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Abstract

Speech deepfakes are artificial voices generated by machine learning models. Previous lit-

erature has highlighted deepfakes as one of the biggest security threats arising from prog-

ress in artificial intelligence due to their potential for misuse. However, studies investigating

human detection capabilities are limited. We presented genuine and deepfake audio to n =

529 individuals and asked them to identify the deepfakes. We ran our experiments in

English and Mandarin to understand if language affects detection performance and deci-

sion-making rationale. We found that detection capability is unreliable. Listeners only cor-

rectly spotted the deepfakes 73% of the time, and there was no difference in detectability

between the two languages. Increasing listener awareness by providing examples of

speech deepfakes only improves results slightly. As speech synthesis algorithms improve

and become more realistic, we can expect the detection task to become harder. The diffi-

culty of detecting speech deepfakes confirms their potential for misuse and signals that

defenses against this threat are needed.

Introduction

Adversaries are already using speech deepfakes to commit fraud. In 2020, a bank manager in

Hong Kong received a phone call from someone sounding like a company director he had spo-

ken to before [1]. The purported director requested the bank manager to authorize transfers

totaling $35 million. Based on their existing relationship, the bank manager transferred

$400,000 until he realized something was wrong. The bank manager was a victim of an elabo-

rate hoax: fraudsters had used deepfake technology to clone the director’s voice. This incident

is not isolated. In 2019, the CEO of a UK-based firm was swindled by a speech deepfake of his

manager into transferring €220,000 to a Hungarian supplier [2].

Speech deepfakes are artificial voices generated by machine learning models. Due to rapid

research progress, it is possible to produce a realistic-sounding clone using only a few audio

samples [3]. This development raises the prospect of exploiting speech deepfakes for various

criminal activities. Alongside impersonation, criminals may use deepfakes for spear phishing,

propagating fake news, and bypassing biometric authentication systems [4–6].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0285333 August 2, 2023 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mai KT, Bray S, Davies T, Griffin LD

(2023) Warning: Humans cannot reliably detect

speech deepfakes. PLoS ONE 18(8): e0285333.

https://doi.org/10.1371/journal.pone.0285333

Editor: Yogan Jaya Kumar, Universiti Teknikal

Malaysia Melaka Fakulti Teknologi Maklumat dan

Komunikasi, MALAYSIA

Received: February 9, 2023

Accepted: June 30, 2023

Published: August 2, 2023

Copyright: © 2023 Mai et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The data underlying

this study are available at DOI: 10.17605/OSF.IO/

AKM2P.

Funding: KM and SB are supported by the Dawes

Centre for Future Crime (https://www.ucl.ac.uk/

future-crime/). KM is supported by EPSRC under

grant EP/R513143/1 (https://www.ukri.org/

councils/epsrc). SB is supported by EPSRC under

grant EP/S022503/1. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

https://orcid.org/0000-0001-6315-1939
https://orcid.org/0000-0002-6362-4676
https://orcid.org/0000-0001-6286-2018
https://doi.org/10.1371/journal.pone.0285333
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285333&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285333&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285333&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285333&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285333&domain=pdf&date_stamp=2023-08-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285333&domain=pdf&date_stamp=2023-08-02
https://doi.org/10.1371/journal.pone.0285333
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17605/OSF.IO/AKM2P
https://doi.org/10.17605/OSF.IO/AKM2P
https://www.ucl.ac.uk/future-crime/
https://www.ucl.ac.uk/future-crime/
https://www.ukri.org/councils/epsrc
https://www.ukri.org/councils/epsrc


Existing speech deepfake detection research focuses on developing machine learning sys-

tems in the context of voice authentication [7–9]. Comparisons beyond this biometric setting

and studies which measure human detection capabilities are sparse [10].

The state of existing research raises questions. Firstly, machine learning systems require

large amounts of data for training [11] and are hard to interpret [12]. When analyzing these

systems, it is unclear which characteristics distinguish synthesized speech from bona fide.

Therefore, knowing what humans use to identify deepfakes could provide a better understand-

ing of how black-box machine learning systems work.

