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Abstract: Peripheral nerve injuries are quite common and often require a surgical intervention.
However, even after surgery, patients do not often regain satisfactory sensory and motor functions.
This, in turn, results in a heavy socioeconomic burden. To some extent, neurons can regenerate
from the proximal nerve stump and try to reconnect to the distal stump. However, this regenerating
capacity is limited, and depending on the type and size of peripheral nerve injury, this process may
not lead to a positive outcome. To date, no pharmacological approach has been used to improve
nerve regeneration following repair surgery. We elected to investigate the effects of local delivery of
minocycline on nerve regeneration. This molecule has been studied in the central nervous system and
was shown to improve the outcome in many disease models. In this study, we first tested the effects
of minocycline on SCL 4.1/F7 Schwann cells in vitro and on sciatic nerve explants. We specifically
focused on the Schwann cell repair phenotype, as these cells play a central role in orchestrating nerve
regeneration. Finally, we delivered minocycline locally in two different rat models of nerve injury, a
sciatic nerve transection and a sciatic nerve autograft, demonstrating the capacity of local minocycline
treatment to improve nerve regeneration.

Keywords: nervous system; nerve regeneration; electrophysiology; CMAP; repair phenotype;
Schwann cells; fibrin; nerve repair

1. Introduction

Injuries to peripheral nerves are common, and following surgical intervention, only
50% of treated individuals regain satisfactory function [1]. This can result in life-long pain
and disabilities, and because nerve injuries disproportionally affect a younger population of
working age patients, the associated healthcare, rehabilitation, social, and unemployment
costs are very high [2,3]. Depending on the scale of nerve injury, the surgical option can
involve directly suturing the disconnected stumps (for small gaps) with the use of fibrin glue
to strengthen the repair [4,5]. Regarding longer gaps, where direct suturing would cause
excessive tension, the gold standard procedure to repair the injury is an autograft, where
nerve tissue is harvested from elsewhere in the patient and used as a bridge to connect the
stumps of the damaged nerve [2,3]. Here again, fibrin glue is very often used to strengthen
the sutures [4,5]. To some extent, neurons are able to regenerate from the proximal stump
of a repaired nerve into the distal stump. However, this regeneration is limited, takes time,
and can be unsuccessful, specifically in the context of long gap repairs [2,3]. Therefore, there
is a clear unmet clinical need for the acceleration and improvement of nerve regeneration.

In the context of nerve regeneration, no drug therapies are used routinely to pro-
mote nerve regeneration following repair surgery. Minocycline is a tetracyclic antibiotic
with bacteriostatic activity, which has been widely studied for its immunomodulatory
and anti-inflammatory effects. It has been shown that minocycline was able to prevent
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microglia proliferation (rat primary cells) upon N-methyl-D-aspartate challenge and re-
duced both interleukin-1β and nitric oxide release [6]. Interleukin-1β release was also
reduced in lipopolysaccharide-activated THP-1 cells (monocytic cell line) upon minocycline
treatment [7]. In the context of the nervous system, minocycline was able to improve
outcomes associated with central nervous system disorders in several animal models. For
instance, minocycline decreased the number of infarcts in models of ischaemic stroke;
decreased axonal, neuronal, and oligodendrocyte loss in models of spinal cord injury; and
was able to decrease lesion size and improve functional outcomes in models of traumatic
brain injury [8,9]. The effects of minocycline were explored mostly in the central nervous
system, whereas in the peripheral nervous system, there have been relatively few stud-
ies, and in those, it was administered systemically and led to mixed effects in terms of
regeneration [10,11].

Peripheral nerve regeneration is a complex process requiring precise and timely
crosstalk between several cell types. Schwann cells represent a key player during the whole
duration of the process. Following injury, these cells undergo profound changes, adopting
a repair phenotype able to guide and support axon growth and encourage regeneration [12].
Macrophages are another important cell type in nerve regeneration as they initiate the
repair process in response to hypoxia and orchestrate the migration of endothelial cells and
Schwann cells [13,14].

In this study, we first evaluated the effects of minocycline on Schwann cells and,
more specifically, on markers associated with the repair phenotype. Using RT-qPCR and
immunofluorescence, we found that several key markers of the repair phenotype were
increased following minocycline treatment in vitro. We then used two in vivo rat models of
nerve regeneration to study the impact of minocycline: sciatic nerve transection with direct
repair and sciatic nerve autograft. These represent the two main scenarios encountered
in the clinic to repair nerve transections, and in each case, the minocycline was delivered
locally using fibrin gel. This route of administration represents a viable option [15,16] as it
does not add time to the surgery, will deliver the drug locally (avoiding potential systemic
side effects), delivers a specific quantity of a drug, and targets the specific region where
the drug is needed. We assessed markers associated with nerve regeneration in the sciatic
and common peroneal nerves of these animals and conducted an assessment of the motor
function of the gastrocnemius and tibialis anterior muscles using electrophysiology.

