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Abstract

This thesis consists of three chapters that investigate how economic agents ac-

quire information and learn from the information. I use theoretical models to un-

derstand information acquisition and learning. Chapter 1 studies how decision-

makers acquire information when they compete for a first-mover advantage. I

show that the first-mover advantage gives the decision-makers incentives to pre-

empt. In equilibrium, decision-makers create strategic uncertainties on when

they stop acquiring information and taking an action. Chapter 2 studies a sin-

gle decision-maker’s search and learning problem in which the signals that can

be obtained are binary. I show that the decision maker’s optimal strategy de-

pends on her time risk attitude and her patience level. Chapter 3 investigates

the question of whether a designer can learn how a decision-maker learns from

information by observing the signals she receives and the actions she takes. It

studies the probability of the designer learning the decision-maker’s prior and

characterises the optimal payoff structure that maximises this probability.
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Introduction

This thesis consists of three chapters. The theme of this thesis is how decision-

makers acquire information and learn from the information. I use theoreti-

cal models to understand the information acquisition problem facing economic

agents, including firms, corporations and individuals.

In Chapter 1, I study how decision-makers acquire information when they

compete for a first-mover advantage. This chapter uses a dynamic information

acquisition model with two players to understand the tradeoff between taking

the correct action and preemption. The model applies to a range of settings.

These include market entry where the decision to enter a new market is not im-

mediately observable, research and development (R&D) races where the decision

to develop new technology is private, and priority races in research where pub-

lishing new findings takes time. The strategic component in this model comes

from the payoff externality generated by the first-mover advantage. The player’s

payoff from taking the irreversible action depends on both her belief about the

state and her belief about her opponent’s action. The equilibria have different

qualitative features depending on the prior beliefs. The main result shows for

different priors what types of equilibria exist. When players have sufficiently

uncertain priors, both players acquire information in equilibrium. The equi-

librium strategies consist of two stages: an information acquisition stage and

a randomisation stage. At the information acquisition stage, the player only

stops and takes an action when a breakthrough or breakdown occurs. If the

player observes a breakthrough, she takes the risky action, and if she observes a

breakdown, she takes the safe action. When there is no breakthrough or break-

down, the player continues to acquire information. After a fixed period of time

with no breakthrough or breakdown, the player transitions to the randomisation

stage where she not only stops after observing a breakthrough or breakdown

but also stops and takes the risky action at each time at a positive rate. The

existence of the random stopping equilibrium is significantly different from the

single decision-maker case.

17



In Chapter 2, I study a single decision-maker’s search and learning problem.

I ask the following question: when an agent has to learn a realisation of the

random variable, when she can only ask questions with yes or no answers, and

if she can ask one question each time, what is the optimal learning strategy? I

show that the optimal learning strategy depends on the agent’s time risk attitude

and how patient the agent is. Only two learning strategies can be optimal: the

linear search or the binary search. Linear search is a sequence of questions that

allows the agent to learn immediately but only with a positive probability. She

may learn it today, tomorrow, or the day after tomorrow. It is risky in terms of

the timing of learning the realisation of the random variable. Binary search is a

sequence of questions that allows the agent to learn on a predetermined day, but

not earlier than that. It is safe in terms of the timing of learning the realisation of

the random variable. All other learning strategies are sub-optimal. If the agent

is time risk averse, or sufficiently patient, she prefers binary search that allows

her to learn safely on a predetermined day. If the agent is time risk seeking and

impatient, she prefers linear search that allows her to learn immediately.

In Chapter 3, I investigate the following question: by observing what a

decision-maker sees and what they do, is it possible that a third party could

learn how this decision-maker learns from the information they received? An

example is the experimental economists designing experiments to detect how

participants process information and form beliefs. In this chapter, I investigate

this question in the following situation. Suppose it is common knowledge that the

decision-maker updates her beliefs using the Bayes rule but the prior is unknown,

I investigate whether it is possible for the designer to learn the decision-maker’s

prior belief by observing the signals she received and the actions she took. I

show in this chapter that it is not always the case that the designer can learn

the decision-maker’s prior belief.

18



19



Chapter 1

Private Information

Acquisition and Preemption: a

Strategic Wald Problem

1 Introduction

Information helps decision-makers take better actions but information acquisi-

tion often takes time. When decision-makers compete for a first-mover advan-

tage, there is tension between acquiring information and preemption. This paper

uses a dynamic information acquisition model with two players to understand

the tradeoff between taking the correct action and preemption.

The model of dynamic information acquisition studied has an unknown

payoff-relevant state that is either high or low and is constant over time. At

each time, players can choose among three things: to take an irreversible risky

action, to take an irreversible safe action, or to delay the action and pay a cost

to acquire information about the state. The safe action guarantees the player a

payoff of zero in both states. The risky action is better than the safe action only

in the high state. Furthermore, there is always a first-mover premium associated

with the risky action. The second player to take the risky action does not get the

first-mover premium but still gets a positive payoff in the high state. The player

only observes her own signals but not the opponent’s signal or actions. The con-

tribution of this paper is to investigate the equilibria of the dynamic information

acquisition model where the actions taken and the information acquisition are

both private.

The model applies to a range of settings. These include: market entry

where the decision to enter a new market is not immediately observable, research
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and development (R&D) races where the decision to develop new technology is

private, and priority races in research where publishing new findings takes time.

In the case of market entry, the first firm to enter a new market captures

a higher market share, but before entry, they need to investigate whether the

demand in the market is high or low. This investigation takes time and the

preparation for entering a new market is not immediately observable. If the

firm observes a competing firm’s entry, it is too late to reverse their own entry.

The delay in observing the competitor’s action makes entering a new market

essentially a private action.

The R&D of new technologies is often competitive as the first firm to develop

the new technology gets more exposure and a higher market share. Whether and

when to invest in developing a technology is risky. Before investing in developing

this technology, firms can collect information about its feasibility. The research

progress, the research results and the decision on investing in developing this

technology may not be observed by competitors.

The frontier of academic research often attracts attention from multiple

research groups. The first research group to publish their discoveries receives

most credit. Scientific discoveries are often made independently 1 and their

competitors are often invisible. A research group may work on a project privately

for decades. It also takes time for the research group to report and publish their

result. If the result is insignificant, it is often not reported.2 As a result, it is

difficult for a research group to closely observe other groups’ findings or their

progress. A research group’s research progress and their decisions on reporting

a result are frequently private.

Information in this paper is modelled as stochastic conclusive evidence. If

the state is high and the player acquires information, a breakthrough occurs at

a positive Poisson rate. If the state is low, a breakdown occurs at a different

Poisson rate. The evidence is conclusive and revealing. I also assume no news is

good news so players become more optimistic if no arrival occurs. In the market

entry example, information acquisition can take the form of market research. A

breakdown can be a discovery of an incumbent who has gained a large amount of

market share. A breakthrough can be a market survey result that confirms the

high demand in the market. In the R&D example, a breakdown can take the form

1See Merton (1957). Hill & Stein (2020) finds that the scientific priority race is not a
‘winner-takes-all’ type of competition. Although the losers of a priority race get published in
the top journals with a smaller probability and receive fewer citations, the negative effect of
losing is in general moderate. There is a first-mover advantage but it is still better to be the
second than to remain silent.

2See Akcigit & Liu (2015) and Bobtcheff et al. (2021).
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of a fatal flaw that disproves the feasibility of the technology, and a breakthrough

can take the form of an experimental success that proves its feasibility. In the

research priority race example, a breakdown can be a negative test result that

disproves the hypothesis the researcher wants to test and a breakthrough can be

a positive result that verifies the hypothesis.

Results The strategic component in this model comes from the payoff exter-

nality generated by the first-mover advantage. The player’s payoff from taking

the irreversible action depends on both her belief about the state and the belief

about her opponent’s action. The equilibria have different qualitative features

depending on the prior beliefs. There exist multiple equilibria when the players

have sufficiently uncertain prior beliefs. In this case, information acquisition is

a strategic complement. In contrast, when players have pessimistic prior beliefs,

information acquisition can also be a strategic substitute. I focus on discussing

symmetric equilibria.

When players have sufficiently uncertain priors, both players acquire infor-

mation in equilibrium. The equilibrium strategies consist of two stages: an

information acquisition stage and a randomisation stage. At the information ac-

quisition stage, the player only stops and takes an action when a breakthrough

or breakdown occurs. If the player observes a breakthrough, she takes the risky

action, and if she observes a breakdown, she takes the safe action. When there

is no breakthrough or breakdown, the player continues to acquire information.

After a fixed period of time with no breakthrough or breakdown, the player

transitions to the randomisation stage where she not only stops after observing

a breakthrough or breakdown but also stops and takes the risky action at each

time at a positive rate.3 This strategy is referred to as a random stopping strat-

egy. The time at which the player transitions from the information acquisition

stage to the randomisation stage is not unique. The strategic complementarity

of information acquisition can explain the multiplicity of the equilibria: When

the player is sufficiently uncertain about the state, the value associated with

acquiring information is high. If the player was not facing an opponent, the

gain from acquiring information is strictly higher than the cost. If the player

is facing an opponent, there is an endogenous cost of being preempted. When

the opponent transitions to the randomisation stage, the cost associated with

acquiring information becomes higher. The overall information cost jumps up.

3Consider the case that the player acquires information for a short time interval. At the
end of this time interval, she takes the risky action if she observes a breakthrough and takes
the safe action if she observes a breakdown. Otherwise, she stops and takes the risky action
with some positive probability.
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In equilibrium, this jump motivates the player to match this transition. This

strategic complementarity of information acquisition gives rise to the multiplicity

of equilibria for sufficiently uncertain priors.

In contrast, when the prior belief is more pessimistic, information acquisition

can also act as a strategic substitute. For these priors, in equilibrium, the players

mix between two strategies: they use the random stopping strategy or take the

safe action immediately with positive probabilities. Compared to the previous

case, the players are more reluctant to acquire information at time zero. In

this case, the probability of observing a breakthrough is lower. In addition,

when there is no breakthrough or breakdown, the player acquires information

for a longer duration before stopping and taking the risky action. For these

reasons, the expected information cost is higher. Therefore, the value associated

with taking the risky action must be high enough to make it beneficial to acquire

information. When the opponent, with positive probability, takes the safe action

immediately, the player expects a higher payoff from the risky action because

the first-mover premium is secured. In this way, the players are incentivised to

acquire info for pessimistic priors. Information acquisition here is a strategic

substitute. The player is more willing to acquire information if their opponent

does not.

The existence of the random stopping equilibrium is significantly different

from the single decision maker case. In the single decision maker case, there

cannot exist a random stopping strategy. The only optimal strategy is a deter-

ministic cutoff strategy: to acquire information until the belief drifts to a cutoff

and then take the safe or risky action depending on the belief. In the case anal-

ysed here, due to the first-mover advantage, any deterministic stopping strategy

creates a preemption motive and hence is never optimal.

This paper connects the literature on preemption games and the dynamic

information acquisition model. For a large range of prior beliefs, including both

extreme prior beliefs and intermediate prior beliefs, there exists a no-learning

equilibrium where players take an immediate action without acquiring informa-

tion. For sufficiently pessimistic prior beliefs, the players take an immediate

safe action and for sufficiently optimistic priors, the players take an immediate

risky action. Furthermore, for intermediate prior beliefs, the players randomise

between the safe action and risky action immediately without acquiring informa-

tion. The existence of this no-learning equilibrium for intermediate prior beliefs

is a result of the strong preemption motive. Players undercut the time at which

the other takes the risky action until there is no room for further preemption.

However, the players are not optimistic enough to take the risky action with
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probability one. With a positive probability of taking the safe action, the player

secures a zero payoff. At the same time, since taking the risky action immediately

increases the opponent’s cost from being preempted, information acquisition is

deterred.

I discuss how vanishing information cost and the intensity of competition

affect the players’ equilibrium strategies. In the single decision-maker case, when

the information cost decreases, she acquires information for a larger set of beliefs.

When information cost vanishes, she always acquires information.4 This is not

the case when the player faces an opponent. A smaller information cost leads to

more information acquisition, but does not completely suppress the no-learning

equilibrium. The interval of prior beliefs where the players acquire information

expands, but this interval is bounded away from one. Hence, for sufficiently op-

timistic prior beliefs, even for zero information cost, the no-learning equilibrium

still exists. This is because when the players acquire information, in addition

to the exogenous cost, they also face the endogenous information cost from be-

ing preempted. For sufficiently optimistic prior beliefs, the player believes the

state is more likely to be high and hence it is also very likely that the opponent

may take the risky action early. This endogenous information cost from poten-

tially being preempted does not vanish with the exogenous cost being zero and

prevents information acquisition in equilibrium.

I model the intensity of competition as the size of the first-mover premium.

When the first-mover premium increases, competition becomes more intense, and

the range of prior beliefs where the players acquire information shrinks. This

implies that competition for the first-mover premium suppresses information ac-

quisition. In addition, in the equilibrium where the players acquire information,

at the randomisation stage, the players stop acquiring information and take the

risky action at a higher rate.

There are two technical difficulties when solving for the equilibrium. First,

a player’s strategy is not Markov in their belief about the state. A player’s belief

about the opponent’s action is also important because of the payoff externalities.

Her decision at each time depends on both her current belief about the state and

her belief about whether the opponent has taken the risky action. Second, the

player’s expected payoff from taking the risky action at each time may not be

continuous and differentiable everywhere. It depends on their opponent’s strat-

egy. I find the equilibrium given each prior by fixing the opponent’s strategy

and then solving for the player’s best responses. Given the opponent’s strategy,

the player’s problem can be written as a Hamilton–Jacobi–Bellman (HJB) equa-

4This is because of the no time discounting assumption.
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tion. I construct a candidate function that satisfies the HJB equation for all

points of differentiability. Because of the potential discontinuity in the player’s

payoff from taking the risky action, the candidate function that solves the HJB

equation may not be continuous and differentiable everywhere. To solve these

problems, I show that the player’s strategies induce continuous and differentiable

expected utility from taking the risky action in any equilibrium where the play-

ers acquire information. Therefore, the potential discontinuity is not a problem

on the equilibrium path. Since the candidate value function may have a kink,5

I show that the candidate function is a viscosity solution that satisfies the HJB

equation.

Related literature This paper is related to the literature studying strategic

experimentation. The model setup is related to the bandit problem (see Bolton

& Harris (1999), Keller et al. (2005), Keller & Rady (2010), Hörner & Skrzypacz

(2017) and Ozdenoren et al. (2021)), the classical framework studying R&D

races, but is different in the following aspects. In the bandit problem with the

safe and the risky arms, pulling the safe arm is similar to taking the safe action in

this model, while pulling the risky arm is similar to acquiring information. The

payoff generated by the risky arm depends on the nature of the risky arm, which

is similar to the state in this model. The difference is that in the bandit problem,

the player pulling the risky arm gets information about the arm from the payoff

generated by the arm. A high payoff from the risky arm indicates a good arm. In

other words, the payoff is the information. In contrast, in my model, I separate

the information and the payoff from an action. The breakthroughs, breakdowns,

or the lack thereof, only contain information about the state. If the players want

to use the information, they need to take an action. Acquiring information itself

does not give the player any payoff. Instead, it incurs a positive information cost.