Secondly, focusing on automated biometric authentication does not quantify the threat

of other potential criminal applications of speech deepfakes. Understanding the extent of

these threats is critical. Multiple studies deem other uses of speech deepfakes as more con-

cerning, such as misleading people through voice impersonations [5, 6]. Experts expect dis-

information from deepfakes to erode trust on several levels: towards individuals,

organizations, and even societies [13]. Moreover, it is estimated as much as 90% of online

content will be synthetically generated by 2026 [14], meaning it will be challenging to mod-

erate what gets produced. Therefore, understanding the risks of speech deepfakes will

enable the development of better defenses and regulations to counteract hazards before

they occur.

We seek to address these two questions by measuring how well humans distinguish bona

fide speech from synthesized speech. We ran an online experiment where individuals listened

to bona fide and fake audio clips and attempted to differentiate between them.

We randomly assigned the participants to two configurations. In the first configuration, we

presented participants with one audio clip at a time and asked them to decide if the clip was

fake. In the second configuration, we presented participants with audio clip pairs containing

the same speech (one bona fide and one synthesized) and asked them to identify the synthe-

sized audio.

We ran the experiment in English and Mandarin to understand if listeners used language-

specific attributes to detect deepfakes and to observe if deepfake detection is more manageable

in one language than another. Finally, we incorporated randomized interventions to evaluate

whether familiarizing participants with examples of speech deepfakes boosts detection

performance.

Our results suggest the listeners had limited detection capabilities, and performance is simi-

lar between languages. Additionally, familiarizing participants improved performance but

only to a small extent.

Background

Deepfake media

Deepfakes are synthetic media produced in the likeness of a person. They fall under the field of

generative artificial intelligence (AI). Generative AI is a subset of machine learning (ML) algo-

rithms that learn the patterns and characteristics of a dataset [11]. The algorithms use this

knowledge to generate synthetic content similar to the original data. Deepfakes specifically

refer to the outputs of generative AI that resemble humans and their actions.

Deepfake media occur in different modalities:

1. Images: This modality contains static faces generated using varying techniques. These tech-

niques include:

• Generation from scratch: A generative adversarial network [15] or diffusion model [16]

synthesizes a fictional identity.
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• Morphing: Blending similar-looking faces to produce an identity containing the character-

istics of the sources [17].

• Swaps: A source face replaces the target in a different image [18].

2. Video: This modality features individuals performing actions. Currently, the techniques

used to synthesize videos are similar to those used in images. Image synthesis techniques

are applied at a frame level and stitched together to form a video.

3. Speech: This modality conveys information in a manner that sounds like a genuine person’s

voice. Although audio can refer to general sound synthesis, the terms “audio”, “speech”,

and “voice” deepfakes are used interchangeably in academic literature. We refer to them as

“speech deepfakes” for consistency throughout the text.

In addition, deepfakes are either produced in the likeness of a known identity (targeted) or

do not resemble a familiar identity (untargeted). For example, we can categorize video deep-

fakes of politicians as targeted. Conversely, a generic face created from scratch and not condi-

tioned to resemble a specific individual is untargeted.

We refer the reader to Zhang (2022) [19] for further information on deepfake terminology.

As fewer works focus on speech deepfakes, we concentrate on this modality.

Synthesizing speech

Generative models are often used to synthesize speech. Speech synthesizers which use genera-

tive models follow a common framework:

1. Data collection: Several audio recordings of the speaker are collected.

2. Pre-processing: The audio recordings are converted into alternative formats to make it eas-

ier for the generative model to work with them.

3. Training: Processed audio recordings are fed to the generative model to learn the patterns

and characteristics of the data. The trained model is often called a vocoder.

The frameworks often include text-to-speech (TTS) modules to make it easier to generate

speech. The generative model also sees text transcriptions corresponding to the audio record-

ings in this setting.

We depict a visualization of this framework in Fig 1.

Fig 1. Diagram of a typical generative speech synthesis model.

https://doi.org/10.1371/journal.pone.0285333.g001
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Related work on human deepfake detection capabilities

Most deepfake detection studies which examine human performance use visual media. When

faced with deepfake content of politicians, participants rely on contextual knowledge in the

form of political literacy to identify spoofs [20, 21].

Removing such background knowledge makes the detection task more difficult. In the con-

text of images, multiple studies show humans do not perform much better than chance [22,

23]. There is no improvement when evaluating videos either [24–26]. Moreover, these studies

suggest humans are overconfident in their deepfake detection abilities [25].