2. Results
2.1. Minocycline Decreases RAW 264.7 Cell Activation

Minocycline effects have been evaluated in vitro on several different cell types using a
wide range of concentrations [17–19]. Myeloid-derived cells, such as microglia, monocytes,
and macrophages, have been one of the most studied in this context. In order to select
specific doses of minocycline for further in vitro experiments, we evaluated the effects of
three commonly used concentrations shown to decrease the expression of factors in myeloid
cell activation [7,20–22]. RAW 264.7 cells (mouse macrophage-like cell line) were treated
for 24 h with minocycline at 1, 20, or 40 µM or with the vehicle. The mRNA expression of
Ccl2 and Cxcl2 was significantly decreased when treated with minocycline at 20 and 40 µM,
while Ptgs2 and Ccl3 expression was significantly decreased at the three concentrations used
when compared with vehicle-treated cells (Figure S1). We also found that Tnf expression
was not altered. Finally, the levels of CCL2 in the media were significantly decreased with
minocycline treatment at 20 and 40 µM, mirroring the variations observed for Ccl2 mRNA
expression (Figure S1). Given these results, we elected to use 1 and 40 µM for further
in vitro testing.

2.2. Minocycline Alters the Expression of Key Factors Associated with Schwann Cell Repair
Phenotype in SCL 4.1/F7 Cells

Schwann cells represent a key cell type in the context of nerve regeneration. Indeed,
they orchestrate complex and time-specific processes that are central to successful regen-
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eration. One unique specific feature of Schwann cells is their ability to switch toward a
“repair” phenotype that can promote axonal regeneration, neuron survival, and target
reinnervation [23]. Therefore, we wanted to assess the effects of minocycline on factors
associated with Schwann cell repair phenotype. SCL 4.1/F7 cells (rat Schwann cell line)
were treated for 24 h with minocycline at 1 or 40 µM or with the vehicle. The expression of
Ncam1, Sox2, and Robo1 was significantly increased at 1 µM compared with vehicle-treated
cells (by 10%, 7%, and 14%, respectively) (Figure 1A).
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increase at 1 µM and 32% increase at 40 µM). Finally, we found no change in the expres-
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Figure 1. Minocycline induces the expression of key factors associated with Schwann cell repair
phenotype in SCL 4.1/F7 cells. (A) mRNA expression of Ccl2, Lif, Gdnf, Ncam1, Sox2, and Robo1
in SCL 4.1/F7 Schwann cells treated with minocycline (1, 40 µM) or vehicle (veh.) for 24 h assessed
by RT-qPCR. The expression of the control group (veh.) was set at 100. N = 3 in quadruplicate.
(B) Mean intensity of ROBO1, N-cadherin, and c-Jun quantified by immunofluorescence in SCL
4.1/F7 Schwann cells treated with minocycline (1, 40 µM) or vehicle (veh.) for 24 h. N = 3 with five
technical replicates. Scale bar = 50 µm. Data are mean ± sem. One-way ANOVA with Dunnett’s post
hoc test or Kruskal–Wallis with Dunn’s post hoc test depending on the normality of the distribution.
* p < 0.05, ** p < 0.01, and *** p < 0.001.

Interestingly, the expression of Lif, a cytokine found to be beneficial in the context
of nerve regeneration [24], was increased at the two minocycline concentrations used
(27% increase at 1 µM and 32% increase at 40 µM). Finally, we found no change in the
expression of Ccl2 and Gdnf (Figure 1A). To further characterise minocycline-induced
changes in Schwann cell repair phenotype markers, we also used immunofluorescence
to detect changes in protein levels. We found that the mean intensity of ROBO1 was
significantly increased at both 1 and 40 µM compared with vehicle-treated cells (16% and
15%, respectively) (Figure 1B). N-cadherin was significantly increased at 1 µM (by 17%),
while c-Jun mean intensity was increased at both concentrations (20% increase for both)
(Figure 1B).

2.3. Minocycline Alters the Expression of Key Factors Associated with Schwann Cell Repair
Phenotype in Sciatic Nerve Explants