Acquiring information about the technology is modelled as a costly activity that

contains information about the feasibility of the technology, but does not give

the firm a direct return. The firm gets a return only if they take action using

the information generated.

Besides the differences in the model setup, there are two other differences.

First, strategic experimentation literature investigates the free-rider problem

when information is a public good. This is mainly due to the observability of the

actions as well as sometimes the signals themselves. In my model, information

is private and information externality does not exist. There is no freeriding.

5The player chooses between the risky and safe action when she stops acquiring information.
The optimal action switching from the safe to the risky action induces a kink.
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Second, there is no exploration-exploitation tradeoff in my model because the

players only take the action once and it is irreversible. The players must stop

acquiring information and take the risky action in order to exploit the outcome

generated by the risky arm.

This paper is related to the literature on preemption games. R&D races

and market entry are often studied and modelled as preemption games with

complete information. This originated from Reinganum (1981) and Fudenberg

& Tirole (1985). There is a growing literature studying preemption games with

learning aspects including Hopenhayn & Squintani (2011), Akcigit & Liu (2015),

Bobtcheff et al. (2021) and Shahanaghi (2022). In preemption games, there is

a first-mover advantage in the final payoff and players make strategic decisions

on when to end the game. In the present paper, I explore the interplay between

preemption and learning in a model with private information and private ac-

tions. By preempting the opponent and taking the risky action early, the player

can get the first-mover premium, but she gives up the chance to learn more

about the state. The private action assumption distinguishes this paper from

the aforementioned papers by shutting down the information spillover generated

by observing the opponent’s action. The player is only aware of their oppo-

nent’s existence but does not have any additional information regarding their

opponent’s action and information.

This paper is related to the literature investigating dynamic information

acquisition. A single DM’s dynamic information acquisition problem has been

studied intensively since Wald (1945, 1947). The recent literature studies both

drift-diffusion models (see Fudenberg et al. (2018) and Ke & Villas-Boas (2019))

and Poisson models (see Nikandrova & Pancs (2018), Che & Mierendorff (2019),

and Mayskaya (2020)). My model adopts the Poisson signal structure and more

importantly, considers the strategic interaction between players. The main dif-

ference is that instead of having the cost of information completely exogenous,

it is now endogenous which depends on the opponent’s strategy.

Another relevant strand of literature studies static information acquisition

before a game ( see Hellwig & Veldkamp (2009), Yang (2015), Han & Sangiorgi

(2018) and Denti (2019) ). Those papers discuss information acquisition before a

coordination game. When the players play a game with strategic complements,

information choices exhibit strategic complementarity as well. In my model, in-

formation has the features of a strategic complement but could also be a strategic

substitute.

A distinct but related group of literature is about the equivalence between

static and dynamic information acquisition. Hébert & Woodford (2019) stud-
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ies a dynamic rational inattention model and shows that the belief dynamics

generated can resemble either diffusion processes or processes with large jumps.

Morris & Strack (2019) studies what kind of static models with costly informa-

tion acquisition has a sequential sampling foundation. In my model, because of

the preemption feature, dynamic information acquisition is intrinsic as a player’s

payoff depends on the order that they act.

The remainder of the paper is organised as follows. In Section 2, I introduce

the model. Section 3 uses a simple two-period model to illustrate the main

tradeoff. In Section 4, I analyse the equilibrium and present the main result. In

Section 5, I discuss how information cost and the intensity of competition affect

the equilibrium strategy and in Section 6, I discuss two extensions: the case with

more than two players and the case with observable actions.

2 The Model

2.1 Model Setup

There are two players i ∈ {1, 2}. At the beginning of the game, an unknown,

fixed, payoff-relevant state ω ∈ {H,L} is drawn. At any time t ∈ [0,∞), each

player can take an irreversible action x ∈ {S(afe), R(isky)}, or delay and acquire

information about the state. The irreversible action gives the player an one-off

payoff at the moment she takes the action. Action S yields a payoff which is

normalised to be 0. Action R’s payoff depends on the state and whether the

player is the first or second to take R. In state ω, the first player to take R gets

uω ∈ R and the second gets uω − △̄ω. If the players take R simultaneously, the

payoff is uω − △
ω
. At each time, if the player delays her action and acquires

information, she incurs a positive information flow cost c per unit of time. I

assume no time discounting. Payoffs satisfy the following two assumptions.

Assumption 1.1. △̄ω > △
ω
> 0 for ω ∈ {H,L}.

Assumption 1.1 says that first R taker gets a higher payoff than the second

R taker in both states. If the players take R simultaneously, the payoff is in

between.

Assumption 1.2. uL < 0 < uH − △̄H .

Assumption 1.2 says that R yields a higher payoff than S in state H and

a lower payoff in state L. Furthermore, being the second to take R in state H

is still better than taking S. Players’ incentive to be the first is increasing in

the value of △̄H . The difference between the first and second R taker payoff
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describes the intensity of the competition. Assumption 1.2 describes a gentle

competition in the sense that being the second to take R in state H is not too

bad. This assumption is dropped in Section 5.2, where the competition is more

intense as the second R taker gets a lower payoff than taking S.

Before taking the irreversible action, players have access to costly informa-

tion about the state. Information is modelled using Poisson signals. If a player

acquires information for a short time period dt > 0, then, in state H (L, resp),

she receives an H-state (L-state, resp) revealing signal with rate adt (bdt, resp).

Player i’s belief pit is the probability that the state is H. I assume the players

have a common prior p0 and that they observe neither the opponent’s action

nor their signals. At each time t, players update their beliefs using Bayes’ rule.

When a player acquires information, her belief jumps to 0 after receiving an L-

state revealing signal and jumps to 1 after receiving an H-state revealing signal.

In the absence of the revealing signal, player i’s belief evolves according to

dpit
dt

= (b− a)pit(1− pit). (1.1)

In the following part of the paper, I assume b > a > 0. In the absence of a

revealing signal, the player’s belief drifts up. This is the ‘no news is good news’

environment.

2.2 Strategies and Equilibrium

If a player receives a revealing signal, it is optimal to stop acquiring the signal

and take R or S regardless of the opponent’s behaviour. Therefore, it is sufficient

to describe players’ strategy conditional on no arrival of a revealing signal. A

pure strategy (defined below) specifies the time, T i, at which the player stops

and which action, xi, they take in the absence of the revealing signals.

Definition 1.1. Player i’s pure strategy si is defined as
(
T i, xi

)
∈ R+×{R,S}.

6

A mixed strategy (defined below) specifies the probability that the player

stops before time t conditional on no revealing signal.

Definition 1.2. Player i’s mixed strategy γi is defined as two non-decreasing

measurable functions
(
ρi, σi

)
where ρi : R+ → [0, 1] and σi : R+ → [0, 1] sat-

isfying ρi (t) + σi (t) ≤ 1 for ∀t ∈ R+. ρi is the probability that player i stops

and takes R before or at time t conditional on no revealing signal. σi is the

6The notation R+ denotes the set of non-negative real numbers.
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probability that player i stops and takes S before or at time t conditional on no

revealing signal.

Before defining the equilibrium, I first write down a player’s expected payoff.

Player i’s expected payoff from taking action x at time t in state ω, Eγj
[uxω | ω, t] ,

depends on player j’s strategy γj . The randomness of the payoff from taking

R comes from both player j’s strategy and the randomness of the signal. For

example, the opponent using a pure strategy (0, R) induces degenerate condi-

tional distributions at each time t such that player i’s action-R payoff in state ω

is uω − △̄ω with probability one. Let

U i,γj

x (t) := Eω|tEγj
[uxω | ω, t]

be player i’s expected payoff from taking action x at time t, where the expectation

Eω|t is taken over the distribution of the state given player i’s time t belief. Then,

player i’s payoff from taking action xi at time T i is

T i∫
0

πt

(
pitaEγj [

uRH | H, t
]
− c
)
dt+ πT iU

i,γj

xi (t) (1.2)

where πt = p0e
−at + (1− p0) e

−bt is the probability of no revealing signal up to

time t. Let U i,γj
(t) := maxxi U

i,γj

xi (t) be player i’s payoff associated with taking

the optimal irreversible action xi at time t. The following defines the perfect

Bayesian equilibrium in pure strategies. The perfect Bayesian equilibrium in

mixed strategies can be defined in a similar manner.

Definition 1.3. A perfect Bayesian equilibrium in pure strategies is a strategy

profile
(
si, s−i

)
and beliefs

((
pit
)
t∈[0,T i]

,
(
p−i
t

)
t∈[0,T−i]

)
such that for i ∈ {1, 2},

1. xi ∈ argmaxx̃i U
i,s−i

x̃i

(
T i
)
;

2. T i ∈ argmaxT̃ i

∫ T̃ i

0 πt

(
pitaEs−i [

uRH | H, t
]
− c
)
dt+ πT̃ iU i,s−i

(
T̃ i
)
;

3. The belief pit evolves according to (1.1).

I seek symmetric equilibria in both pure and mixed strategies. In the fol-

lowing discussion, the superscript i representing the player is ignored.

3 An Illustrative Example

In this section, I use a simple two-period model to illustrate the tradeoff between

information acquisition and preemption. I show how players’ learning motives
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and preemption motives depend on the opponent’s strategy and the prior. In

equilibrium, mixed strategies create endogenous randomnesses that either deter

learning or prevent the opponent from preemption.

At time t = 0, players can choose to acquire a signal at cost c > 0 or to

take one of the actions. At time t = 1, players have to take one of the actions.

If a player acquires a signal, in state H (L, resp), a revealing signal arrives

with probability a (b, resp), and the belief p1 jumps to 1 (0, resp). If she does

not receive the revealing signal, then, her belief is updated to p1
1−p1

= 1−a
1−b

p0
1−p0

.

Acquiring a signal at time 0 allows the player to learn the state and hence take

the ‘correct’ action (R in state H and S in state L). This gives the player the

‘learning motive’. Not acquiring a signal, however, secures the player the first

prize. This gives the player the ‘preemption motive’.

The learning motive is stronger when the prior is in the intermediate range

and when the opponent takes S at time 0. When the prior is in the interme-

diate range, the player is uncertain and hence has stronger incentives to learn.

When the opponent takes S at time 0, the player is the single decision maker in

this game. The payoff associated with taking the correct action is the highest

and hence the value associated with information is higher at each prior. The

preemption motive is stronger when the opponent acquires a signal at time 0.

This is because when the opponent acquires a signal, by taking R at time 0, the

player can secure herself the first R taker payoff, while acquiring a signal at time

0 decreases the probability of being the first R taker and hence decreases her

expected payoff from taking R. The information becomes less valuable. When

the opponent takes R at time 0, the player’s incentive to preempt is less strong.

It is then optimal for the player to acquire a signal for a larger range of priors.

This is because she cannot preempt her opponent only to match their action.

This matching reduces the payoff from acting at time 0 and correspondingly

increases the payoff of waiting.

Figure 1.1 plots her payoffs associated with taking immediate actions and

acquiring a signal: Panel (a) is the player’s payoffs when the opponent takes S at

time 0, (b) is when the opponent takes R at time 0 and (c) is when the opponent

acquires a signal at time 0. For the opponent’s different strategies, qualitatively,

the player’s best responses have similar properties: to take an action at time 0

when the prior belief is extreme and to acquire a signal when the prior belief

is in the intermediate range. The difference is the range of the priors at which

her best response is to acquire a signal. This range of priors is largest when the

opponent takes S at time 0 and is smallest when the opponent acquires a signal.

Next, I briefly discuss the possible equilibria: the equilibrium where players
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Figure 1.1: The player’s payoffs given opponent’s different strategies
Notes: This graph is drawn given the following parameter values: uH = 1,uL = −1,
△̄ω = 0.7, △

ω
= 0.5, a = 0.6, b = 0.8, c = 0.025. In all three panels, the red line

represents the player’s payoff from taking R at time 0, the blue line represents the
player’s payoff from acquiring a signal at time 0, and the yellow line represents the
player’s payoff from taking S at time 0.

preempt R, the equilibrium where players acquire a signal with positive proba-

bility, and the equilibrium where players randomise between two actions without

acquiring a signal.

When the prior is sufficiently high, the preemption motive dominates and

hence there is unravelling. The symmetric equilibrium is such that both players

take immediate R at time 0 without acquiring any signal. The weak learning mo-

tive and the strong preemption motive work in the same direction which pushes

the players to take R immediately. For intermediate priors, there exists an asym-

metric equilibrium where one player acquires a signal and the opponent takes R

at time 0. In symmetric equilibrium, the players randomise over these two roles.

This is referred to as a random stopping strategy : the player randomises between

stopping (to take R) at time 0 and time 1. By using this strategy, the player

creates an endogenous uncertainty that prevents the opponent from preempting.

When a player acquires a signal with probability one, her opponent has incen-

tives to preempt and it is easy for them to do so. But when a player randomises,

not only the value associated with preemption is reduced, it is also harder for her

opponent to preempt because of the endogenous randomness. For some interme-

diate priors, there exists another symmetric equilibrium where players randomise

between two immediate actions without acquiring any signal. This kind of ran-

domisation deters learning. For those intermediate priors, players are uncertain

about the state. By simply randomising between R and S at time 0, the player

‘hedges’ against the uncertainty without paying extra information cost and at

the same time, reduces her opponent’s value associated with learning. 7 When

7The player taking R at time 0 with a positive probability reduces her opponent’s expected
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this value is sufficiently low, the opponent’s learning is deterred.

This two-period example shows the most important tradeoff in the model:

the incentive to learn and the fear of being preempted. However, it can only

discuss whether or not the players acquire information, but not how much infor-

mation they get. To understand the optimal quantity of information the players

acquire before taking an action, the dynamic model with multiple periods is of

interest. Next, I analyse the dynamic model introduced in Section 2.

4 Equilibrium Analysis

4.1 Single Decision-maker Benchmark

Before getting into the detail of the game, as a benchmark, I first consider the

model with one single decision maker (DM). This single DM model is a well-

studied sequential sampling model due to Wald (1945, 1947) where the DM

chooses an optimal stopping time based on the samples she has observed.

The optimal stopping rule depends on the cost of information and the belief.

If the cost of information is too high, then, it is optimal to take an immediate

action based on her prior. In this case, learning about the unknown state does

not give the DM sufficiently high benefit to compensate for the high cost. When

the cost is sufficiently small, it is optimal to acquire information for intermediate

beliefs and to take an immediate action for extreme beliefs. The DM’s optimal

policy at each time t only depends on the current belief pt but not time t itself.

This is because all the past information is summarised by the belief at time t

and the information cost in the past is sunk. The DM acquires information if

the marginal cost c is smaller than the marginal benefit. The marginal benefit

is higher when the DM is uncertain about the state. Hence, it is optimal to

take S if the belief is sufficiently small, to acquire information if the belief is

in an intermediate range, and to take R if the belief is sufficiently big. This is

summarised in the following proposition.