Several of the above studies examine if interventions can boost detection performance.

However, the effectiveness of these interventions is debatable. Bray et al. [22] familiarized par-

ticipants by showing examples of deepfakes before the main task. The authors also drew partic-

ipants’ attention to errors often present in bogus images. Although these interventions

improved deepfake detection performance, they also increased overall skepticism as a higher

proportion of bona fide images were falsely classified. One could also note that pointing out

errors biases the participants and prevents them from independently identifying the tell-tale

characteristics of deepfakes. Köbis et al. [25] presented interventions by informing participants

about the impact of deepfakes and rewarding correct guesses. Neither intervention led to

improved performance.

In contrast, other authors found interventions derived from ML model outputs improve

detection. Tahir et al. [26] produced educational material containing indicators of bogus

images with the assistance of ML interpretability tools. The authors found detection perfor-

mance improved compared to the initial control group. However, a recent study [27] contests

the reliability of these tools, as the authors show it is possible to manipulate the output visuali-

zations. Groh et al. [24] allowed participants to amend their choices after viewing the predic-

tions of an ML model. This form of cooperation improved results significantly.

There are fewer studies that examine how well humans can detect speech deepfakes. Wat-

son et al. [28] presented eight clips to college students and asked them to decide whether the

clips were real or fake. They found that shorter clips were easier to identify. However, the sam-

ple size of their study was small and skewed towards a younger, college-educated demographic.

The ASVspoof challenge organizers ran an experiment with a larger sample size [29]. They

asked 1,145 participants to imagine they worked in a call center and decide whether the

incoming calls were spoken by humans or by an AI. However, the experiment is limited to the

speaker verification setting.

Müller et al. [30] ran a game where 378 participants competed against an ML model to

decide if an audio clip was fake. Similarly to Groh et al. [24], they found that feedback from the

ML model improved human performance. In their experiment, Müller et al. [30] found that

the difference between human and AI accuracy was about 10%. However, their study only

used English-language clips, only presented one audio clip to participants at a time, and did

not collect information about participant confidence.

We summarize the relevant literature in Table 1. We note that Barari et al. [20] mention

fake speech stimuli in their analysis. However, they used actors to create the speech instead of

generative AI. Therefore we excluded this from our analysis.

Materials and methods

Our research questions were as follows:

1. How well can humans detect speech deepfakes?

2. Are there differences in detection capabilities depending on the language?
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3. Do interventions in the form of examples and added context improve detection

performance?

Our experiments focused on human performance rather than the performance of auto-

mated detectors. Through this setup, we could quantify the threat of speech deepfakes when

humans interact with them.

Stimuli

Bona fide stimuli. We collected bona fide stimuli from two publicly available datasets.

Both datasets consist of one female speaker reading generic sentences. The datasets also

include text transcriptions of the audio. We chose such datasets to prevent participants from

using external cues for the detection task.

We used LJSpeech [37] as the English dataset. The dataset consists of a speaker reading pas-

sages from seven non-fiction books, varying between one and ten seconds in length.

We used the Chinese Standard Mandarin Speech Corpus (CSMSC) [38] as the Mandarin

dataset. The corpus used in the dataset aims to cover Mandarin tones and prosody as compre-

hensively as possible.

Deepfake stimuli. To create the deepfake stimuli, we used publicly available TTS models

trained on the two datasets [39]. In particular, we chose pre-trained VITS models [40]. VITS is

an end-to-end TTS model which combines the data pre-processing and vocoder into a single

framework.

We randomly selected 50 sentences from the validation split of the two datasets to create

the deepfakes. We used the same sentences for our bona fide stimuli. Therefore, we had 100

clips in total.

The validation split consists of samples not used for training the ML models. It is good

practice to use unseen data because it indicates how well a trained model generalizes. Conse-

quently, the resultant generated audio should contain artifacts that we would expect to hear

from ML models. These artifacts might serve as informative features for distinguishing deep-

fakes. If we used samples previously seen during training, the model could potentially mimic

the samples perfectly and would not contain representative artifacts.

Procedure

The setup for the English and Mandarin experiments was identical. We randomly assigned

participants to two configurations: unary and binary. In both configurations, we asked

Table 1. Summary of related literature measuring human capabilities to detect deepfakes.