In order to explore further the effects of minocycline on the peripheral nervous system,
we elected to use rat sciatic nerve explants. The use of primary tissue provides an effective
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way to study key aspects of pathophysiological processes encountered in vivo since the
three-dimensional organisation of the tissue and cell–cell interactions is maintained. This
ex vivo setup is characterised by the degeneration of axons within the tissue due to the
separation of the nerve from the neuronal cell bodies located in the dorsal root ganglia or
spinal cord, thus replicating one of the central aspects encountered in nerve injury. Rat
sciatic nerve explants were treated for 24 h with minocycline at 1 or 40 µM or with the
vehicle. The expression of Ccl2 displayed a trend towards a decrease at 1 µM and 40 µM
compared with vehicle-treated sciatic nerve explants (by 28% for both) (Figure 2A).
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Figure 2. Minocycline induces the expression of key factors associated with Schwann cell repair
phenotype in sciatic nerve explants. (A) mRNA expression of Ccl2, Lif, and Robo1 in sciatic nerve
explants treated with minocycline (1, 40 µM) or vehicle (veh.) for 24 h assessed by RT-qPCR. The
expression of the control group (veh.) was set at 100. N = 5. (B) Mean intensity of ROBO1, N-cadherin,
and c-Jun quantified by immunofluorescence in sciatic nerve explants treated with minocycline (1,
40 µM) or vehicle (veh.) for 24 h. N = 6–8. Scale bar = 50 µm. Data are mean ± sem. One-way
ANOVA with Dunnett’s post hoc test or Kruskal–Wallis with Dunn’s post hoc test depending on the
normality of the distribution. * p < 0.05, *** p < 0.001, and **** p < 0.0001 or indicated p-value.

The expression of Lif was only significantly increased at 40 µM compared with vehicle-
treated sciatic nerve explants (by 44%). Finally, Robo1 expression was significantly in-
creased at 1 µM and 40 µM compared with vehicle-treated sciatic nerve explants (by 40%
and 44%, respectively) (Figure 2A). To further assess the effects of minocycline on key
markers of Schwann cell repair phenotype, we used immunofluorescence to detect changes
in protein levels. We found that the mean intensity of ROBO1 was significantly increased
at both 1 and 40 µM compared with vehicle-treated sciatic nerve explants (87% and 79%,
respectively) (Figure 2B). We found no changes in N-cadherin mean intensity. Finally,
c-Jun mean intensity was increased significantly at both concentrations (81% and 82%,
respectively) (Figure 2B).
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2.4. Minocycline Locally Delivered in Fibrin Gel Improves Nerve Regeneration following Sciatic
Nerve Transection and Direct Repair

Minocycline has been studied for its immunomodulatory and anti-inflammatory ef-
fects, and we showed that it decreased RAW 264.7 cell activation (Figure S1). It is also
able to increase key markers associated with Schwann cell repair phenotype (Figure 1A,B).
Therefore, it seemed that minocycline could be beneficial in the context of nerve regener-
ation. Seven days after sciatic nerve transection and direct repair, rats were treated with
vehicle (water) or 100 µg of minocycline delivered at the repair site in 20 µL of fibrin gel
(Figure S2A). This dose was selected based on animal models of central nervous system
pathologies where minocycline was administered locally [25–27]. Thirty-five days after the
nerve transection, sciatic and common peroneal nerves were harvested. Immunofluores-
cence assessment showed no significant difference in axon counts between vehicle-treated
or minocycline-treated animals (Figure 3A,C).

However, growth-associated protein-43 (GAP43), a protein expressed at high levels
during regeneration of the peripheral nervous system [28], was significantly increased
in both sciatic and common peroneal nerves in animals locally treated with minocycline
(Figure 3A,C). Finally, SOX10, an essential Schwann cell transcription factor involved in
PNS myelination [29,30], displayed no change in the sciatic nerve or the common peroneal
nerve (Figure 3B,D).

To assess regeneration, we studied functional recovery thirty-five days post transec-
tion (so, twenty-eight days after local treatment) using electrophysiology. We recorded
compound muscle action potential (CMAP) in the gastrocnemius muscle (Figure 4A) and
the tibialis anterior muscle (Figure 4B).

In the gastrocnemius muscle, both amplitude and peak area under the curve (AUC)
were significantly higher in minocycline-treated animals compared with vehicle-treated
animals (2.9-fold and 3.3-fold, respectively) (Figure 4A). For latencies, minocycline-treated
animals displayed lower values than vehicle-treated animals (1.67-fold decrease in take-off
latency and 1.43-fold decrease in peak latency) (Figure 4A). In the tibialis anterior muscle,
the CMAP traces did not show any improvement in minocycline-treated animals compared
to the vehicle (Figure 4B). These results indicate an improvement in motor function at
thirty-five days in the gastrocnemius muscle but not in the tibialis anterior muscle for
animals treated with minocycline.