Proposition 1.1. There exist cutoffs p < p̄ and c̄ such that when c ≤ c̄, given

belief p, the DM’s optimal policy is to take S if p ≤ p; to acquire information if

p < p < p̄; and to take R if p ≥ p̄.

In the single DM case the optimal strategy is deterministic: the cutoff where

the DM stops acquiring information is a constant and is uniquely pinned down

by the parameter values. When she stops at the cutoff, the optimal action is R

payoff from taking R at time 1.
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because she is convinced that the state is more likely to be H. When the DM

uses the optimal strategy and acquires information, then she only makes mistakes

in the low state. She correctly takes R in high state with probability one and

incorrectly takes R in the low state with a positive probability. This is because

when acquiring information, she either receives a revealing signal and then stops

or she acquires information until the belief drifts up to the upperbound p̄. In the

high state the DM takes the correct action R in both events. In the low state,

she takes the incorrect risky action if she stops at the upperbound p̄.

4.2 Properties of Equilibrium

Now I turn to the model with two players. I establish the properties of the

equilibrium strategy. I explain why there are no jumps in the player’s equilibrium

strategy at all t > 0. If there is a jump in the player’s strategy, it only happens

at t = 0. This property is driven by preemption and the unobservability of

actions.

Lemma 1.1. In equilibrium, ρ (t), the probability that the player stops and takes

R before or at time t conditional on no revealing signal, is continuous at all t > 0.

In the absence of the revealing signal, the player does not take R with pos-

itive probability mass at any time t > 0. This implies that the single DM’s

deterministic optimal strategy is not part of the equilibrium in the two-player

game. The reason is twofold. First, the jump at any t > 0 in the opponent’s

strategy gives the player an opportunity to preempt and hence a profitable de-

viation. If the opponent takes R at some τ > 0 with a positive probability,

then, the player is betteroff stopping at τ − dt where dt > 0 is infinitesimal. At

time τ −dt, if the player continues acquiring information for dt longer, she gains

nothing but loses the probability of being the first R taker. Second, the private

action and the private breakdown give rise to winner’s curse. It is more likely

for the player to be the first R taker in state L than in state H because the

opponent might have received the breakdown and dropped out. In other words,

it is more likely to ‘win’ in state L. If the opponent takes R at some τ > 0 with

a positive probability, then, conditional on no revealing signal and ‘winning’, the

value associated with taking R at time τ has a downward jump. It is then not

a best response for the player to take R at time τ .

In equilibrium, ρ can have a jump at t = 0. This means that in the absence

of the revealing signal, the player takes R with positive probability mass only

at time zero. This is a result of preemption. The unravelling comes from the
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player undercutting the time of the opponent taking R until time zero at which

there is no more room for preemption.

4.3 Equilibrium Strategies

This section introduces five strategies that appear in equilibrium.

The Immediate Action Strategy The Immediate R (Immediate S, resp)

Strategy is the pure strategy (0, R) ((0, S), resp) where the player does not

acquire information and takes R (S, resp) at time 0.

The Immediate Coin Flip Strategy This is a strategy where the player

does not acquire information. She randomly takes R and S at time zero. The

following is the formal definition. The Immediate Coin Flip Strategy is a mixed

strategy
(
ρIM , σIM

)
where ρIM (t) = ρIM (0) ∈ (0, 1) for ∀t > 0, σIM (t) =

σIM (0) ∈ (0, 1) for ∀t > 0, and ρIM (0) + σIM (0) = 1.

The Random Stopping Strategy This is a strategy where the player ac-

quires information for a period of time and then stops with a positive rate at

each time. The action associated with stopping is R. The following is the defi-

nition. The Random Stopping Strategy is a mixed strategy
(
ρRS , σRS

)
such that

ρRS (·) , the probability of taking R in the absence of the revealing signal, weakly

increases and σRS , the probability of taking S in the absence of the revealing

signal, equals zero for all t ≥ 0. The first element ρRS (·) satisfies ρRS (0) = 0 and

ρRS (t) = 1 for t ≥ T̄RS where T̄RS > 0. When using this strategy, conditional

on arriving at time t 8 , the player stops and takes action R with rate
dρj(t)

dt

1−ρj(t)
.

She only stops and takes action S after observing a breakdown.

The Random Existing Strategy This is a strategy where the player mixes

between the Immediate S Strategy and the Random Stopping Strategy at time 0.

The following is the definition. The Random Existing Strategy is a mixed strategy(
ρML, σML

)
such that ρML (·) weakly increases and σML (t) = β ∈ (0, 1) for ∀t.

The probability that the player stops and takes R before time t (i.e. ρML (·) )

satisfies ρML (0) = 0 and ρML (t) = 1− β for t ≥ T̄ML where T̄ML > 0.

8That is, the player receives no revealing signal and the player’s strategy does not prescribe
stopping.
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4.4 Main Results

The theorem shows for different priors what types of equilibria exist. Let
pM

1−pM
:=

−(uL−△
L
)

uH−△
H

, pL

1−pL
:= −uL

uH
and p̃

1−p̃ := −buL−c
a△̄H+c

be three prior cutoffs.

Both pM and pL are positive as uL is negative. A sufficiently small information

cost c guarantees that pM < p̃

Theorem 1.1. When b < 2a and c is sufficiently small, there exist cutoffs

p < p∗ < pL < pM < p̃ such that:

If p0 ≤ p, there exists an equilibrium where both players use the Immediate

S Strategy;

If p < p0 < p∗, there exists an equilibrium where both players use the Random

Existing Strategy;

If p∗ ≤ p0 < p̃, there exists an equilibrium where both players use the Random

Stopping Strategy;

If pL < p0 < pM , there exists an equilibrium where both players use the

Immediate Coin Flip Strategy;

If p0 ≥ pM , there exists an equilibrium where both players use the Immediate

R Strategy.

The lowest cutoff p is the lowerbound in Proposition 1.1, below which the

single DM’s optimal strategy is to take S immediately. The cutoff p∗ is a fixed

point and the detail can be found in Section 4. The cutoff pL (pM , resp) is the

belief at which the player is indifferent between taking S and taking immediate

R if she is the first R taker (if she and the opponent take R simultaneously,

resp).

When the prior is extreme, both players use the Immediate R/S Strategy

in equilibrium. It seems to be intuitive as the players’ learning motive is weak

due to the relatively small value of information. But this is not the whole story.

The subtlety is the role of the preemption motive. When the prior is sufficiently

small, the preemption motive is absent because S is the optimal action that

gives the player the same payoff. The weak learning motive is indeed the only

reason why the players take immediate S. However, when the prior is high,

the preemption motive is the main reason why the players take immediate R

with a positive probability. To understand the existence of the equilibria where

the players use the immediate R or the immediate coin flip strategy, consider a

static game where the players do not have access to information 9. Consider the

9This is a game where both players have two actions: action R and action S. In state ω, if
both players take action R (action S, resp), the payoff is uω −△

ω
(0, resp) for each of them.

If one player takes action R and the other player takes action S, the player who takes action
R gets a payoff of uω and the player who takes action S gets a payoff of 0.
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sufficiently high prior such that there exists an equilibrium where the players

take R with a positive probability in this static game 10 . Then, even if the

players are now given access to costly information, it is still optimal to take

an immediate action. This is because when the prior is sufficiently high, the

preemption motive is strong and the learning motive is weak. In the event that

the opponent takes immediate R, if the player also takes immediate R, she then

gets the simultaneous-move payoff. If the player acquires information for an

infinitesimal time period dt, then, the loss from becoming a second R taker

is strictly positive but the gain from acquiring information is negligible. The

positive probability of the opponent taking immediate R induces a downward

jump in the player’s expected payoff from taking R. This deters learning.

Lemma 1.2. When c is sufficiently small, pM < p̄.

The cutoff p̄ is the upperbound in Proposition 1.1: the belief above which

the player takes R immediately. Lemma 1.2 says that the range of priors where

the players take immediate R is larger when the players have the incentive to

preempt. The preemption motive leads to less information acquisition and more

immediate risky action for relatively optimistic prior beliefs.

The intuition of the equilibrium where the players use the Random Stop-

ping Strategy is explained by the tradeoff between learning and the preemption

motive. When the prior is in the lower intermediate range, the player has the

learning motive because the value of information is high. If a player were playing

this game alone, the optimal strategy is to acquire information until the belief

drifts up to an upperbound and then takes R (see Proposition 1.1). Before she

stops acquiring information, the distribution of the time at which she takes R is

the distribution of the Poisson breakthrough, which is continuous. At the time

the belief drifts up to the upperbound, according to the strategy, the player stops

and takes R. Therefore, the induced distribution of the time at which she takes

R has an atom at the time when the belief drifts up to the upperbound. If player

i were playing against player j who uses this strategy, player i would preempt

player j. To avoid being preempted by the opponent, what the player could do

is to randomise at which time she stops and takes action R. This randomisation

will make the opponent’s marginal cost and marginal benefit (explain later) from

acquiring information the same and hence eliminate the incentive to preempt.

The indifference condition gives rise to an ODE that the equilibrium strategy

satisfies which is concluded in Lemma 1.6 in the appendix. Here in the main

text, I give expressions of the marginal cost and marginal benefit from acquiring

10That is, when the belief is higher than pL.

36



information and show how they are determined by the opponent’s strategy. Sup-

pose player j uses the mixed strategy (ρ, σ) defined in Definition 1.2. Suppose ρ

and σ are differentiable. Then,

FH (t) =

t∫
0

[
e−as (1− ρ (s))

(
a+

dρ(s)
ds

1− ρ (s)

)]
ds

= 1− e−at (1− ρ (t))

is the probability that player j takes R before time t in state H and

FL (t) =

t∫
0

[
e−bs (1− ρ (s))

dρ(s)
ds

1− ρ (s)

]
ds

=

t∫
0

[
e−bsdρ (s)

ds

]
ds.

is the probability that player j takes R before time t in state L. At time t, player

i is indifferent between taking R now and dt later if

c+ pt
dFH (t)

dt
△̄H + (1− pt)

dFL (t)

dt
△̄L = (1− pt) b

[
−uL + FL (t) △̄L

]
. (1.3)

The left-hand side of (1.3) is the marginal cost of acquiring information for dt

longer at time t and the right-hand side is the marginal benefit. The cost consists

of the direct information cost c and the indirect cost from being preempted.

Intuitively, in state ω, the opponent preempts the player in this short time period

dt with probability dFω(t)
dt . The benefits of acquiring information comes from the

breakdown because it corrects the player’s action from R to S in state L. The

player gets the payoff of zero instead of the negative payoff associated with R in

state L. This indifference condition gives an ODE that the equilibrium strategy

satisfies. Lemma 1.6 and Lemma 1.14 in Section 4 characterises the conditions

that the equilibrium strategy satisfies.

Corollary 1.1. When c is sufficiently small, there exist multiple equilibria if

p < p0 < pM .

When p < p0 < p̃, in the equilibrium where the players use the Random

Stopping Strategy, the players both acquire information up to some time T̂ and

then randomly stop at each time greater than T̂ . The time T̂ at which the player

starts the randomisation is not unique and this leads to multiple equilibria. To

get the intuition, suppose player j uses the Random Stopping Strategy such that
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she starts the random stopping at some time T̂ > 0. To have both players using

this strategy as an equilibrium, before time T̂ , player i must strictly prefer to

acquire information given that the opponent acquires information. That is, given

the opponent is still acquiring information, the marginal cost from acquiring in-

formation for dt longer must be smaller than the marginal benefit. As a result,

the latest time instant at which the player starts randomising is the first time

instant at which the marginal cost of acquiring information equals the marginal

benefit given that the opponent acquires information. Before this time point,

if the opponent acquires the information, the marginal benefit of acquiring in-

formation exceeds the cost. The player acquires information. After this time

point, even though the player knows the opponent is still acquiring information,

the value associated with information is too small to keep the player engaged.

After time T̂ , player i is indifferent between taking R at each time t > T̂ , and

she must prefer to randomise instead of taking S. Therefore, the earliest time

instant at which the player is willing to start the random stopping is the earliest

time instant such that taking R gives her a payoff of at least zero. Before this

time instant, the player is not optimistic enough about the state to take R. After

this time instant, the player matches the opponent’s action. If the opponent’s

strategy is to randomise, the player also randomises.

The intuition behind the multiplicity is the strategic complementarity of

information. Information is a strategic complement at time t < T̂ because

when the opponent is still acquiring information, the value of information is

relatively high. The player hence is also willing to acquire more information.

If the opponent starts randomising, then, the value associated with acquiring

information becomes lower. The player then matches the time at which the

opponent starts randomising. This strategic complementarity also explains the

existence of multiple equilibria when p0 ∈
[
pL, pM

)
. For this range of priors,

according to Theorem 1.1, there exist both kinds of equilibria where the players

use the Random Stopping Strategy and where the players use the Immediate

Coin Flip Strategy. In other words, there simultaneously exist equilibria where

the players acquire information and where the players do not acquire information.

The existence of the equilibrium where both players use the Random Stop-

ping Strategy requires the player to start acquiring information at time 0. If

the prior is relatively low, then, the expected duration of acquiring information

before stopping is long and the cost of delay is high. In addition, the players

are pessimistic about the state being high. Therefore, the players do not have

strong incentives to start acquiring information and hence this symmetric equi-

librium where both players acquire information do not exist. However, there

38



exists asymmetric equilibrium where one player acquires information and the

other takes the immediate safe action. This is because when the player faces a

longer potential delay of action, the expected benefit associated with taking R

must be higher to compensate for the expected information cost. The benefit

associated with taking R depends on the opponent’s strategy. If the opponent’s

takes S at time 0, then, the player’s gain from information is higher. This higher

gain can incentivise the player to start learning at time 0. However, if the op-

ponent acquires information, then, the player gains less from taking R because

there is a positive probability that she can only get the lower payoff. This gain

may not be sufficient to incentivise the player to start acquiring information at

time 0. In this case, information is a strategic substitute. In the symmetric

equilibrium, the players mix between two strategies at time 0: the Immediate

R Strategy and the Random Stopping Strategy. Compared to the case that the

opponent uses Random Stopping Strategy, the opponent takes R with a lower

probability. This in turn increases the player’s gain from taking R and hence

increases the gain from acquiring information. Then, the player is incentivised

to start learning at a lower prior.

5 Information Cost and Competition

In this section, I discuss the effects of vanishing information cost, c, and the

effects of the intensity of competition.

5.1 Vanishing Information Cost

When the information cost vanishes, the players acquire information for a larger

range of priors but not for all the priors. In the equilibrium where the players

use the random stopping strategy, they acquire information for a longer duration

before randomisation. When they randomise, they stop and take R at a higher

rate.

The cost of acquiring information consists of two parts: the exogenous infor-

mation cost c and the endogenous cost from being preempted. This is the main

difference between the two-player case and the single DM case. In the single DM

case, when c vanishes, the DM always acquires information until she is certain

since the exogenous information cost c is the total cost of acquiring information.