Modality Year Author Deepfake stimuli

Image 2021 Nightingale & Farid [23] Faces generated using StyleGAN2 [31]

2022 Bray et al. [22] Faces generated using StyleGAN2

Video 2021 Barari et al. [20] Face-swap videos of politicians

2021 Groh et al. [24] Face-swap videos from the Deepfake Detection Challenge dataset [32]

2021 Köbis et al. [25] Face-swap videos from the Deepfake Detection Challenge dataset

2021 Tahir et al. [26] Face-swap videos from Celeb-DF [33], FaceForensics++ [34] and DeepFaceLab [35]

2022 Appel & Prietzel [21] Face-swap videos of politicians

Speech 2020 Wang et al. [29] Spoofed utterances generated from TTS and voice conversion systems used in ASVspoof2019

2021 Watson et al. [28] Audio clips generated using MelGAN [36]

2022 Müller et al. [30] Spoofed utterances from the ASVspoof2019 dataset [29]

https://doi.org/10.1371/journal.pone.0285333.t001
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participants to rate the confidence of their choice on a ten-point Likert scale and provide free-

form text justifications. Participants were allowed to listen to the clips as often as they liked.

We did not give feedback to the participants to inform them if their choices were correct.

Compared to the setups described in Müller et al. and Groh et al. [24, 30], the lack of feedback

creates a more realistic scenario. When encountering speech deepfakes in the wild (for exam-

ple, through fraudulent calls), humans do not know that the voices are fake. We include

screenshots of the two configurations in Fig 2.

Unary. We presented 20 randomly chosen distinct clips to each participant, each on sepa-

rate pages. Participants listened to approximately an equal number of bona fide and synthe-

sized clips, but we did not inform them about the proportion. We tasked the participants with

deciding whether the clip they heard was real or fake.

Binary. We presented 20 randomly chosen clip pairs (labeled ‘A’ and ‘B’) comprising the

same spoken sentence. Each pair contained a clip uttered by the human speaker and a clip pro-

duced by VITS. We randomized the order of the fake and real clips and asked the participants

to decide which clip was fake. We included this scenario to see if contextual information

helped detection.

Fig 2. Screenshots of the task interface.

https://doi.org/10.1371/journal.pone.0285333.g002
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Familiarization treatment. In addition to the two configurations, we randomly assigned

half of the participants to a familiarization treatment group. We included the treatment to ver-

ify the existing literature and understand if humans could be trained to detect deepfakes like

an ML model. We showed participants in the treatment group five deepfake utterances before

commencing the main detection task. We informed the participants that these examples were

synthesized and allowed them to listen to the clips multiple times. These clips were distinct

from the stimuli used in the main task.

For participants in the control group, we gave them a filler task. In this task, we asked par-

ticipants to list potential applications of synthesized speech and to provide their opinion about

whether synthesized audio will positively or negatively impact society.

Participants

We recruited participants via the Prolific platform. We filtered for participants fluent in

English and Mandarin, as fluency affects detection performance [30]. We paid participants at a

rate of £7.25 per hour. To encourage more thoughtful responses, we informed participants

they could receive a £1.00 bonus if their detection scores were in the top 50%. Overall, we

recruited 529 participants. The mean age was 28.9 years old, and 50.6% identified as male.

Table 2 contains a more detailed breakdown of the demographics by treatment group.

Ethics statement

The study was reviewed and exempted by the Department of Security and Crime Science’s eth-

ics board at University College London. All participants were notified about the purpose of the

study and were over the age of 18. Prior to participating, the participants were asked to tick a

series of checkboxes to provide informed written consent.

Benchmarking against automated deepfake detectors

To compare the performance of the human participants to automated methods, we trained

two artificial neural networks which specialized in detecting speech deepfakes. The two net-

works used an LFCC-LCNN architecture [41]. LFCC-LCNNs convert raw audio waveforms

into two-dimensional representations. They learn by seeing bona fide and deepfake samples

and are rewarded for correctly classifying a sample’s authenticity. The ASVspoof 2021 chal-

lenge used LFCC-LCNNs as baseline models for spoof detection [9]. Hence, they are a reason-

able benchmark for our experiments. For more detail about the top-performing speech

deepfake detection architectures, we refer the reader to the article summarizing ASVspoof

2021 [9].

We used two versions for each language:

Table 2. Number of participants by group.