2.5. Minocycline Locally Delivered in Fibrin Gel Improves Nerve Regeneration in Sciatic
Nerve Autograft

Using a different model in which a 1 cm sciatic nerve autograft was used to repair a
transection, minocycline (or vehicle) was applied at the two suture sites in 10 µL of fibrin gel
per site (SI2B). The total dose of minocycline locally delivered was 100 µg (50 µg per suture
site). An assessment of neurofilament-positive neurites in the common peroneal nerve
after 52 days showed no difference in axon counts between vehicle-treated or minocycline-
treated animals (Figure 5A).
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neurofilament medium and heavy chains in rats that underwent nerve transection and repair, treated
7 days later with fibrin gel and water (vehicle) or fibrin gel and minocycline (Mino) in (A,B) the
sciatic nerve, and (C,D) the common peroneal nerve 35 days after surgery (or 28 days after treat-
ment). The mean immunofluorescence intensities of GAP43 (A,C), SOX10, and MBP (B,D) were
quantified in (A,B) the sciatic nerve and (C,D) the common peroneal nerve. Scale bar = 20 µm. Data
are mean ± sem. N = 5–7 per group. Two-tailed unpaired t-test or a Mann–Whitney test were used
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Figure 4. Minocycline locally delivered in fibrin gel improves compound muscle action potential
parameters after sciatic nerve transection. Thirty-five days after surgery (so, twenty-eight days
after treatment), electrophysiology was performed and compound muscle action potentials were
recorded in (A) the gastrocnemius muscle and (B) the tibialis anterior muscle. Four parameters were
quantified from the CMAP traces: amplitude, peak AUC, take-off latency, and peak latency. Data are
mean ± sem. N = 5–7 per group. One-way ANOVA with Šídák’s post hoc test was used. * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001.

Gap43 mean intensity displayed a trend (p = 0.0778) toward an increase in the minocy-
cline group compared to vehicle-treated animals (Figure 5A). Interestingly, animals that
underwent the autograft procedure and were treated with minocycline displayed higher
mean intensity for SOX10 in the common peroneal compared to vehicle-treated animals
(Figure 5B). For the gastrocnemius muscle, the amplitude and the peak AUC were signifi-
cantly higher in minocycline-treated animals compared with the vehicle group (1.9-fold
increase in amplitude and 1.79-fold increase in peak AUC) (Figure 6A).

Minocycline-treated animals had lower latency values than vehicle-treated animals
(1.34-fold decrease in take-off latency and 1.39-fold decrease in peak latency) (Figure 6A).
Tibialis anterior muscle CMAP recordings showed an effect of the surgical procedure (sciatic
nerve autograft) but no effect of the minocycline treatment compared with the vehicle-
treated group for three parameters (amplitude, peak AUC, and peak latency) (Figure 6B),
with take-off latency lower in the minocycline group compared with vehicle-treated animals
(Figure 6B).
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Int. J. Mol. Sci. 2023, 24, 12085 9 of 17

3. Discussion

Minocycline has been widely studied for its immunomodulatory and anti-inflammatory
effects in vitro and in vivo and has shown beneficial effects in several animal models of
CNS pathologies [8,9]. Its effects on the peripheral nervous system remained mostly un-
explored. We set out to study minocycline’s effects in the context of peripheral nerve
regeneration and its impact on Schwann cells, as they are a central player in the different
processes occurring during nerve regeneration. One central feature of Schwann cells is their
ability to switch toward a repair phenotype following nerve injury. We showed in vitro
that minocycline upregulated several markers associated with the Schwann cell repair
phenotype. For instance, N-cadherin is an important cell adhesion protein involved in
Schwann cell–Schwann cell and Schwann cell–axon interactions and is necessary for axon
guidance [31]. c-Jun is considered one of the main transcription factors responsible for the
activation of the repair program in Schwann cells [32–34]. This master regulator is able to
control the reprogramming of Schwann cells, supporting neuron survival, and promoting
axonal regeneration [32,33]. In addition to the effects reported here on Schwann cell repair
phenotype, minocycline was shown previously to protect Schwann cells from oxygen or
glucose deprivation damage in vitro at 10 and 100 µM [11].

ROBO1 is a receptor expressed by Schwann cells that is another marker of the repair
phenotype. One of its ligands, SLIT3, has been shown to be expressed in white adipose
tissue macrophages in mice and increased in M2 macrophages. The authors further show
that SLIT3 is able to increase thermogenesis through the activation of the sympathetic
nervous system in white adipose tissue [35]. This put forth the importance of the crosstalk
between macrophages and the peripheral nervous system in tissue homeostasis in the white
adipose tissue and could also play a role in the context of nerve regeneration. Immune
cell–Schwann cell interaction is an important aspect of the nerve regeneration process,
although its full extent and the precise timing necessary for a good outcome still remain
to be fully understood. The use of single-cell transcriptomic analysis in the context of
nerve injury is unravelling novel cell subtypes and cell interactions, revealing potential
new pharmacological targets to improve nerve regeneration [36].