In contrast, in the two-player game, the total information cost does not vanish

with the exogenous cost c. When the prior is high, the player believes that the

state is very likely to be H and infers that the probability of being preempted

is high. Thus, the endogenous cost is high for optimistic priors even when c
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vanishes. As a result, when c vanishes, the equilibrium such that both players

acquire information exists for a larger range of priors, but does not exist for

extremely high priors. However, when the prior is low, the player is pessimistic

about the state and hence she believes that it is not likely that the opponent

takes R. In addition, for low priors, if the player does not acquire information,

the optimal action is to take S, the payoff of which does not depend on the op-

ponent’s action. Thus, the endogenous information cost is low when the prior is

close to zero. As a result, for low priors, the total information cost vanishes with

c and the player is willing to acquire information for low priors. This property

is summarised in the following proposition.

Proposition 1.2. The cutoff p̃ decreases in c. When c → 0, p → 0 and p̃ →
b
a

−uL
△̄H

1+ b
a

−uL
△̄H

∈ (0, 1).

For the equilibrium where the players use the random stopping strategy,

when c vanishes, the effects are twofold. First, the players acquire information

for a longer duration before they start the randomisation stage. Second, when

the players just enter the randomisation stage, they stop and take R at a higher

rate. The first is intuitive as when c decreases, information becomes cheaper and

hence players are willing to acquire information for a longer period. The intuition

for the second effect is related to the indifference condition when the players

randomise. In equilibrium, the players randomise between acquiring information

and taking R because the marginal cost and marginal benefit from acquiring

information are the same. The marginal cost from acquiring information consists

of the exogenous and the endogenous information cost. When the player just

enters the randomisation stage, as shown in (1.3), the marginal benefit is not

affected by the exogenous information cost c and the players’ stopping rate.

The marginal benefit depends only on the cumulative density of the opponent

taking R. According the equilibrium strategy, since the opponent has not started

the random stopping yet, the marginal benefit only depends on the arrival of the

revealing signals but not player’s stopping rate. The endogenous information cost

however, increases in the opponent’s stopping rate. If the players stop and take

R at a higher rate, the endogenous information cost is higher. As a result, when

the players just enters the randomisation stage, if the exogenous information cost

c vanishes, the marginal benefit is unchanged while the marginal cost decreases

because of the vanishing information cost c. To have the indifference condition

hold, the players stop and take R at a higher rate to increase the endogenous

information cost.
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5.2 Competition

The competition in this game comes from the payoff difference between the first

and second R taker. The intensity of the competition increases in the value of

the payoff difference. In all the previous discussion, the payoff difference satisfies

Assumption 1.2. That is, the second R taker gets a higher payoff than taking S

in state H. With this assumption, after the player learns the state is high, taking

R is a dominant strategy. To understand the effect of an intense competition, I

drop Assumption 1.2 and impose Assumption 1.3.

Assumption 1.3. uL < uH − △̄H < 0.

Assumption 1.3 says that in state H, the payoff of the second R taker is

smaller than the safe action payoff. This assumption explicitly imposes a ‘loser

gets punished’ condition 11. Given Assumption 1.3, whether the player takes R

after learning the state is H depends on her belief on the opponent’s strategy.

Take an extreme case as an example. If the player believes that the opponent

takes R immediately, then, taking S is the optimal action regardless of the state.

Information becomes worthless because learning the state does not change the

player’s action and S always gives the player a constant payoff. Then it is never

optimal for the player to acquire information. This deters information acquisition

completely.

In a less extreme case, information acquisition is not necessarily deterred

at the beginning. Instead, there exists an upperbound on the duration of in-

formation acquisition. Suppose the opponent uses some well-behaved strategy

such that she acquires information at time 0 with probability one. Then, the

player’s expected payoff from taking R conditional on state H is the highest

at time 0 and then decreases. This is because the player gets the first R taker

payoff for certain at time 0 and as time passes, the probability of the opponent

taking R increases. Since the second R prize is negative, there exists a time

instant at which the player’s expected payoff from taking R conditional on state

H decreases to zero. Then, despite learning the state or not, at and after this

time instant, the player’s optimal action is S. The player hence gains nothing

from acquiring information after this time instant. However, this fact that infor-

mation becomes worthless after certain time instant does not deter information

acquisition at the beginning. When the player just starts acquiring information,

the probability of being preempted is low. She puts a higher weight on the first

11Note that given Assumption 1.2, the player may eventually be punished due to the total
information cost. The difference here is that the player explicitly knows that the second prize
from taking R is worse than taking S.
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prize conditional on state H. The negative second prize does not matter too

much. Information acquisition is not deterred as long as the expected payoff

from taking R conditional on state H is positive. Once at the time instant such

that R gives the player an expected payoff of zero in state H, information ac-

quisition stops and S will be taken. This puts an upperbound on the duration

of information acquisition. Since the player takes the safe action that creates no

preemption motive when stopping, there is no random stopping in equilibrium.

As a result, there exists a pure strategy equilibrium where in the absence of the

revealing signal, the players acquire information up to some time and then take

the safe action. This result is summarised in the following proposition.

Proposition 1.3. Suppose the payoff satisfies Assumption 1.1 and Assump-

tion 1.3. There exists a prior cutoff pNR and a non-negative upperbound TPS =
1
a log

△̄H

−(uH−△̄H)
such that for the prior p0 ∈

(
pNR, p̃

)
, there exists a symmetric

equilibrium where the players use the pure strategy
(
TPS , S

)
.

This proposition says that when the second prize for R is negative, for in-

termediate priors, there exists an equilibrium where the players acquires infor-

mation for a maximum of TPS time. Before time TPS , the players stop and take

an action only after receiving the revealing signal. The maximum time TPS is

independent of the prior.

The existence of such pure strategy equilibrium is the main difference be-

tween the cases with the positive and negative second prize in state H. The

intuition is that when the second R prize in state H is negative, the longer the

player acquires information, the less attractive R becomes. When the player

becomes sufficiently certain that the state is H, she is also convinced that R has

been taken. At the end of the information acquisition stage, being sufficiently

optimistic is associated with taking S. However, in the positive second prize

case, being sufficiently optimistic is associated with taking R, which generates

the preemption motive and hence the equilibrium in the random stopping strat-

egy. In equilibrium, the maximum duration TPS is independent of the prior.

Given that the opponent takes R after receiving the H-state revealing signal,

TPS is the time at which the expected payoff from taking R conditional on state

H decreases to zero. Since TPS is pinned down by the payoff in state H, it is

independent of the prior.

Next I discuss the effect of a more intense competition while Assumption 1.2

holds. In this case, when the difference between the first and second prize from

taking R increases, the equilibrium where both players acquire information ex-

ists for a smaller range of priors. This is intuitive because the endogenous cost
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associated with acquiring information increases as the game becomes more com-

petitive. Then, the equilibrium where the players acquire information is harder

to be sustained for the lower priors.

The discussion above is about the case when competition becomes more

intense. The other limiting case is when there is no competition. That is, when

the payoff difference between the first and second R taker is zero. The payoff

from taking R does not depend on the opponent’s action. Then, there is no

strategic interaction between the two players. The equilibrium in this limiting

case is such that both players use the single DM optimal strategy.

6 Extensions

6.1 More Than Two players

In this section, I generalise the original model to N > 2 players. I assume that

the first player to take R gets the first prize and all other R takers get the second

prize. I use this generalisation to show that as the number of players increases,

the range of priors where the learning equilibrium can exist shrinks.

Increasing the number of players intensifies the competition in the game. In

Section 5.2, I discussed the competition in terms of the payoff difference between

the first and second prize associated with R. This section further discusses the

effect of competition in terms of number of players in the game. I show that

the existence of the learning equilibrium requires the competition to be not

too intense. The payoff difference between the first and the second prize must

decrease as fast as 1
N−1 to guarantee the existence of the learning equilibrium.

Since I assume that the first R taker gets the first prize and all other R takers

get the second prize, the player only cares about whether the first R prize has

been taken or not. Because of this, from the player’s point of view, the remaining

N − 1 players essentially act as one big opponent. Let p̃N
1−p̃N

:= −buL−c
(N−1)△̄Ha+c

be

a prior cutoff. Since uL < 0, when c is sufficiently small, p̃N is positive. The

following proposition characterises a necessary condition for the existence of the

learning equilibrium where the players use the random stopping strategy.

Proposition 1.4. For N > 2, there exists an equilibrium where the players use

the random stopping strategy only if p0 < p̃N . The cutoff p̃N decreases in N .

When N → ∞, p̃N → 0.

The learning equilibrium can exist only if the prior is sufficiently low and

this prior cutoff decreases in the number of players. When the number of players
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goes to infinity, the cutoff p̃N approaches zero and the potential learning region

vanishes.

Corollary 1.2. When N → ∞, if △̄N decreases as fast as 1
N−1 , then, p̃N is

finite.

When the number of players increases to infinity, if the prize difference △̄H

decreases as fast as 1
N−1 , then, the potential learning region still exists. The

intuition is that the learning equilibrium can exist only if the competition is not

too intense. If there are a lot of players competing, then, the payoff difference

cannot be too big.

6.2 Observable Actions

The irreversible risky and safe actions are assumed to be private in this paper.

This allows me to focus on the role of payoff externalities. In this extension,

I assume that after a player takes an irreversible action, it is immediately ob-

served by the opponent. The public actions generate information externalities

as observing no action taken is itself informative. The purpose of this extension

is to show that the existence of the learning equilibrium found in Theorem 1.1

is robust to some exposure to information externalities. To be more specific, I

define the mimicking and random stopping strategy (MRSS) and show that there

exists a symmetric equilibrium where the players use this strategy.

Definition 1.4. The mimicking and random stopping strategy (MRSS) is a

strategy such that

1. After receiving the H-state revealing signal, the player stops and takes R

immediately;

2. After receiving the L-state revealing signal, the player stops and takes S

immediately;

3. After receiving no revealing signal and observing no action taken, the player

stops and takes R at each time t at rate h (t) > 0;

4. After receiving no revealing signal and observing the opponent taking S,

the player stops and takes S;

5. After receiving no revealing signal and observing the opponent taking R,

the player uses the single DM optimal strategy.

44



The MRSS and the random stopping strategy are similar in the sense that

after observing no private revealing signal, the player randomly stops and takes

R. The conditions for the existence of the symmetric equilibrium where the

players use MRSS is presented in the following proposition.

Proposition 1.5. Suppose △̄H = △̄L and c sufficiently small such that pL < p̃.

If pL < p0 < p̃, then, there exists an equilibrium where the players use MRSS.

Proposition 1.5 suggests that when there are information externalities, there

still exists the equilibrium where the players randomly stop and take R after no

revealing signal. The reason is twofold. First, the observability of the actions

does not eliminate the preemption motive. After the history of no action taken,

if the player’s strategy prescribes taking R with positive probability mass, then,

the opponent has an incentive to preempt. Second, random stopping reduces the

information involved in the player’s action. The action taken (or no action taken)

contains the player’s private information. It is essentially an additional signal

and the informativeness of it depends on the player’s strategy. For example, if the

player only stops acquiring information after receiving a revealing signal, then,

her action perfectly reveals her private information. In this case, this additional

signal is very informative for the opponent. However, if the player stops acquiring

information and takes an action randomly, then, her action contains less private

information. Information externalities enhance the player’s incentive to stop

randomly.

7 Conclusion

In this paper, I study a model in which the players can acquire costly private

information before taking an irreversible private action. Acquiring information

takes time which allows the player to take the ‘correct’ action but increases the

probability of being preempted. With the assumption that there is a first-mover

advantage associated with the risky action, I find that in the equilibrium where

the players acquire information, they become more optimistic that the state is

high but at the same time, the conditional expected payoff from taking the risky

action decreases. Because of the interaction between the learning motive and

the preemption motive, the players randomly stop and take the risky action.

This result is significantly different from the single decision maker case where

the optimal strategy is deterministic.

In my model, depending on the prior, the players’ decisions on acquiring

information can be both strategic substitutes or strategic complements. The
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strategic substitutability prevails when players have pessimistic priors and it

induces players’ initial mix between acquiring information and immediate exit.

The strategic complementarity prevails when players are relatively optimistic

and it gives rise to the multiple equilibria where players use the random stop-

ping strategy. In addition, I find that the equilibrium where the players do not

acquire information can exist for not only extreme priors but also a large range

of intermediate priors. This stems from the presence of the endogenous infor-

mation cost. Such equilibrium exists for arbitrarily small exogenous information

cost.
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Appendix to Chapter 1

1 Formulation of the Player’s Problem

This section formulates one player’s problem given opponent’s strategies. Given

player j’s strategy γj , player i’s best-reply problem is to choose a time T i with

value function V̂ i,γj
: R+ → R such that

V̂ i,γj
(0) := max

T i

T i∫
0

πt

[
pitaEγj [

uRH | H, t
]
− c
]
dt+ πT iU i,γj (

T i
)

(1.4)

s.t.
dpit
dt

= (b− a)pit(1− pit),

where Eγj [
uRH | H, t

]
and U i,γj (

T i
)
are as defined in Section 2.2. The Hamilton-

Jacobi-Bellman (HJB) equation for player i’s problem is the following differential

equation in V i,γj
: R+ → R, where

max


A︷ ︸︸ ︷

pita
[
Eγj [

uRH | H, t
]
− V i,γj

(t)
]
+
(
1− pit

)
b
[
−V i,γj

(t)
]
+

B︷ ︸︸ ︷
dV i,γj

(t)

dt
−c,

U i,γj
(t)− V i,γj

(t)
}
= 0.

(1.5)

The interpretation of (1.5) is that at time t, player i chooses between to continue

acquiring information or stopping. She acquires information if the marginal gain

is greater than the marginal cost. Otherwise, she stops and gets the payoff

U i,γj
(t). The marginal gain consists of the expected gain from receiving the

revealing signal (labelled as A in (1.5)) plus the rate of change of the value

(labelled as B in (1.5)).

Given opponent’s strategy γj , if the player’s problem is well-behaved, then,

the value function V i,γj
(t) is a classical solution to the HJB equation (1.5). The
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player’s best response can then be characterised correspondingly. However, in

our problem, (1.5) is not well-behaved because given the opponent’s strategy γj ,

U i,γj
(t) has a kink and may not be continuous.

2 Proof of Proposition 1.1

When player i is a single DM, her problem is

V̂ (p0) := max
T

T∫
0

πt
[
ptauH + (1− pt) bu

S − c
]
dt+ πTU (T ) .

The HJB equation is

max

{
pta [uH − V (t)] + (1− pt) b

[
uS − V (t)

]
+
dV (t)

dt
− c,

U (t)− V (t)} = 0

Since the argument t only enters the equation via pt, I use p instead of t as the

state variable. Then HJB equation becomes

max

{
pa [uH − V (p)] + (1− p) b

[
uS − V (p)

]
+
dV (p)

dp

dp

dt
− c,

U (p)− V (p)} = 0 (1.6)

To find player i’s value function, I construct a candidate value function and show

it is a viscosity solution of (1.6).