Group English Mandarin

n Age (SD) Male (%) n Age (SD) Male (%)
Unary no familiarization 76 26.8 (8.1) 55.2 65 31.0 (10.4) 44.6

Unary familiarization 65 26.7 (7.3) 56.9 54 31.4 (8.7) 44.4

Binary no familiarization 60 27.5 (7.2) 53.3 70 31.8 (9.0) 48.8

Binary familiarization 80 27.4 (7.3) 57.5 59 29.1 (8.5) 39.6

Overall 281 27.1 (7.5) 55.8 248 30.9 (9.2) 44.5

https://doi.org/10.1371/journal.pone.0285333.t002
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1. In-domain: We trained the networks using the training split of LJSpeech and CSMSC as

bona fide samples and created deepfakes by passing the sentences of the training splits

through VITS.

2. Out-of-domain: We trained the Mandarin network with FAD [42], another Mandarin-lan-

guage dataset. We used the pre-trained ASVspoof network [43] for English-language

evaluation.

Artificial neural networks are known to perform well when evaluating against samples similar

to those seen during training. However, their performance often drops when encountering differ-

ent examples [44], even if they are in the same language. These differences can be subtle to a

human listener and include changes in the speaker’s identity or environment. Therefore, we

introduce the out-of-domain version for a fairer comparison with human performance, especially

as it is unlikely that the participants in our study recognize the LJSpeech and CSMSC identities.

Results

Overall performance

Fig 3 summarizes human performance across all of the different groups. We provide break-

downs of the classification choices in Tables 3 and 4, which aggregate the English and Manda-

rin results. We completed the analysis using the SciPy [45] and statsmodels [46] Python

packages. For further details, the Supporting information contains results per stimulus.

Participants made the correct classifications 70.35% of the time in the unary scenario. They

were better at identifying deepfakes (73% accuracy). In comparison, participants correctly

identified bona fide examples 67.78% of the time. We speculate the high number of misclassi-

fied bona fide samples is partly due to increased skepticism, as participants were aware of the

presence of deepfakes through the task briefing. This behavior aligns with observations in Bray

et al. [22].

Fig 3. Box plot summarizing human performance across the different groups.

https://doi.org/10.1371/journal.pone.0285333.g003
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Performance improved under the binary scenario. Participants correctly recognized the

deepfake audio in 85.59% of trials. However, the binary setup represents an unrealistic sce-

nario. Even if the speaker’s identity is known, reference utterances containing the same speech

as the test clip we would like to evaluate are unlikely to be available.

Measuring the effects of interventions

We follow a similar approach to Groh et al. [24] to disentangle the effects of each intervention

on performance. We transformed the correct/incorrect results into continuous values by

weighting each participant’s decision with their provided confidence scores.

The ten-point confidence scale participants completed serves as the mapping function. The

lowest score of 0 signals that the participant’s choice is a guess, so their confidence in making

the right decision corresponds to 50%. In contrast, the highest score of 9 corresponds to 100%

belief.

The resulting transformed scores depended on whether the participants made the correct

classification. For example, if the participant rated their confidence as 7, this maps to a belief

of 88%. If they make the right decision, the adjusted score is 0.88. Conversely, if they make the

wrong decision, we subtract the value from 1, resulting in an adjusted score of 0.12.

The revised scores also enable fairer comparisons with the automated deepfake detectors,

which output scores between 0 and 1 when evaluating examples. We refer to the revised scores

as accuracy scores for the remainder of the text. We also rescale the scores to percentages.

After transforming the results, we analyzed the effects of different interventions on the

accuracy scores of participants on each audio clip using linear regression. In addition to lan-

guage, familiarization and binary intervention, we analyzed the impact of the clip duration.

Table 5 outlines the results at the overall, unary and binary levels.

Reference audio helps with deepfake detection. The linear regression results indicate the

improvement gained from the binary scenario is statistically significant (p< 0.001).

Table 3. Confusion matrix for the unary group responses.

Predicted class

Real (2,442) Fake (2,678)
True class Real (2,598) 1,761 837

Fake (2,522) 681 1,841

n = 5,120.

Overall accuracy = 70.35%.

Reals correctly identified = 67.78%.

Fakes correctly identified = 73.0%.

https://doi.org/10.1371/journal.pone.0285333.t003

Table 4. Confusion matrix for the binary group responses.