In vivo, minocycline has been studied previously in peripheral nerves, mostly in
the context of neuropathic pain and hyperalgesia, and was administered intrathecally,
intramuscularly, or systemically [25,37,38]. In our two in vivo experiments, we showed
that the local delivery of minocycline led to improved nerve regeneration and functional
recovery. We elected to use local delivery in fibrin, as this approach is feasible in the clinic
during nerve repair surgery and is an effective way to avoid potential systemic side effects.
The approach of repurposing an approved drug and delivering it using a material already
used in nerve surgery clearly presents great potential for clinical translation. One previous
study that evaluated the systemic delivery of minocycline for seven days in a sciatic nerve
gap repair model found that this treatment was detrimental to nerve regeneration due to
its effects on macrophage recruitment and activation [10]. These deleterious effects could
be explained by the route of administration and the dose regimen since minocycline was
administered systemically by daily intra-peritoneal injection, which could lead to profound
changes in the activation of circulating immune cells, such as monocytes or T-cells. The
same group observed the detrimental effects of minocycline in a second study using a
sciatic nerve gap repair but found that systemic minocycline was able to improve the axon
count in the distal nerve when the graft used for the repair consisted of a mix of muscle
grafts and Schwann cells [11].

We showed in the two in vivo experiments (sciatic nerve transection direct repair and
autograft repair) that nerve regeneration was improved. In the common peroneal nerve, we
found an increase in GAP43. This protein has been shown to increase the growth potential
of injured neurons, and its expression was associated with the regeneration capacity of
reimplanted spinal nerves in a brachial plexus root avulsion model. Additionally, its
increase has been correlated with functional recovery [39–41]. In our experimental setting,
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the GAP43 increase could indicate an increase in sprouting, and this should be investigated
in future work.

In the sciatic nerve autograft experiment, minocycline local delivery led to an in-
crease in SOX10 in the common peroneal nerve. This transcription factor is necessary
for Schwann cell homeostasis and for myelination maintenance in the intact peripheral
nervous system [42]. In the context of nerve regeneration, SOX10 activates the transcription
of genes involved in myelination and regulates Schwann cell proliferation [29,30]. For
both nerve regeneration models, minocycline local delivery led to improved functional
outcomes and specifically for four parameters extracted from the gastrocnemius muscle
CMAP traces. Of course, it is difficult to directly compare the two animal models used
(different types of injury, different times of treatment, different duration) but it is interesting
to note that SOX10 was increased in the common peroneal nerve of rats that underwent
the sciatic nerve autograft (fifty-two days after surgery and treatment) and not in the rats
that underwent the sciatic nerve transection (thirty-five days after surgery, twenty-eight
days after treatment). The SOX10 increase measured in the common peroneal nerve of
minocycline-treated autografted animals could be ascribed to a higher production of the
protein and/or an increase in Schwann cell proliferation.

This increase was associated with an improvement in the take-off latency in the auto-
graft experiment for rats treated with minocycline. This was associated with improvements
in motor functions as measured with CMAP parameters. CMAP is considered the most
suitable parameter to assess functional recovery, as it reflects motor axon regeneration and
muscle reinnervation [43]. As highlighted by the SOX10 increase and CMAP improve-
ments, processes involved in remyelination could be involved in the beneficial effects of
minocycline, even though we observed no significant change in MBP. It is worth noting
that we assessed these markers at one location in the sciatic nerve and in the common
peroneal nerve. They could display variation at other sites of the nerve. Indeed, nerve
regeneration and remyelination are two dynamic processes that depend on the type and
location of injury. Future studies should explore these factors in multiple locations and at a
variety of time points to better identify minocycline’s effects on remyelination.

Minocycline treatment led to an increase of the CMAP amplitude by 322% compared
with the vehicle-treated rats in the transection model and to an increase of 96% in the
autograft model. Other pharmacological treatments have been tested in order to improve
nerve regeneration but did not reach that level of benefit in terms of functional improvement.
For instance, in a sciatic nerve crush model, several PPARγ ligands were tested and, after
twenty-eight days, the best observed effect on gastrocnemius CMAP amplitude was 75%
compared to vehicle-treated rats [44].

We showed that minocycline is able to promote markers associated with the repair
phenotype in Schwann cells in vitro. However, this compound is also able to act on many
other cell types, including immune cells. Therefore, the beneficial effects we observed
in nerve regeneration and functional recovery cannot simply be ascribed to Schwann
cells alone. Interestingly, some of the repair phenotype markers that were increased by
minocycline in vitro on SCL 4.1/F7 Schwann cells are also known to be important in the
crosstalk between Schwann cells and immune cells. Indeed, SOX2 has been found to be able
to control monocyte/macrophage recruitment in the nerve in an experiment using mice
overexpressing SOX2 [45]. The authors also found a trend toward an increase of T-cells
in the same animals. It would be interesting to investigate the effects of minocycline on
T-cells and macrophages in both in vivo models (sciatic nerve transection and sciatic nerve
autograft). However, in this study, we focused on potential changes in motor function and,
therefore, we used later time points (thirty-five and fifty-two days) after surgery, whereas
to assess minocycline effects on T-cells and macrophages, it would be more appropriate to
use earlier time points.