If the learning region (the range of beliefs at which the DM acquires the

signal) exists, the value function is a solution of the ordinary differential equation

pa [uH − V (p)] + (1− p) b
[
uS − V (p)

]
+
dV (p)

dp
(b− a) p (1− p) = c. (1.7)

The free boundary solution to (1.7) is

V L (p) = p
[
uH − c

a

]
+ (1− p)

[
uL − c

b

]
+K

(
p

1− p

) b
b−a

(1− p)

where K is a constant. Suppose the learning region is
(
p, p̄
)
. Value matching

and smooth pasting pin down the value of p̄ and K. Then, value matching pins
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down p. We have

p̄

1− p̄
=
uS − uL − c

b
c
b

:= L̄,

K =
c

b

(
b

a
− 1

)
L̄1− b

b−a

and L :=
p

1−p satisfies

[
uH − uS − c

a

]
L+KL

b
b−a =

c

b
. (1.8)

Let p̂ be a belief cutoff at which the player is indifferent between R and S. The

existence of the learning requires p̄ > p̂. That is,

c < b
(−uL)uH
uH − uL

:= c̄.

Outside the learning region, the value function satisfies V (p) = U (p). When

c < c̄, the candidate value function is

V (p) =

p
[
uH − c

a

]
+ (1− p)

[
uL − c

b

]
+K

(
p

1−p

) b
b−a

(1− p) p ∈
(
p, p̄
)

U (p) o.w.
.

This candidate has a kink at p and is differentiable everywhere else. I next show

that it is a viscosity solution of (1.6). Let

H
(
p, V (p) , V ′ (p)

)
:= pa [uH − V (p)] + (1− p) b

[
uS − V (p)

]
+ V ′ (p) (b− a) p (1− p)− c.

For the points where V (p) is differentiable, I show that (1) if p > p̄, then,

H (p, V (p) , V ′ (p)) ≤ 0; (2) if p ∈
(
p, p̄
]
, then, V (p) ≥ U (p); (3) if p < p, then

H (p, V (p) , V ′ (p)) ≤ 0. At the point where V (p) is not differentiable, that is,

at p = p, I show that H (p, V (p) , z) ≥ 0 for z ∈ D+ where D+ = ∅ (ignore) and

(4) H (p, V (p) , z) ≤ 0 for z ∈ D− where D− =
[
dUS(p)

dp |p=p,
dV L(p)

dp |p=p

]
.

Step (1): When p > p̄, we have V (p) = UR (p) and H (p, UR (p) , U ′
R (p)) < 0

if and only if p > p̄.

Step (2): It can be shown that V L (p) is convex. At p = p̄, we have V L (p) =

UR (p). If we decrease p by a little bit, UR (·) decreases faster than V L (·).
Therefore, we have V L (p) ≥ UR (p) for p ≤ p̄. At p = p, we have V L

(
p
)
= US

(
p
)

and dV L(p)
dp > dUS(p)

dp . As a result, we have V L (p) ≥ US (p) for p > p.
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Step (3): If p < p, then, V (p) = US (p). To have H
(
p, US (p) , dUS(p)

dp

)
≤ 0,

we need p ≤
c
a

uH−uS . It can be shown that p <
c
a

uH−uS . As a result, if p < p, then

H (p, V (p) , V ′ (p)) ≤ 0.

Step (4): SinceH (p, V (p) , z) is increasing in z and we haveH
(
p, V

(
p
)
, dV

L(p)
dp |p=p

)
=

0, it is true that H (p, V (p) , z) ≤ 0 for ∀z ∈
[
dUS(p)

dp |p=p,
dV L(p)

dp |p=p

]
.

To conclude, if c < c̄, the DM’s optimal strategy is to acquire the signal if

the belief if in the range
(
p, p̄
)
, to take action R if p ≥ p̄ and to take action S if

p ≤ p. If c ≥ c̄, the DM’s optimal strategy is to take an action without acquiring

the signal.

3 Proof of Lemma 1.1

Consider a strategy γ = (ρ, σ) as defined in Definition 1.2. Suppose ρ is discon-

tinuous at some τ > 0 and continuous everywhere else. Since by definition ρ is

right-continuous and weakly increasing, this implies that ρ (τ) > limt→τ− ρ (t) .

Then, the induced probability that the player takes R before or at time t in

state ω, F γ
ω (t) , 12 is right continuous such that F γ

ω (τ) > limt→τ− F
γ
ω (t) for

∀ω ∈ {H,L}. Let Mω denote the mass that F γ
ω (τ) places on τ . Consider a

deviation γD =
(
ρD, σ

)
such that it is identical to γ except that the mass that

ρ places on τ is shifted to τ − △. There exists a △ > 0 such that given the

opponent uses the γ strategy, using γD gives the player a higher payoff than γ.

Suppose the opponent uses the γ strategy described above. Consider the

history that the player receives no revealing signal until time τ−△ where △ > 0.

The total gain from acquiring information for △ time longer is

pτ−△a△
[
uH − F γ

H (τ) △̄H

]
+ [1− pτ−△a△− (1− pτ−△) b△]UR (τ)− UR (τ −△)

where

UR (t) = pt
[
uH − F γ

H (t) △̄H

]
+ (1− pt)

[
uL − F γ

L (t) △̄L

]
if t < τ and

UR (t) = pt

[
uH − F γ

H (t) △̄H −
(
1− F γ

H (t)
)
△

H

]
+ (1− pt)

[
uL − F γ

L (t) △̄L −
(
1− F γ

L (t)
)
△

L

]
12The superscript indicates the strategy that this function is induced from.

50



if t = τ . When △ > 0 approaches zero, this gain approaches

pτ

[
−MH△̄H −

(
1− F γ

H (τ)
)
△

H

]
+ (1− pτ )

[
−ML△̄L −

(
1− F γ

L (τ)
)
△

L

]
,

which is negative due to the mass point Mω and the tie-breaking at time τ .

Therefore, there is always a deviation to put the mass places on τ to τ −△.

4 Proof of Theorem 1.1

Let pM

1−pM
:=

−uL+△
L

uH−△
H

, pL

1−pL
:= −uL

uH
and p̃

1−p̃ := −buL−c
a△̄H+c

be three prior cutoffs.

As uL < 0, when c < −buL, all of the three cutoffs are positive. The cutoff p

is defined in Proposition 1.1 and p∗ is a fixed point that will be defined later in

step 5.

The method to find the symmetric equilibrium is ‘guess and verify’. The

following outlines the steps of the proof.

1. I show that there exists an equilibrium where both players use the pure

strategy (0, S) when p0 ≤ p.

2. I show that there exists an equilibrium where both players use the pure

strategy (0, R) when p0 ≥ pM .

3. I show that there exists an equilibrium where both players use the Imme-

diate Mix with No Learning Strategy when pL < p0 < pM .

4. I show that there exists an equilibrium where both players use a Ran-

domised Stopping Time Strategy when pL < p0 < p̃.

5. I show that there exists an equilibrium where both players use a Ran-

domised Stopping Time Strategy when p∗ < p0 < pL.

6. I show that there exists an equilibrium where both players use the Mixed

Learning Strategy when p < p0 < p∗.

Step 1 When p0 ≤ p, Proposition 1.1 implies that a single DM takes S im-

mediately. If a player takes S immediately, the other player is the single DM in

the game. Given the player takes S immediately, the opponent’s best response

is to take S. Therefore, when p0 ≤ p, both players taking S immediately is an

equilibrium. This is summarised in the following lemma.

Lemma 1.3. If p0 ≤ p, then, there exists an equilibrium where both players use

the strategy (0, S).
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Step 2 I prove the following lemma.

Lemma 1.4. If p0 ≥ pM , there exists an equilibrium where both players use the

pure strategy (0, R)

Proof. Suppose player j uses the strategy (0, R). I check whether player i wants

to stop at time 0 and take action R or to acquire the signal for dt longer. If

player i takes the immediate R action at time 0, the payoff is

U IR
R (0) = p0

(
uH −△

H

)
+ (1− p0)

(
uL −△

L

)
.

If the player takes action R at time t > 0, the payoff is

U IR
R (t) = pt

(
uH − △̄H

)
+ (1− pt)

(
uL − △̄L

)
At time 0, the gain from acquiring the signal for dt longer is

p0adt
(
uH − △̄H

)
+ [1− p0adt− (1− p0) bdt]U

IR
R (0 + dt)− U IR

R (0) . (1.9)

When dt→ 0, (1.9) tends to something negative, which is smaller than the cost

of information. Therefore, if the opponent stops at time 0, player i prefers taking

action R at time 0 to acquiring the signal for dt longer. At time 0, player i prefers

action R to action S at time 0 if U IR
R (0) ≥ 0. Since p0 ≥ pM , the inequality

U IR
R (0) ≥ 0 holds.

Step 3 I show the following lemma.

Lemma 1.5. If pL < p0 < pM , then, there exists an equilibrium where both

players use the Immediate Mix Strategy.

Proof. Suppose player j uses the strategy
(
ρIM , σIM

)
such that ρIM (t) = m for

∀t ∈ [0,∞) and σIM (t) = 1 −m for ∀t ∈ [0,∞). Then, player i’s payoff from

taking action R at time 0 is

U IM
R (0) = m [p0uH + (1− p0)uL] + (1−m)

[
p0

(
uH −△

H

)
+ (1− p0)

(
uL −△

L

)]
= p0

[
muH + (1−m)

(
uH −△

H

)]
+ (1− p0)

[
muL + (1−m)

(
uL −△

L

)]
.

Player i’s payoff from taking action R at time t > 0 is

U IM
R (t) = m [ptuH + (1− pt)uL] + (1−m)

[
pt
(
uH − △̄H

)
+ (1− pt)

(
uL − △̄L

)]
= pt

[
uH − (1−m) △̄H

]
+ (1− pt)

[
uL − (1−m) △̄L

]
.
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At time t = 0, player i does not want to acquire the information due to the same

reasoning as in step 2.

Next I show that for the prior p0 ∈
(
pL, pM

)
, there exists m ∈ (0, 1) such

that player i is indifferent between taking action R and action S at time t = 0.

The indifference requires 0 = UR (0). That is,

p0
1− p0

= −

[
muL + (1−m)

(
uL −△

L

)]
[
muH + (1−m)

(
uH −△

H

)] . (1.10)

For any p0 ∈
(
pL, pM

)
, there exists m ∈ (0, 1) such that (1.10) holds.

Step 4 This step shows the existence of the equilibrium where players use

the randomised stopping time strategy. I show that there exists an equilibrium

where both players take action R at each time t ≥ 0 with positive rate. Suppose

cost c is sufficiently small such that pL < p̃. Let Lt = pt
1−pt

be the likelihood

ratio. I prove the following lemma.

Lemma 1.6. Suppose c is sufficiently small and b < 2a. If pL < p0 < p̃, then,

there exists an equilibrium in mixed strategies (ρ, σ) such that σ (t) = 0 for

∀t ∈ R+ and ρ : R+ → [0, 1] satisfies the following conditions:

1. (Initial condition) ρ (0) = 0.

2. (Increasing condition) There exists a T > 0 such that for t ∈ [0, T ], ρ

is a solution to the following differential equation

dρ (t)

dt
=
b (−uL)− c− Ltc+ b△̄L

∫ t
0 e

−bs dρ(s)
ds ds− Lt△̄Hae

−at (1− ρ (t))

Lt△̄He−at + △̄Le−bt

(1.11)

with the initial condition ρ (0) = 0 where dρ
dt > 0 for ∀t ∈ [0, T ] and

ρ (T ) = 1.

3. (Terminal condition) ρ (t) = 1 for ∀t > T.

In words, the equilibrium strategy is that the players stop and take action

R at each time with positive rate.

Proof. Fix player j’s strategy (ρ, σ), I first show that at each time t, player i is

indifferent between taking action R now or dt later if ρ satisfies (1.11). Then

Lemma 1.7 shows that when c is sufficiently small and b < 2a, if p0 < p̃, we can
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find a ρ function such that dρ
dt > 0. Last, I show that if p0 > pL, player i prefers

acquiring information to taking action S.

Suppose player j uses the mixed strategy (ρ, σ). This strategy induces

FH (t) =

t∫
0

[
e−as (1− ρ (s))

(
a+

dρ(s)
ds

1− ρ (s)

)]
ds

= 1− e−at (1− ρ (t))

and

FL (t) =

t∫
0

[
e−bs (1− ρ (s))

dρ(s)
ds

1− ρ (s)

]
ds

=

t∫
0

[
e−bsdρ (s)

ds

]
ds.

Player i’s payoff from taking action R at time t is

UR (t) := pt
[
uH − FH (t) △̄H

]
+ (1− pt)

[
uL − FL (t) △̄L

]
.

The equilibrium condition is that given player j’s strategy, player i is indifferent

between taking action R and acquiring the signal at each time instant. That is,

ptadt
[
uH − FH (t+ dt) △̄H

]
+ [1− ptadt− (1− pt) bdt]UR (t+ dt)− UR (t) = cdt.

The interpretation is that the marginal cost and marginal benefit associated with

acquiring information for dt longer are the same. When dt → 0, we have the

following differential equation

c = (1− pt) b
[
−uL + FL (t) △̄L

]
− pt

dFH (t)

dt
△̄H − (1− pt)

dFL (t)

dt
△̄L

After plugging in the expressions of FH (t) and FL (t) , we have

dρ (t)

dt
=
b (−uL)− c− Ltc+ b△̄L

∫ t
0 e

−bs dρ(s)
ds ds− Lt△̄Hae

−at (1− ρ (t))

Lt△̄He−at + △̄Le−bt
.

Lemma 1.7. The differential equation (1.11) with initial condition ρ (0) = 0

has a unique solution defined for all t ∈ [0,∞).

Proof. Let A (t) := e−btρ (t). Then, we have dA
dt = −bA+e−bt dρ

dt . Use the formula
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that Lt = L0e
(b−a)t, (1.11) can be rewritten as(

dA

dt
+ bA

)
ebt =

b (−uL)− c− cL0e
(b−a)t + b△̄L

(
A+ b

∫ t
0 A (s) ds

)
− L0△̄Hae

(b−2a)t
(
1− ebtA

)
L0△̄He(b−2a)t + △̄Le−bt

.

(1.12)

Let z (t) :=
∫ t
0 A (s) ds. Then, the differential equation can be written as

z′′ + g1 (t) z
′ + g2 (t) z = g3 (t) (1.13)

where

g0 (t) =
1

L0△̄He2(b−a)t + △̄H
,

g1 (t) = b− b△̄L + L0△̄Hae
2(b−a)t

g0 (t)
,

g2 (t) = −b
2△̄L

g0 (t)
,

g3 (t) =
b (−uL)− c− cL0e

(b−a)t − L0△̄Hae
(b−2a)t

g0 (t)
.

Since g0 (t), g1 (t), g2 (t) and g3 (t) are continuous on [0,∞), (1.13) with initial

conditions z (0) = 0 and z′ (0) = 0 has a unique solution defined for all t on

[0,∞). The existence of z (·) implies the existence of ρ (·).

Lemma 1.8. dρ
dt |t=0> 0 iff p0 < p̃.