Predicted class

Real Fake
True class Real - -

Fake (5,380) 775 4,605

True real class labels are not defined in this scenario as participants were asked to choose the fake clip every time.

Overall accuracy is equivalent to fakes correctly identified = 85.59%.

https://doi.org/10.1371/journal.pone.0285333.t004
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Consequently, the results suggest contextual information via reference audio is beneficial for

uncovering quirks in synthesized speech.

Training humans to detect deepfakes only helps slightly. The familiarization treatment

increases detection accuracy by 3.84% on average (p = 0.001). This effect is also present in the

unary and binary regression results, improving accuracy by 3.76% (p = 0.017) and 3.85%

(p = 0.032), respectively. However, incorporating familiarizations equates only to an accuracy

slightly above chance (52.31%) in the unary setting for the mean clip length (5.76 seconds),

ceteris paribus.

It is equally challenging to detect deepfakes in Mandarin and English. Fig 3 shows that

performance in English and Mandarin is comparable across the different treatment groups.

This observation is supported by Table 5, which shows Mandarin-speaking participants only

outperform their English counterparts by 1.79%, and this effect is not statistically significant

(p = 0.202).

Shorter speech deepfakes are not easier to identify. As our stimuli varied from 2 to 11

seconds, we included clip length in the regression to verify whether it is easier to discriminate

shorter clips. Our results suggest clip length has a negligible impact on accuracy, improving

performance by only 0.80% for each additional second. Our scatter plot (Fig 4) supports this

and shows no relationship between the two variables. These findings conflict with Watson

et al. [28], who suggest it is easier to identify shorter deepfakes.

Analyzing performance against time

In addition to analyzing the treatment effects, we examine whether the hypothesis of spending

more time on the task improves performance.

Listening to the clips more frequently does not aid detection. We recorded the number

of times participants clicked on each audio clip and compared the values to accuracy. As

shown in Fig 5, there is no relationship between the two variables (ρ = −0.05, p< 0.001).

Spending more time on the task also does not affect performance. Similar to the above

analysis, we compared the time taken to complete the entire task to the total number of clips

correctly identified. Fig 6 does not indicate a relationship between the two variables (ρ = 0.10,

Table 5. Linear regression results of interventions on confidence-scaled accuracy.

Independent variable Dependent variable: Confidence-scaled accuracy

All (SD) Unary (SD) Binary (SD)
Constant 43.742*** (1.897) 46.394*** (2.791) 71.217*** (2.530)

Mandarina 1.790 (1.404) 1.477 (1.882) 2.152 (2.118)

Familiarization 3.840*** (1.191) 3.758** (1.571) 3.854** (1.802)

Clip length 0.797*** (0.209) 0.375 (0.358) 1.168*** (0.230)

Binary intervention 29.830*** (1.186) - -

Observations 10,500 5,120 5,380

R2 0.165 0.003 0.010

Adjusted R2 0.165 0.002 0.009

F-Statistic 171.102*** 2.455* 11.794***

aDummy variable indicating which language was used in the task. 1 = Mandarin, 0 = English.

*p< 0.1.

**p< 0.05.

***p< 0.01.

https://doi.org/10.1371/journal.pone.0285333.t005
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p = 0.018), suggesting investing more time to complete the task does not improve

performance.

Participants do not get better throughout the task without explicit feedback. To under-

stand whether participants improved as they saw more examples and progressed further in the

task, we calculated the number of correct responses per question number. If so, we would

expect more correct answers in question 20 compared to question 1. Fig 7 illustrates the

Fig 4. Scatter plot showing the relationship between clip length and confidence-scaled accuracy.

https://doi.org/10.1371/journal.pone.0285333.g004

Fig 5. Scatter plot showing the relationship between the number of times played and confidence-scaled accuracy.

https://doi.org/10.1371/journal.pone.0285333.g005
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resulting histogram. The histogram shows performance is relatively stable across the questions.

This observation indicates participants do not improve throughout the task unless they have

explicit feedback, as examined by Groh et al. [24] and Müller et al. [30]. We quantitatively veri-

fied the result by conducting a one-way chi-squared hypothesis test against the uniform distri-

bution, which was not statistically significant (χ2 = 6.19, p = 0.997).

