases, a predicted value, based upon a suitable calculation 
methodology (e.g., the Standard Assessment Procedure, SAP [76]; the 
Passive House Planning Package, PHPP [77]), will be compared with 
the value estimated from the measurements. This comparison forms the 
basis of any estimated building fabric performance gap [4]. However, 
fundamental differences between these two values may exist, suggesting 
that such a comparison is not equivalent.

Firstly, given the natural variation in the HTC and the relatively 
short window in which testing takes place, environmental conditions 
during the test period may not be equivalent to those used in the cal-

culated value (e.g., wind speeds and infiltration losses, temperature 
gradients and stack losses, ground and apparent sky temperatures). Ad-

ditionally, re-calculating the HTC to match the conditions experienced 
during the measurement is not straightforward and requires greater 
knowledge of the building. For example, a test may be conducted un-

der windier conditions than those used in the calculation of a predicted 

HTC. However, without fully understanding the relationship between 
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the building’s HTC and wind speed, it remains challenging to try and 
re-align the measured and predicted values to the same boundary con-

ditions.

On top of this, the calculated value may itself contain significant un-

certainties, errors or modelling assumptions. This is often termed the 
‘prediction gap’. For example, audits of SAP assessments have found 
considerable proportions of incorrect inputs for U-values and thermal 
bridges [31], or that assumed thermophysical values mis-represent ac-

tual performance [3]. Product substitution and on-site as-built differ-

ence may also be missed from calculations. Modelling of heat transfer 
through thermal bridges, ventilated spaces (e.g., attics) and infiltration 
may then be simplified and represent significant uncertainty in the cal-

culated value. On-site observations and measurements might lead to 
more ‘informed’ predictions [4], providing a more meaningful compar-

ison; although it is likely that these issues will remain to some degree.

It is important to separate out the underlying reasons for differences 
between measured and predicted values. This difference may relate to 
a) natural variation in the HTC; b) definitional differences between the 
predicted HTC and the measured building (e.g. predictions are made 
under different wind conditions to the measurement); c) uncertainties 
in the predicted value; or d) differences associated with on-site perfor-

mance. It is only the latter that is associated with a ‘fabric performance 
gap’, meaning that care is required in interpreting results.

Whilst full consideration of uncertainties in predicted HTCs is out-

side the scope of the paper, it is important to note that any assessment 
of the fabric performance gap is a function of both the uncertainties in 
the predicted and measured values. There is little effect in developing a 
highly accurate test when the predictions used for comparisons remain 
so uncertain themselves.

7.2. Excluded uncertainties

The approach detailed in section 5 does not capture all uncertainties 
that may be present in a given HTC estimate. Some sources of uncer-

tainty in Table 6 remain challenging to quantify and doing so would 
require significant additional measurements or more complex models. 
An approach could be to further adopt Type B uncertainty analysis, 
assigning default uncertainties from expert knowledge or previous ex-

perience - an approach taken in the ISO 9869-1 [34] standard. This 
could incorporate uncertainties from excess latent loads, stored solar 
heat gains and solar measurement errors into uncertainty budgets. How-

ever, given the current lack of evidence, these assumed uncertainties 
may be hard to establish and justify. Furthermore, links between uncer-

tainty and experimental technique, building characteristics and weather 
conditions are likely to mean that this ‘one-size fits all’ approach may 
be limited.

7.3. Relation to dynamic test methods

Dynamic methods may offer advantages over static co-heating tests, 
particularly over test length. However, many of the uncertainties de-

scribed for static co-heating tests will equally apply. In both types of 
method there are uncertainties with sensor accuracy, temperature dis-

tributions and party walls. Uncertainties related to stored heat should 
be reduced due to the dynamic approach - although some previous stud-

ies have stated the importance of preceding weather conditions before 
short-term tests [59]. The uncertainty and bias related to model identi-

fication should be estimated, for example following the methodologies 
in [6,39]. Additionally, some definitional uncertainties (e.g., moisture 
content, infiltration rate, sky losses) will remain, although they may 
show more variation given the overall shorter measurement period.

Another disadvantage associated with some of the dynamic tests is 
that an indication of the true HTC of the building is required in order to 
be able to adequately size the space heating load required to undertake 
the test. If the space heating load is not sized appropriately, then the 
10

test may be invalid.
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7.4. Relation to measurements in occupied dwellings with smart meters

In-use HTC estimates, via smart meters (sometimes known as SME-

TER measurements [46]), might allow the estimation of HTC on a far 
wider scale than dedicated co-heating tests. However, many uncertain-

ties described here will apply equally (or to an even greater degree) 
in such tests and the in-use approach may introduce further uncer-

tainties. As in-use methods offer less experimental control (e.g., due 
to occupancy) and dedicated local measurements (e.g., to reduce in-

trusiveness), it may be expected that uncertainties related to sensor 
accuracy, solar gains and temperature uniformity all increase. Addi-

tionally, definitional uncertainties over the state of the dwelling will 
remain (e.g., moisture content and latent loads) and in some cases will 
be much larger (e.g., from varying and unknown ventilation rates). Fi-

nally, given typical internal temperature distributions (e.g., affected by 
stratification and ventilation practices), heat loss through the fabric is 
weighted in a different way to the well-mixed co-heating test. For rea-

sons such as these, it is important to note that an in-use and a co-heating 
derived HTC are fundamentally different, and should not be compared.

8. Conclusion

HTC estimates via co-heating tests have provided key evidence of 
a fabric performance gap. However, there has been little research into 
the associated uncertainties. This has limited the application of the co-

heating method and leaves results to date stated without the context 
of their respective uncertainty. This paper has addressed these two is-
sues, firstly by reviewing and characterising uncertainties. Secondly, by 
devising and applying a method for estimating uncertainty to 14 tests, 
revealing typical ranges of uncertainty and significant sources of uncer-

tainty in steady-state HTC estimates.

Estimated total uncertainties ranged between 2.2-21.1 W∕K (or 4.6-

26.5%), with a mean value of 10 W∕K (9%). To put this into context, 
the average difference between measured HTC has been found to be 
60% times greater than the predicted HTC [74]. It would therefore ap-

pear that the current co-heating method may suitably distinguish under-

performing building fabrics and give a suitable estimate of the size of 
the fabric performance gap. Comparisons between different dwellings 
or retrofit improvements where the expected difference is similar to the 
expected uncertainty of the test (approx. 10 W/K) may however be dif-

ficult to quantitatively measure.

The natural variation of the HTC (due for instance to background 
air infiltration rates that may vary day-to-day because of wind velocity) 
and inaccuracy of design calculations may mean there is little benefit in 
more accurate measurements. There is likely little use in measurement 
methods that can estimate the HTC to within 2% if the true value of the 
HTC is itself varying by a greater amount or that the predicted value 
can only be known to the nearest 10%.

Results suggest that unsuitable weather conditions (e.g., too warm 
or sunny or an insufficient mix in weather), challenging buildings (e.g., 
highly glazed, heavyweight, significant party walls) and poor experi-

mental technique (e.g., non-uniform internal temperatures, low accu-

racy for external temperature measurements) can all form significant 
difficulties within given tests. Given suitable buildings are tested under 
suitable weather conditions and by experienced technicians, HTC esti-

mates through steady-state co-heating are likely to continue to provide 
a useful tool in assessing and understanding real-world building fabric 
performance.
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