The exact mechanism(s) mediating minocycline’s effects remain to be fully identified
but it is clear from the present study that it has some potential to improve functional
outcomes when administered locally following nerve transection and repair.
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In this study, we showed that minocycline in vitro was able to change the expression of
markers associated with the phenotype of Schwann cells toward their repair program. We
also showed, using two in vivo models, that local delivery of minocycline using fibrin gel
was able to significantly improve nerve regeneration and functional outcome. These results
represent a very interesting avenue to explore as there is currently no pharmacological
approach available to improve nerve regeneration, and the delivery approach used would
be easily translated to the clinic. In the future, it would be interesting to explore the
mechanisms and cell types involved in the beneficial effects observed and to fine-tune the
dose delivered locally.

4. Materials and Methods
4.1. Cell Culture

RAW 264.7 cells (mouse macrophage-like cell line) and SCL 4.1/F7 cells (rat Schwann
cell line) were cultured using high-glucose DMEM medium (Sigma, Gillingham, UK. ref:
D6429) supplemented with 10% heat-inactivated FBS (Gibco, Paisley, UK. ref: 10500056)
and antibiotics (100 U/mL penicillin and 100 µg/mL streptomycin (Sigma, Gillingham, UK.
ref: P0781)). All cell cultures and subsequent experiments were maintained under standard
conditions of 37 ◦C in a humidified 5% CO2 incubator).

Cells were seeded in 24-well plates or 384-well plates, and after 12 h, media was
changed and fresh media containing vehicle (water) or minocycline (Sigma, Gillingham,
UK. ref M9511) at 1 µM, 20 µM, or 40 µM was added for 24 h. Cells were subsequently
used for RT-qPCR or immunofluorescence and RAW 264.7 media was used for ELISA.

4.2. Sciatic Nerve Explants

Sciatic nerves were harvested from Sprague Dawley rats and cultured using high-
glucose DMEM medium (Sigma, Gillingham, UK. ref: D6429) supplemented with 10%
heat-inactivated FBS (Gibco, Paisley, UK. ref: 10500056) and antibiotics (100 U/mL penicillin
and 100 µg/mL streptomycin (Sigma, Gillingham, UK. ref: P0781)). They were maintained
under standard conditions of 37 ◦C in a humidified 5% CO2 incubator) during the duration
of the experiments.

Sciatic nerves were cut into 0.5 cm segments (for immunofluorescence experiments) or
1 cm segments (for PCR experiments) upon harvest. After 12 h, the media was changed
and fresh media containing vehicle (water) or minocycline (Sigma, Gillingham, UK. ref
M9511) at 1 µM or 40 µM was added for 24 h. Tissues were subsequently used for RT-qPCR
or immunofluorescence.

4.3. RT-qPCR

Total RNA was extracted using the RNeasy Plus Mini Kit (Qiagen, Manchester, UK.
ref: 74136) according to the manufacturer’s instructions. cDNA was synthesised using the
GoScript Reverse Transcriptase kit (Promega, Southampton, UK. ref: A2791). RT-qPCR was
performed with a QuantStudio 3 instrument (Applied Biosystems, Waltham, MA, USA)
and analysed with QuantStudio Design and Analysis Software v1.5.1(Applied Biosystems).
PCR reactions were run in duplicate using the Power SYBR Green PCR Master Mix (Thermo,
Paisley, UK. ref: 4368708). The amplification products were analysed by performing a
melting curve at the end of the PCR. Data were normalised to the mRNA expression of
three reference genes: hypoxanthine guanine phosphoribosyl transferase (Hprt1), ribosomal
protein L19 (Rpl19), and TATA box binding protein (Tbp) for RAW 264.7 cells (mouse) as
well as beta-2 microglobulin (B2m), hypoxanthine phosphoribosyltransferase 1 (Hprt1), and
ribosomal protein S18 (Rps18) for SCL 4.1/F7 cells (rat). The expression of the reference
genes was not affected by the experimental conditions. Primer sequences for RT-qPCR
(mouse and rat) are listed in Table 1.
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Table 1. Primer sequence.

Species Name Symbol Forward Primer (5′-3′) Reverse Primer (5′-3′)

Mouse chemokine (C-C motif) ligand 2 Ccl2 GTCCCAAAGAAGCTGTAGTTTTTG ATGTATGTCTGGACCCATTCC

Mouse chemokine (C-C motif) ligand 3 Ccl3 AGATTCCACGCCAATTCATC CTCAAGCCCCTGCTCTACAC

Mouse chemokine (C-X-C motif) ligand 2 Cxcl2 TCAACGGAAGAACCAAAGAG AATAAGTGAACTCTCAGACAGC

Mouse hypoxanthine guanine
phosphoribosyl transferase Hprt1 GACTGAAGAGCTACTGTAATG AGATCATCTCCACCAATAAC

Mouse prostaglandin-endoperoxide synthase 2 Ptgs2 TGACCCCCAAGGCTCAAATAT TGAACCCAGGTCCTCGCTTA