Fig 6. Scatter plot showing the relationship between minutes taken to complete and correctness scores.

https://doi.org/10.1371/journal.pone.0285333.g006

Fig 7. Histogram of correct responses across question number.

https://doi.org/10.1371/journal.pone.0285333.g007
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Comparing human performance to automated detectors

The following section compares human performance to automated deepfake detectors. For

comparability, we use commonly-reported performance metrics found in ML literature.

• Receiver operating characteristic (ROC): These plots represent discriminatory ability.

They compare true positive rates against false positive rates at different thresholds.

• The area under the receiver operating characteristic (AUROC): This score summarizes

ROCs into a single value. 50% AUROC indicates all predictions are guesses, whereas 100%

AUROC means perfect discrimination between bona fides and deepfakes in all trials.

• Equal error rate (EER): This describes the point on ROCs where the true positive and false

positive rates are equal.

Fig 8 displays the AUROC and EER scores. We include only the unary scenario in this anal-

ysis as the inference setup between humans and automated detectors is more comparable.

Both evaluate one clip at a time. We aggregated the English and Mandarin results as we

observed similar results.

Human performance is less sensitive to unknown conditions compared to automated

detectors. The no familiarization (AUROC = 73.83%) and familiarization curves

(AUROC = 75.54%) confirm humans performed better than chance. The curves also support

the linear regression result. Showing participants examples of deepfakes only had a minute

impact on performance. However, performance was quite unreliable: on average, humans

incorrectly classified clips a quarter of the time. Humans underperformed the in-domain auto-

mated detectors, which had perfect discrimination ability (AUROC = 100% for both lan-

guages). However, out-of-domain detectors often incorrectly classified bona fides as deepfakes

(AUROC = 25.31%). Based on this behavior, humans are more robust to unknown factors,

such as speaker identity.

Crowd speech deepfake detection is comparable to the top-performing automated

detectors. Per Groh et al. [24], we averaged participants’ accuracy scores per clip to calculate

the crowd-sourced responses. Like the results observed with video stimuli [24], crowd perfor-

mance is on par with the in-domain detector. However, the benefit of familiarizing partici-

pants dissipates when averaging responses. The crowd no familiarization and crowd

familiarization AUROCs are similar at 95.51% and 94.04%, respectively.

Fig 8. Receiver operator curves under the unary scenario.

https://doi.org/10.1371/journal.pone.0285333.g008
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Freeform text analysis

To understand how participants assessed the genuineness of audio clips, we analyzed their

freeform text responses. We grouped responses by language, clip authenticity, and whether

participants made the correct choice. We then created word clouds using tf-idf weightings. Tf-

idf measures the importance of a word within a document compared to a collection of docu-

ments to account for frequently appearing words [47]. Figs 9 and 10 show the English and

Mandarin word clouds.

Participants referred to the same characteristics regardless of whether they made the correct

decisions. For example, in Fig 9, participants who correctly classified bona fide utterances as

legitimate (in the top left of Fig 9) mentioned pauses, tone and intonation. However, partici-

pants who incorrectly categorized bona fide utterances as fake (top right of Fig 9) also referred

Fig 9. Word clouds containing justifications for the English-language clips.

https://doi.org/10.1371/journal.pone.0285333.g009
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to these exact attributes. We compared responses by the actual label of the clips and whether

participants made the correct response. We did not find substantial differences between these

segments. Therefore, automated detectors that incorporate these human characteristics would

produce limited improvements. We observed this activity in both English and Mandarin. They

tended to rely on intuition to make classifications, referring to naturalness (自然) and robotic

(机械) sounds. Beyond intuition, English and Mandarin participants also commonly refer-

enced pauses (停顿), intonation (语调), pronunciation (发音), and speed (速度).

Regarding differences between languages, there were more references to breathing among

the English-speaking participants. In contrast, Mandarin-speaking participants mentioned the

speaker’s cadence (节奏), pacing between words (断句), and fluency (流畅). This result may

be due to differences in timing properties between the two languages. English is stress-timed,

while Mandarin is syllable-timed [48].

Fig 10. Word clouds containing justifications for the Mandarin-language clips. Note participants for the Mandarin tasks provided justifications in both

Mandarin and English.

https://doi.org/10.1371/journal.pone.0285333.g010
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Limitations

Although our setup enabled comparison with automated detectors, it does not necessarily

reflect more realistic scenarios where a listener may encounter speech deepfakes.