Proof.

dρ

dt
|t=0 =

b (−uL)− c− L0c− L0△̄Ha

L0△̄H + △̄L

> 0

if and only if

L0 =
p0

1− p0
<
b (−uL)− c

a△̄H + c
=

p̃

1− p̃
.

This lemma implies that if p0 < p̃, then, dρ
dt > 0 at the neighbourhood of

0. The following lemma and its proof shows that under some conditions, if ρ (·)
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increases at the neighbourhood of 0 and the value of ρ is smaller than 1, then,

it continues increasing.

Lemma 1.9. Suppose b < 2a and c sufficiently small. If ρ (t) ∈ [0, 1) for

∀t ∈ [0, τ ] and dρ
dt > 0 ∀t ∈ [0, τ) , then, dρ

dt > 0 at t = τ .

Proof. If b < 2a, c sufficiently small, and dρ
dt > 0 ∀t ∈ [0, τ) , then,

Φ (t) :=
b
(
−uL + △̄L

∫ t
0 e

−bs dρ
dsds

)
− c− L0e

(b−a)tc

△̄Hae(b−2a)t (1− ρ (t))

increases in t for ∀t ∈ [0, τ) . Since ρ (t) ∈ [0, 1) for ∀t ∈ [0, τ) , then, Φ (t) > L0

for ∀t ∈ [0, τ) iff dρ
dt > 0 for ∀t ∈ [0, τ) . Next, I show by contradiction that if

dρ
dt > 0 for ∀t ∈ [0, τ) and ρ (t) ∈ [0, 1) for ∀t ∈ [0, τ ] , then, it must be that dρ

dt > 0

at t = τ . Suppose dρ
dt = 0 at t = τ . Then, it must be that Φ (τ) = L0. However,

we know that Φ (t) increases in t for ∀t ∈ [0, τ) and Φ (t) > L0 for ∀t ∈ [0, τ).

Then, it cannot be that Φ (τ) = L0. There is a contradiction and hence dρ
dt ̸= 0

at t = τ . Since ρ is continuous, it cannot be that dρ
dt > 0 at t = τ .

Next I show that given Lemma 1.7 and Lemma 1.9, ρ (t) = 1 will be reached

in a finite time.

Lemma 1.10. Given Lemma 1.7 and Lemma 1.9, there exists a T < ∞ such

that ρ (T ) = 1.

Proof. If dρ
dt > 0 and ρ (t) ∈ [0, 1), then

Φ (t) <
b
(
−uL + △̄Lρ (t)

)
− c− L0e

(b−a)tc

△̄Hae(b−2a)t (1− ρ (t))

<
b
(
−uL + △̄L

)
− c− L0e

(b−a)tc

△̄Hae(b−2a)t (1− ρ (t))
.

As t → ∞, we have Φ (t) < 0. If Φ (t) < 0 and ρ (t) < 1 when t → ∞, then,
dρ
dt < 0 as t→ ∞. There is a contradiction. Therefore, it must be that ρ (t) > 1

for some t. Because of continuity, there exists a T such that ρ (T ) = 1.

Lemma 1.11. If pL < p0 and ρ (t) satisfies the conditions in Lemma 1.6, then,

σ (t) = 0 for ∀t ∈ [0, T ].

Proof. Let V (t) be the value associated with the mixed strategy characterised

in Lemma 1.6. Then,

V (t) = UR (t)− ct = UR (0)
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because the player’s payoffs are the same at each time when she is randomising

between continuing and stopping (to take action R). Since pL < p0, we have

UR (0) > 0. Hence, at each t < T , we have UR (t) > 0. As a result, σ (t) = 0 for

∀t ∈ [0, T ].

This completes the proof of Lemma 1.6.

Step 5 In the previous step, I consider the situation that the player starts ran-

domisation at time t = 0. However, it is possible that the player strictly prefers

to acquire information for a certain time period and then starts randomisation.

This step shows the existence of the equilibrium where players use a mixed strat-

egy (ρ̂, σ̂) such that (1) ρ̂ (t) = 0 for t ≤ T̂ , (2) dρ̂(t)
dt |t≥T̂> 0, (3) T̂ ∈

[
T̂l, T̂r

]
and (4) σ̂ (t) = 0 for ∀t ≥ 0. That is, a randomised stopping time strategy

such that the players acquire information with probability one until some time

T̂ > 0 and then start randomising between stopping and acquiring information.

I first define three parameters Tl, Tr, p
∗ and show their existence. Then, I show

the conditions that ρ̂ satisfies in equilibrium and under what conditions such

equilibrium exists.

Let

Tr := min

{
t :

p0
1− p0

e(b−a)t =
b (−uL)− c

c+ ae−at△̄H

}
(1.14)

and

Tl := min

{
t :

p0
1− p0

e(b−a)t =
−uL

uH − (1− e−at) △̄H

}
. (1.15)

Lemma 1.12. If p0 < p̃, then, Tr > 0 exists. If p0 < pL, then, Tl > 0 exists.

Let

p∗ (t)

1− p∗ (t)
:=

c
b

uH − 1
2△̄H − c

a + J2 (t)
(1.16)

where

J2 (t) =

[
1

2
e−at△̄H +

c

a
−
(
−uL − c

b

) 1

Lt

]
e−at.

Let

p∗ (p0) := p∗ (Tr)

be p∗ (t) evaluated at t = Tr. I denote it as p∗ (p0) because Tr depends on p0.

Let p∗ be the fixed point such that p∗ = p∗ (p∗) .
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Lemma 1.13. Suppose c is sufficiently small. There exists a p∗ < pL such that

p∗ = p∗ (p∗) . We have p∗ < p0 if and only if p∗ (p0) < p0.

Proof. When 0 < p0 < pL, p∗ (·) decreases in p0. When p0 → 0, p0 < p∗ (p0) <

pL. When p0 → pL and c sufficiently small, we have p∗ (pL) < p∗ (0) < pL.

Therefore, there exists p∗ < pL such that p∗ = p∗ (p∗). Since p∗ (·) decreases in

p0, p
∗ < p0 if and only if p∗ (p0) < p0.

Next, I show the existence of the equilibrium and the conditions ρ̂ satisfies

in equilibrium. Suppose player j uses the mixed strategy (ρ̂, σ̂) such that (1)

ρ̂ (t) = 0 for t ≤ T̂ , (2) dρ̂(t)
dt |t≥T̂> 0, (3) T̂ ∈

[
T̂l, T̂r

]
and (4) σ̂ (t) = 0 for

∀t ≥ 0. Given the assumption that ρ̂ (t) = 0 for t ≤ T̂ and ρ̂ (t) > 0 for t > T̂ ,

consider time T̂ as a new time 0 and denote the time line starting from T̂ as

τ . Let τ := t − T̂ and λ (τ) := ρ̂
(
τ + T̂

)
. Let qτ = pτ+T̂ be the belief and let

ÛR (τ) be player i’s payoff from taking action R at time τ , then,

ÛR (τ) =qτ

[(
1− F̂H (τ)

)
η + F̂H (τ)

(
uH − △̄H

)]
+ (1− qτ )

[
uL − F̂L (τ) △̄L

]
where

F̂H (τ) = 1− e−aτ−aT̂ + e−aτ−aT̂λ (τ) ,

F̂L (τ) =

∫ τ+T̂

0
e−bsλ (s) ds

and η := uH −
(
1− e−aT̂

)
△̄H . The intuition is that when considering time T̂

as a new time 0, player i’s problem is essentially the same as in step 4 with η

being the payoff for the first action R taker instead of uH .

After time T̂ , the equilibrium condition requires player i being indifferent

between acquiring the information and taking action R at each time instant

τ > 0. That is,

c =(1− qτ ) b
[
−
(
uL − F̂L (τ) △̄L

)]
− qt

dF̂L (τ)

dτ

(
η −

(
uH − △̄H

))
− (1− qτ )

dF̂L (τ)

dτ
△̄L.

After plugging in the expressions of F̂H (t) and F̂H (t) , we have

dλ (τ)

dτ
=
b (−uL)− c− L̂τ c+ b△̄L

∫ τ
0 e

−bs dλ(s)
ds ds− L̂τ△̄Hae

−aτ (1− λ (t))

L̂τ

(
η −

(
uH − △̄H

))
e−aτ + △̄Le−bτ

(1.17)
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where L̂τ = qτ
1−qτ

. To have dλ(s)
ds > 0, we need

L̂τ <
b (−uL)− c+ b△̄L

∫ τ
0 e

−bs dλ(s)
ds ds

c+
(
η −

(
uH − △̄H

))
ae−aτ (1− λ (τ))

.

That is,

L0e
(b−a)t <

b (−uL)− c+ b△̄L

∫ t
0 e

−bs dρ̂(s)
ds ds

c+ △̄Hae−at (1− ρ̂ (t))
(1.18)

for all t > 0. Equation (1.18) is derived by substituting in τ = t− T̂ , λ (τ) = ρ̂ (t)

and η = uH −
(
1− e−aT̂

)
△̄H . The existence of an increasing function ρ̂ (·) has

been shown in Lemma 1.7. that satisfies (1.18).

Next, I characterise the condition that T̂ satisfies in equilibrium. I am going

to show that there exists an interval
[
T̂l, T̂r

]
such that an equilibrium exists

when T̂ ∈
[
T̂l, T̂r

]
. The idea is that before time T̂ , player i must strictly prefer

to acquire the signal and after time T̂ , player i is indifferent between acquiring

the signal and taking action R at each time instant. To have the player strictly

prefer to acquire the signal before time T̂ , we need the marginal cost smaller

than the marginal benefit associated with acquiring the signal. That is,

L0e
(b−a)t <

b (−uL)− c

c+ ae−at△̄H
(1.19)

for all t ≤ T̂ . The upperbound T̂r is the first time the marginal cost of acquiring

the signal exceeds the marginal benefit. Given Lemma 1.12, if p0 < p̃, then,

T̂r = Tr > 0 exists.

The lowerbound of T̂ is the earliest time point at which the player is willing

to start randomising. That is, if player j starts randomising at time T̂ , player i

must prefer to start randomising at time T̂ instead of taking action S. At time

T̂ , the value associated with randomisation is the same as the value associated

with taking action R because of the opponent’s randomisation. Therefore, in

order to have player i prefer randomisation to taking action S at time T̂ , we

need

pT̂

[
uH −

(
1− e−aT̂

)
△̄H

]
+
(
1− pT̂

)
uL ≥ 0.
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That is,

L0e
(b−a)T̂ ≥ −uL

uH −
(
1− e−aT̂

)
△̄H

. (1.20)

The lowerbound of T̂ is the smallest T̂ such that inequality (1.20) holds. Given

Lemma 1.12, if p0 < pL, then, T̂l = Tl > 0. If p0 ≥ pL, then, T̂l = 0.

The following lemma characterises the equilibrium when p∗ < p0 < p̃.

Lemma 1.14. Suppose b < 2a and c is sufficiently small. If p∗ < p0 < p̃, there

exists an equilibrium in mixed strategies (ρ̂, σ̂) such that σ̂ (t) = 0 for ∀t ∈ R+

and ρ̂ (·) satisfies the following conditions:

1. ρ̂ (t) = 0 for t ≤ T̂

2. ρ̂ (t) ∈ (0, 1] for t ∈
(
T̂, T̄

]
and λ̂ (τ) = ρ̂

(
τ + T̂

)
is a solution to the

differential equation (1.17) with initial condition λ̂ (0) = 0 where dρ̂
dt > 0

for ∀t ∈
[
T̂, T̄

]
3. ρ̂ (t) = 1 for ∀t > T̄

4. T̂ ∈
[
T̂l, T̂r

]
where T̂r = Tr, T̂l = Tl if p0 < pL and T̂l = 0 if p0 ≥ pL.

Proof. I have shown the existence of an increasing ρ̂ function, and (1.17) guar-

antees that the players stop and take action R with a positive rate at each time

t ∈
[
T̂, T̄

]
. I have also derived the conditions for T̂ . What left to show is the

equilibrium exists when p0 > p∗. Given Lemma 1.13, p∗ < p0 if and only if

p∗ (p0) < p0. What left to show is the equilibrium exists when p∗ (p0) < p0..

Suppose player j uses (ρ̂, σ̂) strategy described in the lemma. Since I have dis-

cussed what happens after time T̂ , I will characterise player i’s value W (·) at

time t < T̂ . The HJB equation is

max
{
pta
[
uH −

(
1− e−at

)
△̄H −W (t)

]
+(1− pt) b [−W (t)]− c+W ′ (t) ,

U (t)−W (t)} = 0

If the learning region exists, in the learning region, we have

W (t) =pt

((
uH − △̄H

)
− c

a
+

1

2
△̄He

−at

)
+ (1− pt)

(
−c
b

)
+ pte

atJ2

where J2 is a constant. At time T̂ , we have W
(
T̂
)
= U

(
T̂
)
= UR

(
T̂
)
. This
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pins down J2 as a function of T̂ , where

J2

(
T̂
)
=

[
1

2
e−aT̂ △̄H +

c

a
−
(
−uL − c

b

) 1

LT̂

]
e−aT̂ .

Player 1 acquires the signal at time t = 0 if W (0) ≥ 0, which requires

L0 ≥
c
b

uH − 1
2△̄H − c

a + J2

(
T̂
) := L

(
T̂
)
:=

p∗
(
T̂
)

1− p∗
(
T̂
) . (1.21)

The discussion shows that given the opponent uses the strategy described in

the lemma, player i’s best response is to use the Randomised Stopping Time

Strategy if p0 ≥ p∗
(
T̂
)
.

Since T̂ can be any value in the interval
[
T̂l, T̂r

]
, I use this to characterise the

lowerbound of the prior p0 such that the equilibrium described in Lemma 1.14

exists.

Lemma 1.15. p∗ (p0) ≤ p∗
(
T̂
)
for T̂ ∈

[
T̂l, T̂r

]
.

Lemma 1.15 is true because when T̂ ≤ T̂r, J2 (·) increases in its argument.

Since
p∗(T̂)

1−p∗(T̂)
decreases in J2, given T̂ ≤ T̂r, we have

p∗ (p0) ≤ p∗
(
T̂
)
.

Lemma 1.15 implies that for any p0 > p∗ (p0), there exists an equilibrium

where the players use the Randomised Stopping Time Strategy as described in

Lemma 1.14.

Step 6 Suppose player j uses the Mixed Learning Strategy
(
ρML, σML

)
such

that (1) σML (t) = β > 0 for ∀t ≥ 0, (2) ρML (t) ∈ (0, 1] for t ∈
(
T̂ β, T̄ β

]
, (3)

ρML (t) = 1− β for ∀t > T̄ β, and (4) T̂ β ∈
[
T̂ β
l , T̂

β
r

]
where

T̂ β
r := min

{
t : L0e

(b−a)t =
b (−uL)− c

c+ (1− β) ae−at△̄H

}
.

and

T̂ β
l := min

{
t : L0e

(b−a)t =
−uL

e−aTuH − (1− β) (e−at) △̄H

}
.
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That is, she uses the Immediate action S Strategy and the Randomised Stopping

Time Strategy with probability β ∈ (0, 1) and 1 − β such that T̂ β is the time

at which player j starts randomising conditional on she uses the Randomised

Stopping Time Strategy.