Mouse ribosomal protein L19 Rpl19 TGACCTGGATGAGAAGGATGAG CTGTGATACATATGGCGGTCAATC

Mouse TATA box binding protein Tbp CCCTTCACCAATGACTCCTATG ACAGCCAAGATTCACGGTAG

Mouse tumor necrosis factor Tnf CTACTGAACTTCGGGGTGATC TGAGTGTGAGGGTCTGGGC

Rat beta-2 microglobulin B2m CGTGATCTTTCTGGTGCTTG GGTGGAACTGAGACACGTAG

Rat C-C motif chemokine ligand 2 Ccl2 GCAAGATGATCCCAATGAGTC GCTTGGTGACAAATACTACAGC

Rat glial cell derived neurotrophic factor Gdnf GCTGACCAGTGACTCCAATATG TGCCGCCGCTTGTTTATC

Rat hypoxanthine
phosphoribosyltransferase 1 Hprt1 ACCTCTCGAAGTGTTGGATAC GATTCAAATCCCTGAAGTGCTC

Rat LIF, interleukin 6 family cytokine Lif CAAGAGTCAACTGGCTCAAC GCATGGAAAGGTGGGAAATC

Rat neural cell adhesion molecule 1 Ncam1 GTGAGGTCTTTGCCTACC CCAGATAGCTCGCAGATG

Rat roundabout guidance receptor 1 Robo1 CTGGACGGAAGACAAGTCAC GGTGGAAGGTCTCGCTTTG

Rat ribosomal protein S18 Rps18 CTTCGCTATCACTGCCATTAAG GTGAGGTCAATGTCTGCTTTC

Rat SRY-box transcription factor 2 Sox2 GCAGTACAACTCCATGACCAG GCGAGTAGGACATGCTGTAG
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4.4. CCL2 Quantification by ELISA

CCL2 levels were quantified in RAW 264.7 cell media after 24 h incubation with vehicle
(water) or minocycline (Sigma, Gillingham, UK. ref M9511) at 1 µM, 20 µM, or 40 µM. A
sandwich-type ELISA kit (Invitrogen, Paisley, UK. ref: 88-7391-88) was used according to
the manufacturer’s instructions.

4.5. Nerve Regeneration Models

All surgical procedures were performed in accordance with the UK Animals (Scientific
Procedures) Act (1986) and the European Communities Council Directives (86/609/EEC),
and approved by the UCL Animal Welfare and Ethics Review Board (AWERB). Adult male
Wistar rats (250–300 g) (Charles River, Wilmington, MA, USA) were housed in a controlled
environment (12 h day–light cycle, controlled temperature, and humidity) with free access
to food and water. Upon arrival, they were randomised into groups and acclimated
for a week. Anaesthesia was performed using isoflurane (5% for induction and 3% for
maintenance) and the animals were monitored throughout the procedure to ensure depth
of anaesthesia. Under a microscope (Zeiss CL 1500 ECO, Carl Zeiss GmbH, Cambridge,
UK), the sciatic nerve was released from the surrounding tissue.

For the first in vivo experiment, a sciatic nerve transection was performed at day 0
and the nerve stumps were sutured back using two 10/0 sutures. Seven days after the
transection, a fibrin gel (Tisseel 2 mL, Baxter, Thetford, UK) containing water (vehicle, n = 5)
or minocycline (n = 7) was applied directly to the repaired transection site. Technically,
10 µL of thrombin was applied to the surface of the sciatic nerve and 20 µL of a 1:1 mix
of either water/fibrinogen or minocycline/fibrinogen was then applied and left to set for
5 min. An amount of 100 µg of minocycline was administered based on doses typically used
in the central nervous system [25–27]. Thirty-five days after the sciatic nerve transection,
electrophysiology recordings were performed, and ipsilateral sciatic nerves and common
peroneal nerves were harvested.

For the second in vivo experiment, a sciatic nerve autograft (1 cm) was performed
on day 0. A segment of 1 cm was excised and reversed before being sutured back (two
10/0 sutures per site). Fibrin gel (Tisseel 2 mL, Baxter) containing water (vehicle, n = 5)
or minocycline (n = 6) was applied directly to the two sutured sites. Technically, 5 µL of
thrombin was applied to each suture site and 10 µL of a 1:1 mix of either water/fibrinogen
or minocycline/fibrinogen was then applied and left to set for 5 min. An amount of 100 µg
of minocycline was administered per sciatic nerve or 50 µg per suture site. Fifty-two days
after the autograft, electrophysiology recordings were performed, and ipsilateral sciatic
nerves and common peroneal nerves were harvested.