Firstly, the balance of deepfakes we presented in our experiment does not reflect the pro-

portion that occurs in the wild. Participants were equally likely to encounter deepfakes as bona

fides in the task. However, AI-generated content (including the use of deepfakes for nefarious

purposes) is still rare for now. In addition, we could expect participants to be much more

attentive to the occurrence of deepfakes as we informed them about the nature of the task.

Moreover, we minimized contextual information in our stimuli. For example, we do not

examine situations where the listeners’ contextual knowledge (such as awareness of the speak-

er’s identity, emotional status, the number of parties in a conversation, or political affiliations)

may have informed their decisions. These aspects may be relevant to typical use cases where

speech deepfakes may arise, such as false news propagation [5]. Future work could look at

exploring how these characteristics influence detection.

Additionally, we asked participants in both languages to listen to utterances purporting to

originate from a single female speaker. Given that age and gender of speakers influence speech

perception [49, 50], future work could consider how varying speaker identity affects deepfake

detection performance.

To generate our deepfake stimuli, we used an older approach which is not necessarily illus-

trative of the state-of-the-art speech synthesis algorithms. Although our results indicate how

well humans can detect speech deepfakes generated with limited-computational resources,

they may not faithfully reflect performance under the most current conditions.

Discussion

Humans can detect speech deepfakes, but not consistently. They tend to rely on naturalness to

identify deepfakes regardless of language. As speech synthesis algorithms improve and become

more natural, it will become more difficult for humans to catch speech deepfakes.

Although there are some differences in the features that English and Mandarin speakers use

to detect deepfakes, the two groups share many similarities. Therefore, the threat potential of

speech deepfakes is consistent despite the language involved.

It will be easier for adversaries to generate more deepfakes as the computational barrier for

synthesizing data lowers. More deepfakes in the wild will have a knock-on effect. Adversaries

will have more opportunities to scale their operations, particularly for disinformation such as

impersonations and spear phishing [6].

Ultimately, the battle between deepfake creation and detection is an arms race [51]. How

can we defend against falling prey to deepfake trickery? Our binary scenario shows that com-

paring against reference audio is helpful if we know the speaker’s identity. However, we do not

always have this information.

Increasing awareness by showing people examples of deepfake audio has a limited effect, as

demonstrated by our familiarization results. Spending more time evaluating the clips does not

seem to help either.

To summarize, attempting to improve human detection capabilities is unrealistic. We

show that even in a controlled environment where the task is easier (participants are aware

of the presence of speech deepfakes and the deepfakes are not created using state-of-the-art

speech synthesizers), deepfake detection is not high. Our results suggest the need for auto-

mated detectors to mitigate a human listener’s weaknesses. Automated detectors’ perfor-

mance on in-domain data indicates they can pick up on subtleties that humans cannot.

However, we show they are brittle and fail to work when there are changes in the test audio’s
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environmental conditions. Given the extent of human limitations and the increasing avail-

ability of computational resources for deploying detectors, research should focus on improv-

ing these detectors. In the meantime, crowd-sourcing is a reasonable mitigation. We confirm

crowd performance is on par with the top-performing automated detectors and is not as brit-

tle. Extending fact-checking tools to include audio evaluations is one way to protect against

deepfake threats.

Supporting information

S1 Fig. Confidence-adjusted accuracy scores per clip (English, unary, no familiarization).

(TIF)

S2 Fig. Confidence-adjusted accuracy scores per clip (English, unary, familiarization).

(TIF)

S3 Fig. Confidence-adjusted accuracy scores per clip (English, binary, no familiarization).

(TIF)

S4 Fig. Confidence-adjusted accuracy scores per clip (English, binary, familiarization).

(TIF)

S5 Fig. Confidence-adjusted accuracy scores per clip (Mandarin, unary, no familiariza-

tion).

(TIF)

S6 Fig. Confidence-adjusted accuracy scores per clip (Mandarin, unary, familiarization).

(TIF)

S7 Fig. Confidence-adjusted accuracy scores per clip (Mandarin, binary, no familiariza-

tion).

(TIF)

S8 Fig. Confidence-adjusted accuracy scores per clip (Mandarin, binary, familiarization).

(TIF)
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