Given the assumption that ρML (t) = 0 for t ≤ T̂ β and ρML (t) > 0 for

t > T̂ β, consider time T̂ β as a new time 0 and denote the time line starting from

T̂ β as τ . Let τ := t − T̂ β and λML (τ) := ρML
(
τ + T̂

)
. Let qML

τ := pτ+T̂ be

the belief and let LML
τ := qML

τ

1−qML
τ

be the likelihood ratio. Following the same

discussion as in step 5, at time t ≥ T̂ β, that is, τ ≥ 0, player i is indifferent

between acquiring information and taking action R if

dλML (τ)

dτ
=

b (−uL)− c− LML
τ c+ b△̄L

∫ τ
0 e

−bs dλ
ML(s)
ds ds− LML

τ △̄Hae
−aτ

(
1− λML (t)

)
LML
τ

(
ηML −

(
uH − △̄H

))
e−aτ + △̄Le−bτ

(1.22)

where ηML := uH − (1− β)
(
1− e−aT̂

)
△̄H . The intuition is that when consid-

ering time T̂ β as a new time 0, player i’s problem is essentially the same as in

step 5 with ηML being the payoff for the first action R taker instead of η. The

existence of an increasing function ρML (·) can be shown following the same logic

as in the proof of Lemma 1.7.

Next, I characterise the upperbound and lowerbound of T̂ β. Following sim-

ilar argument as in step 5, the upperbound T̂ β
r is the first time the marginal

cost of acquiring information exceeds the marginal benefit. At time 0 ≤ t < T̂ β,

given player j’s strategy, player i’s payoff associated with taking action R at

time t is

Uβ
R (t) =β [ptuH + (1− pt)uL]

+ (1− β)
[
pt
(
uH −

(
1− e−at

)
△̄H

)
+ (1− pt)uL

]
.

That is,

Uβ
R (t) =pt

[
βuH + (1− β)

(
uH −

(
1− e−at

)
△̄H

)]
+ (1− pt)uL.

The marginal cost of acquiring information is smaller than the marginal benefit
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if

b (−uL)− c

c+ (1− β) ae−at△̄H
> L0e

(b−a)t

Then, if L0 <
b(−uL)−c

c+(1−β)a△̄H
, there exists a T̄ β

r > 0 such that

T̂ β
r := min

{
t : L0e

(b−a)t =
b (−uL)− c

c+ (1− β) ae−at△̄H

}
.

The lowerbound of T̂ β
l is the earliest time point at which the player is willing to

start randomising instead of taking action S given player j’s strategy. Following

similar argument as in step 5, if p0 < pL, then, there exists a T̄ β
l > 0 such that

T̂ β
l := min

{
t : L0e

(b−a)t =
−uL

e−aTuH − (1− β) (e−at) △̄H

}
.

The following lemma characterises the equilibrium when p < p0 < p∗.

tbc

Lemma 1.16. Suppose b < 2a and c is sufficiently small. If p < p0 < p∗, then,

there exists an equilibrium where both players use the Mixed Learning Strategy(
ρML, σML

)
such that

1. σML (t) = β > 0 for ∀t ≥ 0.

2. ρML (t) = 0 for t < T̂ β.

3. ρML (t) ∈ (0, 1− β] for t ∈
(
T̂ β, T̄ β

]
and λML (τ) = ρML

(
τ + T̂

)
is a

solution to the differential equation (1.22) with initial condition λML (0) =

0 where dρML

dt > 0 for ∀t ∈
[
T̂ β, T̄ β

]
.

4. ρML (t) = 1− β for ∀t > T̄ β.

5. T̂ β ∈
[
T̂ β
l , T̂

β
r

]
.

Proof. Suppose player j uses the Mixed Learning Strategy
(
ρML, σML

)
.

I have shown that at time t ≥ T̂ β, player i is indifferent between taking

action R and acquiring information for dt longer and that at time 0 < t < T̂ β,

player i prefers acquiring information to taking action R. What left is to show

that if p < p0 < p∗, there exists a β ∈ (0, 1) such that player i is indifferent

between the Immediate action S Strategy and the Randomised Stopping Time

Strategy at time 0. Given Lemma 1.13, I show that such β ∈ (0, 1) exists if

p < p0 < p∗ (p0).

63



At time t < T̂ β, player i’s value associated with acquiring information is

W β (t) =pt

[
uH − (1− β) △̄H +

1

2
(1− β) △̄He

−at − c

a

]
− (1− pt)

c

b
+ pte

atH
(
T̂ β
)

where

H
(
T̂ β
)
=

[
1

2
(1− β) △̄He

−aT̂β
+
c

a
− 1

LT̂β

(
−uL − c

b

)]
e−aT̂β

is a constant. The value of acquiring the information at time t = 0 equals the

value associated with taking action S without acquiring the signal ifW β (0) = 0.

That is,

L0 =
c
b

uH − 1
2△̄H + 1

2β△̄H − c
a +H

(
T̂ β
) := Lβ

(
T̂ β
)
.

Then, β can be pinned down by L0 = Lβ
(
T̂ β
)
.

Lemma 1.17. When p < p0 < p∗ (p0), there exists a β ∈ (0, 1) such that

L0 = Lβ
(
T̂ β
r

)
.

Proof. The proof uses the intermediate value theorem. When β = 0, we have

Lβ=0
(
T̂ β=0
r

)
= L

(
T̂r

)
. Since p0 < p∗ (p0) , we have Lβ=0

(
T̂ β=0
r

)
= L

(
T̂r

)
>

L0.

Next, I show that when β = 1, we have Lβ=1
(
T̂ β=1
r

)
< L. When β = 1,

T̂ β=1
r satisfies

L0e
(b−a)T̂β=1

r =
b (−uL)− c

c
= L̄.

Then,

Lβ=1
(
T̂ β=1
r

)
=

c
b

uH − c
a +H

(
T̂ β=1
r

)
where H

(
T̂ β=1
r

)
=
(
c
a − c

b

)
e−aT̂β

r . Then, we have

Lβ=1
(
T̂ β=1
r

) [
uH − c

a

]
+
( c
a
− c

b

)
e−aT̂β

r Lβ=1
(
T̂ β=1
r

)
=
c

b
.

Since L0e
(b−a)T̂β=1

r = L̄, from the proof of proposition 1.1 we know that

L
[
uH − c

a

]
+
( c
a
− c

b

)
e−aT̂β

r

(
L

L0

) a
b−a

L =
c

b
.
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Since p < p0, we have Lβ=1
(
T̂ β=1
r

)
< L and thus Lβ=1

(
T̂ β=1
r

)
< L0.

Since Lβ=1
(
T̂ β=1
r

)
< L0 < Lβ=0

(
T̂ β=0
r

)
there exists a β ∈ (0, 1) such that

L0 = Lβ
(
T̂ β
r

)
.

Given Lemma 1.17, we know that when p < p0 < p∗ (p0), there exists at

least a pair (β ∈ (0, 1), T̂ β
r ) such that the players play the Immediate action S

strategy with probability β and player the Randomised Stopping Time Strategy

with probability 1− β.

5 Proof of Lemma 1.2 and Proposition 1.2

By definition, pM

1−pM
:=

−(uL−△
L
)

uH−△
H

and p̄
1−p̄ =

−uL− c
b

c
b

.When c
b <

−uL(uH−△
H
)

uH−△
H
−(uL−△

L
)
,

we have pM < p̄. Lemma 1.2 is shown.

The cutoff p satisfies

[
uH − c

a

] p

1− p
+K

(
p

1− p

) b
b−a

=
c

b
(1.23)

where K = c
b

(
b
a − 1

) ( p̄
1−p̄

)1− b
b−a

. When c→ 0, p̄→ 1 and p→ 0.

When c → 0, the cutoff p̃
1−p̃ = −buL−c

a△̄H+c
→ −buL

a△̄H
and hence p̃ →

b
a

−uL
△̄H

1+ b
a

−uL
△̄H

∈

(0, 1) .

6 Proof of Proposition 1.3

Suppose player j uses the pure strategy
(
TPS , S

)
where TPS = 1

a log
△̄H

−(uH−△̄H)
.

I show that when the conditions in Proposition 1.3 are satisfied, player i’s best

respond is to use the same pure strategy. The method is ‘guess and verify’.

Given that player j uses the pure strategy
(
TPS , S

)
, player i’s time t payoff

from taking R is

UR (t) :=

pt
[
uH −

(
1− e−at

)
△̄H

]
+ (1− pt)uL t < TPS

pt

[
uH −

(
1− e−aTPS

)
△̄H

]
+ (1− pt)uL t ≥ TPS

.

Let

U (t) := max {UR (t) , 0}

be player i’s time t payoff if she stops and takes an irreversible action. Let W (·)
be the value function associated with player i’s best response. Then, the value
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function satisfies the following HJB equation

max
{
pta
[
max

{
uH −

(
1− e−at

)
△̄H , 0

}
−W (t)

]
− (1− pt) bW (t) +W ′ (t)− c,

U (t)−W (t)} = 0.

(1.24)

Let

pNR

1− pNR
:=

c
b

1
2

(
2uH + △̄H

)
− c

a − uS + ψ (TPS)

where

ψ (t) :=

[
1

2
e−at△̄H +

c

a
−
(
−uL − c

b

) 1− pt
pt

]
e−at

I prove the following lemma.

Lemma 1.18. When c sufficiently small, if p0 ∈
(
pNR, p̃

)
, the value function

W (·) is

W (t) =

WL (t) t < TPS

0 t ≥ TPS

where

WL (t) = pt

((
uRH − △̄H

)
− c

a
+

1

2
△̄He

−at

)
− (1− pt)

c

b
+ pte

atψ
(
TPS

)
.

Proof. Let

H
(
t,W (t) ,W ′ (t)

)
:=pta

[
max

{
uH −

(
1− e−at

)
△̄H , 0

}
−W (t)

]
− (1− pt) bW (t) +W ′ (t)− c.

I show that W (t) is a viscosity solution of the HJB equation (1.24). For all the

points where W (t) is differentiable: if t < TPS , then W (t) ≥ U (t); if t > TPS ,

then H (t,W (t) ,W ′ (t)) ≤ 0. At the point where W (t) is not differentiable,

that is, t = TPS , I show that H (t,W (t) , z) ≥ 0 for z ∈ D+ where D+ =[
W ′

L

(
TPS

)
, 0
]
and H (t,W (t) , z) ≤ 0 for z ∈ D− where D− = ∅.
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Step 1 For t < TPS ,

W (t)− U (t) =WL (t)− UR (t)

= pt

[
−1

2

(
△̄H

)
e−at + eatψ

(
TPS

)
− c

a

]
+ (1− pt)

(
−uL − c

b

)
.

When p0 < p̃, ψ (t) increases in t. Then,

W (t)− U (t) > pt

[
−1

2

(
△̄H

)
e−at + eatψ (t)− c

a

]
+ (1− pt)

(
−uL − c

b

)
= 0

Step 2 When t > TPS ,W (t) = 0 andW ′ (t) = 0. Therefore,H (t,W (t) ,W ′ (t)) =

−c < 0.

Step 3 I first show that for sufficiently small c, W ′
L

(
TPS

)
< 0. We have

W ′
L (t) =

dpt
dt

[
uH − △̄H − c

a
+

1

2
△̄He

−at

]
− pt

1

2
a△̄He

−at

+
dpt
dt

c

b
+
dpt
dt
eatψ

(
TPS

)
+ ptae

atψ
(
TPS

)
and if c

a <
(
−uL − c

b

) 1−p
TPS

p
TPS

,

W ′
L

(
TPS

)
=

dpt
dt

|t=TPS

[
c

b
−
(
−uL − c

b

) 1− pTPS

pTPS

]
+ pTPSa

[
c

a
−
(
uS − uL − c

b

) 1− pTPS

pTPS

]
< 0.

When t = TPS , H (t,W (t) ,W ′ (t)) = 0. Since H (t,W (t) , z) increases in z, we

have H (t,W (t) , z) ≥ 0 for z ∈ D+.

7 Multi-player Extension: Proof of Proposition 1.4

In this extension, I generalise the two-player model to a multi-player model.

There are N > 2 players in this model. The first R taker gets the first prize uω

in state ω ∈ {H,L} and all other R takers get the second prize uω −△̄ω. In case

of the simultaneous move, the payoff is assumed to be the convex combination of

the first and second prizes. I focus on discussing the conditions for the existence

of the learning equilibrium where the players use the random stopping strategy.
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Suppose the players use the mixed strategy (ρ, σ) defined as in Definition 1.2,

where ρ is the probability that the player stops and takes R before or at time t

conditional on no revealing signal. By definition, ρ must be weakly increasing.

I derive a necessary condition for dρ
dt ≥ 0. Let Qω (t) be the probability that

no one has taken R before or at time t in state ω. Since I focus on symmetric

equilibrium, we have

Qω (t) = (1− Fω (t))N−1 (1.25)

where Fω (t) is the probability that a player takes R before or at time t in state

ω. We have

FH (t) = 1− e−at (1− ρ (t)) (1.26)

and

FL (t) =

t∫
0

[
e−bsdρ (s)

ds

]
ds. (1.27)

Let

UR (t) := pt
[
uH − (1−QH (t)) △̄H

]
+ (1− pt)

[
uL − (1−QL (t)) △̄L

]
be the time t payoff from taking R. When the players randomise between taking

R and acquiring information for dt longer, the indifference condition in equilib-

rium is

ptadt
[
uH − (1−QH (t+ dt)) △̄H

]
+(1− ptadt− (1− pt) bdt)UR (t+ dt)−cdt = UR (t) .

When dt→ 0, we have the following indifference condition

c = (1− pt) b
[
−
(
uL − (1−QL (t)) △̄L

)]
+ (1− pt)

dQL

dt
(t) △̄L + pt

dQH

dt
(t) △̄H .

(1.28)

Given (1.25), (1.26) and (1.27), (1.28) can be written as a differential equation

that involves ρ and its derivatives. That is,

dρ

dt
(t) =

b (−uL)− c− Ltc− b△̄L (1− FL (t))N−1 − Lt (N − 1) △̄H (1− FH (t))N−2 ae−at (1− ρ (t))

(N − 1) △̄L (1− FL (t))N−2 e−bt + Lt (N − 1) △̄H (1− FH (t))N−2 e−at
.
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To have dρ
dt ≥ 0, we need the numerator to be positive (as the denominator is

positive). A necessary condition for dρ
dt ≥ 0 is

p0
1− p0

≤ b (−uL)− c

(N − 1) △̄Ha+ c
=:

p̃N
1− p̃N

.

This shows Proposition 1.4.

8 Observable Actions: Proof of Proposition 1.5

When actions are observable, the history contains both the public component

and the private component. The public component is the action taken or not

taken by the opponent and the private component is the signal received by the

player herself. The following observation eliminates the histories that are not

interesting.

Observation 1.1. After receiving an H-state (L-state, resp) revealing signal,

the player takes R (S, resp) immediately.