4.6. Electrophysiology Recordings

Electrophysiological tests were performed to assess muscle reinnervation 35 days
post-transection for the first experiment and 52 days post-autograft for the second ex-
periment. Animals were maintained under terminal anaesthesia on a heated operating
table. Motor nerve stimulation and CMAP recordings were performed using a Dantec®

Keypoint® Focus EMG/NCS/EP System (Natus Keypoint, Bicester, UK., ref 9033A07) and
Synergy Electrodiagnostic Software v22.3.0.21 (Natus neuro 2019, Bicester, UK) in both ipsi-
and contra-lateral sides. The stimulating electrode (using a bipolar stimulation constant
voltage configuration) was positioned 0.2 cm proximal from the sciatic nerve transection
(transection model) or 0.2 cm proximal from the first (most proximal) sciatic nerve transec-
tion (autograft model), and a recording electrode was placed into the gastrocnemius muscle
or the tibialis anterior muscle. The grounding electrode was positioned in the rat’s tail
and a reference electrode was placed above the hip bone. The stimulation threshold was
determined by increasing the stimulus amplitude in 0.1 V steps until both a supra-maximal
muscle action potential was recorded and a significant twitch of the animal’s hind paw
was observed. The compound muscle action potential (CMAP) of the tibialis anterior and
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gastrocnemius muscles was recorded. The amplitude, peak AUC, take-off latency, and peak
latency were measured.

4.7. Immunofluorescence

SCL 4.1/F7 cells were cultured in a 384-well plate and used after 24 h of incubation in
media containing minocycline 1 µM or 40 µM or vehicle (water). Cells were fixed for 16 h in
a buffered solution of 4% formaldehyde (Sigma-Aldrich, ref: 1004969011) and washed with
PBS. Primary antibodies: ROBO1 (1/200, Abcam, Cambridge, UK. ref: Ab7279), NCAD
(1/200, Abcam ab18203), and c-Jun (1/300 Cell Signaling, London, UK. ref 9165) were
incubated for 24 h at 4 ◦C. Cells were washed three times in PBS and incubated for 24 h at
4 ◦C with the relevant secondary antibodies and Hoechst 33342 (Thermo, Ref H3570): Goat
anti-Rabbit 549 (1/300, DyLight DI-1549) and Goat anti-Mouse 488 (Alexa Fluor + A32723).
Then, 384-well plates were scanned on an Opera Phenix (Perkin Elmer, Beaconsfield, UK)
and analysed using Columbus image analysis software v 2.9.1 (Perkin Elmer).

Sciatic nerves and common peroneal nerves were harvested and fixed in 4% PFA for
24 h, transferred in sucrose solutions (15% then 30%) for cryoprotection, and embedded
in OCT and frozen. Cryosections (10 µm) were cut with a cryostat (Thermo Scientific
HM525). Serial cutting was performed, resulting in five nerve slices per slide, and a total
of five slides were used. For the first experiment (transection with direct repair), sciatic
nerves were cryosectioned (10 µm) 0.7 cm distal from the transection site and the common
peroneal nerves at their muscle insertion. For the second experiment (autograft), the
common peroneal nerves were cryosectioned (10 µm) at their muscle insertion. Primary
antibodies: GAP-43 (1/300, Millipore, Gillingham, UK. ref AB5220), Neurofilament 488-
conjugated (1/500, Biolegend 835604), c-Jun (1/200, Cell Signaling 9165S), SOX10 (1/200,
R&D Systems MAB2864), and MBP (1/2000, Invitrogen PA1-10008) were incubated for
24 h at 4 ◦C. Tissues were washed three times in PBS and incubated for 24 h at 4 ◦C with
the relevant secondary antibodies (1/300) and Hoechst 33342 (Thermo, Ref H3570): Goat
anti-Rabbit 647 (Alexa Fluor + A32733), Goat anti-Rabbit 555 (Alexa Fluor + A32732), Goat
anti-Mouse 488 (Alexa Fluor + A32723), and Goat anti-Chicken 647 (Alexa Fluor + A32933).
Omission of primary or secondary antibodies was used as a control. Slides were scanned on
a NanoZoomer S60 Digital slide scanner (Hamamatsu, Japan). For each marker, the average
of the five nerve slices per slide was quantified. Axon count (neurofilament) was measured
using Volocity software v6.5.1 (PerkinElmer, Beaconsfield, UK). The remaining markers
were quantified using Fiji ImageJ [46]. The nerve section was selected and the intensity of
all pixels was measured and averaged to obtain the mean intensity for each marker.

4.8. Statistical Analysis

All data are presented as mean ± SEM. Statistical analysis was performed using
GraphPad Prism version 9.0. The Kolmogorov–Smirnov test was used to assess the nor-
mality of the distribution. A two-tailed unpaired t-test or a Mann–Whitney test was used
for comparing the two groups. A one-way ANOVA with Dunnett’s post hoc or a Kruskal–
Wallis with Dunn’s post hoc test was used except for the electrophysiology results, where a
one-way ANOVA with Šídák’s post hoc test was used. * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001, and a trend was suggested when p < 0.1 and the exact p-value was
displayed on the graph.
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