This observation says that after receiving a revealing signal, the player does

not have incentives to postpone the action. Specifically, she does not have incen-

tive to conceal the fact that she has learned the state even though she knows that

her action is informative. This is because there is the first-mover advantage. The

player gains nothing from postponing an action after she has learned the state.

Given this observation, the interesting histories are the ones associated with no

revealing signal. It is thus sufficient to check the player’s strategy conditional

on no arrival of a revealing signal.

Suppose the opponent uses MRSS. I first consider the history after observing

the opponent taking S. Given the opponent’s strategy, she only stops acquiring

information and takes S after observing the L-state revealing signal. Therefore,

after observing the opponent taking S, the player infers that the state is L. Her

best response is hence to take S immediately.

Then consider the history after observing no action taken. First notice that

the player’s belief evolve in a different way. Given the opponent’s strategy, not

observing any action taken indicates that the opponent has not received any

revealing signal. As a result, the belief after observing no revealing signal and

no action taken up to time t is

pt
1− pt

= e2(b−a)t p0
1− p0

.
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Let

ŪR (t) := ptuH + (1− pt)uL

be the player’s time t payoff from taking R if she is the first R taker and let

UR (t) := pt
(
uH − △̄H

)
+ (1− pt)

(
uL − △̄L

)
be the player’s time t payoff from taking R if she is the second R taker. Since

p0 > pL, we have pt > pL and hence ŪR (t) > 0. The player is indifferent between

taking R and acquiring information for dt longer if

pt
{
adt
[
uH + (1− (1− adt) (1− h (t) dt)) △̄H

]
+(1− adt)

[
(1− adt) (1− h (t) dt) ŪR (t+ dt) + (1− (1− adt) (1− h (t) dt))UR (t+ dt)

]}
+ (1− pt)

{
(1− bdt)

[
(bdt+ (1− bdt) (1− h (t) dt)) ŪR (t+ dt) + (1− bdt)h (t) dtUR (t+ dt)

]}
− cdt

= ŪR (t) .

When dt→ 0, the equation above is equivalent to

pta
(
uH − ŪR (t)

)
+ (1− pt) b

(
−ŪR (t)

)
− pta

(
pt△̄H + (1− pt) △̄L

)
− h (t)

(
pt△̄H + (1− pt) △̄L

)
+
dŪR (t)

dt
= c.

The hazard rate

h (t) =
b (−uL)− c− pt

1−pt

[
a
(
pt
(
△̄H − △̄L

)
+ △̄L

)
+ c
]

pt
1−pt

△̄H + △̄L

is positive if and only if

pt
1− pt

<
b (−uL)− c

a
[
pt
(
△̄H − △̄L

)
+ △̄L

]
+ c

.

Since Proposition 1.5 assumes △̄H = △̄L and p0 < p̃, the hazard rate h (t) > 0.

Last, consider the history after the opponent taking R. Let pRt be the player’s

belief after observing the opponent taking R at time t. Since the opponent takes

R with positive rate after no revealing signal, the player’s belief pRt is smaller

than one. After the opponent has taken R, the player becomes the only player

in this game. The payoff associated with R now is uω −△̄ω in state ω ∈ {H,L}.
The player’s best response is to use the single DM optimal strategy.
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Chapter 2

Linear Search or Binary Search

1 Introduction

Pooled testing is a method combining the same type of specimen from several

people and conducting one laboratory test on the combined pool of specimens to

detect viruses. This method is used to screen SARS-CoV-2 (the virus that causes

COVID-19) infections in the community. If a pooled test result is negative then

all the specimens can be presumed negative with the single test. If it is positive,

each of the specimens in the pool will need to be tested individually to determine

which specimens are positive. Suppose there are sixteen specimens waiting to

be tested and one of them is positive. There are multiple ways to conduct the

tests in order to search for the positive specimen. I will call it Binary Search

if the pooled testing with a pool size of eight (that is, half of the specimens) is

used and Linear Search if the specimens are tested individually.1

When people only have access to binary signals, a single round of search

normally is not sufficient. Learning the truth takes time. Learning immediately

is possible but relies on luck. In the example, the laboratory tests only deliver

positive or negative results. To find the positive specimen, after a pooled test

with a pool size larger than one, follow-up tests are certainly needed. A test

with the pool size of one could find the positive specimen immediately only if it

coincidentally tests the positive specimen. In most circumstances, a sequence of

tests is needed. I refer to the sequence of tests the test protocol.

Any sensible test protocol allows the learner to find the positive specimen.

The main difference between test protocols is in terms of the riskiness involved.

That is, how and when the positive specimen is found. The test protocol con-

1Linear Search and Binary Search are standard terminologies in Computer Science litera-
ture.
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sisting of a sequence of linear searches allows the learner to learn immediately,

but it is risky and can be slow. When this linear search protocol is used, the

specimens are tested individually and sequentially. The positive specimen can

be found with a minimum of one and a maximum of fifteen tests. The test

protocol consisting of a sequence of binary searches is faster and safer, but it is

impossible to learn immediately. When this binary search protocol is used, the

positive specimen can be found for certain after four tests.2 The possibility of

learning immediately induced by the linear search protocol could be useful in

an inpatient clinical setting where isolating the positive case immediately can

minimise the risk of hospital transmission. The guaranteed learning after a fixed

number of tests can be beneficial when the test kits have to be pre-ordered or

when the result release date has to be announced in advance.

The main purpose of this paper is to understand the factors that affect the

learner’s choice of the test protocols. The learner will learn the truth eventually

and the question of interest is how the learner acquires pieces of information to

learn the truth over time. Given the structure of the tests, some test protocols

allow the learner to acquire information and learn the truth in a safe and steady

way, while some test protocols surprise the learner with each piece of information

which allows the learner to learn immediately. The learner faces the tradeoff

between possibly learning today but more likely nothing and no learning today

but learning for certain in the near future.

The learner’s preferences, in particular, the patience level and her time risk

attitude are the key factors that determine the choices of the test protocols. If

a learner is impatient, then, she appreciates the test protocols that allow her

to learn today. The time risk attitude is the learner’s risk attitude towards

the potentially uncertain learning time. To understand the time risk attitude,

suppose the learner can choose between two ‘lotteries’. Lottery one is a test

protocol that allows her to learn today or the day after tomorrow with equal

probabilities and lottery two allows her to learn tomorrow for certain.3 If learning

the truth gives the learner a monetary payment of unity, then, these two lotteries

generate the same expected payment. The difference between the two lotteries

is in terms of the risk involved. Lottery one is riskier as the learner may learn

2The first pooled testing has a pool size of eight. Eight random specimens will be tested
together in one pooled test. If the result is positive, four random specimens from these eight
specimens will be tested again in the second pooled test. If the result is negative, the sec-
ond pooled testing will be conducted on the untested specimens in the first round. The first
pooled test eliminates eight negative specimens, the second pooled test eliminates four negative
specimens, the third test eliminates two and the fourth test pins down the positive specimen.

3In my model, the learner never chooses between these two lotteries because of the structure
of the tests. These two lotteries are just for illustration purposes
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the truth today or the day after tomorrow while lottery two is safe. Given that

both lotteries generate the same expected payment, a learner is time risk averse

if she prefers lottery two and is time risk seeking if she prefers lottery one. A

test protocol with different pool sizes induces a ‘lottery’ of learning time. A time

risk averse learner would appreciate a test protocol that allows her to learn at

some time for certain.

To model both time risk attitude and the patience level, the standard lifetime

utility with exponential discounting is not sufficient. It automatically describes

a time risk seeking preference whenever the discount factor is smaller than one.

This can be seen by evaluating the lifetime utility associated with the two lotter-

ies introduced earlier. Suppose learning the truth gives the learner a monetary

payment of unity and the learner has a discount factor δ ∈ (0, 1). Then, the

utility associated with lottery one is .5 + .5δ2 and the utility associated with

lottery two is δ. The utility from lottery one is always greater than that from

lottery two if δ is between zero and one. In other words, the lifetime utility with

exponential discounting implicitly describes a time risk loving preference. This

time risk loving attitude is a side product of assuming exponential discounting.

Because of this, the standard utility function with exponential discounting does

not allow us to isolate the effect of the time risk attitude and the patience level

on the learner’s optimal choice.

To disentangle the effects of the time risk attitude and the patience level,

I discuss the main tradeoff between learning safely and possibly learning today

with a single-agent model where the agent’s utility is modelled by a generalised

discounted utility function. This utility function introduced in DeJarnette et al.

(2020) allows for different time risk attitudes as well as patience levels. The

agent’s goal is to learn the true value of a parameter, which is drawn from a

finite parameter set. The agent can learn the true value of a parameter by doing

a sequence of tests. At each time, the agent can choose any number of elements

from the parameter set and then conduct a single test to check if the true value

of the parameter is among the elements she has chosen. The test result is binary

and truthful. Given the true value of the parameter and the chosen elements,

the agent receives a positive or negative test result. The positive result indicates

that the true value of the parameter is among one of the elements she has chosen

while the negative result indicates the opposite. The test result cannot indicate

which element is the true value of the parameter unless the agent only picks up

one element.

The overall informativeness of a test protocol is independent of the use

of Linear or Binary Search. Any sensible test protocol allows the learner to
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learn the truth as the positive specimen will be found eventually. However, the

informativeness of one round of Linear Search and Binary Search are not the

same. In the example, the test result is a binary signal. The informativeness

of a negative or positive signal, and the probability of receiving a negative or

positive signal, varies with the pool size. A positive signal of the individual test,

that is, a pooled test with the pool size of one, is very informative as it pins

down the positive specimen immediately. But the probability of receiving this

informative signal is low. It is more likely to get a negative signal that does not

contain much information. For a pooled test with a pool size of eight, both the

negative and positive signals have the same informativeness level and are equally

likely to be received. They are equally informative in the sense that they both

eliminate half of the negative specimens, but neither test result is informative

enough to pin down the positive specimen. At each time the learner chooses the

pool size of a test, she essentially chooses both the informativeness of the signals

and the ex-ante probability of receiving each signal.

This paper shows that given the uniform prior, only two test protocols can

be optimal: the Linear Search test protocol or the Binary Search protocol. All

other test protocols are suboptimal. Whether the Linear Search or the Binary

Search is optimal depends on the agent’s time risk attitude and patience level. If

the agent is time risk averse, then, the Binary search protocol is always optimal.

If the agent is time risk seeking and sufficiently impatient, then, the Linear

Search protocol is optimal.

This paper is closely related to Zhong (2022). Zhong (2022) discusses a

general dynamic information acquisition framework where the agent can choose

any information structure subject to a flow cost constraint at each time. Zhong

(2022) shows that when the agent is an expected utility maximiser who discounts

the future payoffs exponentially, the Poisson signal is the optimal signal struc-

ture. This is because the Poisson signal generates the learning time with the

highest variance compared to other signal structures. Since the agent discounts

the future payoffs exponentially, she has the risk-loving time preference, and

hence prefers the signal structure that induces a high variance of learning time.

The other paper Zhong (2017) explicitly discusses the relationship between the

optimal information acquisition and the agent’s time preference. Zhong (2017)

shows that subject to a flow cost constraint, any information structure induces

the same expected learning time, and the Poisson signal induces the largest

variance. The agent with risk-loving time preference hence prefers the Poisson

signal. I focus on comparing how an agent obtains information when she has dif-

ferent preferences given a specific class of information structures, while Zhong’s
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papers focus on discussing the agent’s optimal information choices in a general

framework.

The signal structure in this paper tells the agent the learning direction.

It can be imagined as the indicator at the intersection of two roads that tells

the agent which direction to go in order to find the target. This shares some

similar features as in Callander (2011). In Callander (2011), the agent wants

to learn about a mapping from the choices to the outcomes. The mapping is

modelled as a realised Brownian motion, where the agent knows the parameters

that characterise the Brownian motion, but does not know its realisation. In

order to learn about the realised Brownian motion, the agent can observe the

alternative and outcome pairs that has been chosen by his predecessors and

then choose an alternative to learn its outcome. Because of the property of the

Brownian motion, when the agent observes the alternative and outcome pairs of

his predecessors, if the previous outcomes are not of satisfaction, the agent learns

the direction to search for the next alternative. This has the similar features as

the signal structure in my paper, but it is different. In Callander (2011), when

the agent chooses an alternative, the agent learns the outcome associated with

that alternative. However, in my paper, the signal itself does not allow the agent

to learn the unknown parameter directly. The signal only serves as an indicator

that tells the agent the learning direction. Learning happens when there is only

one candidate left towards that direction. Learning can be considered as indirect

in this sense.

This paper is related to the literature that discusses the preferences on time

lotteries. This is because the final payoff associated with learning can be con-

sidered as a time lottery. Given a search method, the agent faces a time lottery

that gives him a payoff of one at a random time. Dillenberger et al. (2018) and

DeJarnette et al. (2020) discuss the preferences on time lotteries. One of the

ideas in those papers is that the commonly used expected utility with exponen-

tial discounting describes a risk-loving time preference. In order to characterise

other time risk attitude, a generalised expected utility should be considered. My

paper can be considered as an application of the generalised expected utility to

the learning and searching problem.

This paper is also related to the literature that discusses the timing of resolu-

tion of uncertainty. If the agent always uses Binary Search, then the uncertainty

about the timing of learning is resolved, and hence it can be regarded as an

early resolution of uncertainty. This can be shown from the example in the in-

troduction. If the employer always uses Binary Search, she knows that she will

learn the type of the employee at the second time period. However, if the agent
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always uses Linear Search, then the timing of learning the unknown remains

uncertain, and it thus can be regarded as a late resolution of uncertainty. There

is a group of literature discussing the preferences on early and late resolution

of uncertainty, including Epstein & Zin (1989), Kreps & Porteus (1978), Dillen-

berger (2010) and Palacios-Huerta (1999). This paper can be considered as an

application of the preferences on the resolution of uncertainty to the learning

and searching problem.

The last group of the literature is the computer science literature on Linear

and Binary Search. In computer science, Linear Search and Binary Search are

algorithms to find the position of a target value. The details of these algorithms

can be found in Knuth (1998). The recent computer science papers including

Kumari (2012), Mehta et al. (2015), and Rahim et al. (2017) compare the Linear

Search and Binary Search algorithms in different situations. While the computer

science literature focuses on comparing the speed and the complexity of the

search algorithms, this paper focuses on discussing how people’s time preferences

affect their optimal choices of the search algorithms. Without discussing which

search algorithm allows the agent to learn faster, this paper discusses how agent’s

preferences, in particular, agent’s patient level and the risk attitude, affect their

choice of the search algorithms.

2 The Model

This section first introduces the model setup and then discusses the assumptions

of the model.

2.1 Setup

There is a single decision-maker in this model. I call her the agent. The agent

wants to learn the true value of a parameter θ ∈ Θ, where Θ is finite with the

cardinality N̄ . I assume that the set Θ is sorted such that θ1 < θ2 < · · · <
θN̄ . The parameter θ is drawn from a distribution F with the probability mass

function f at the beginning and it is fixed over time. Time t = 0, 1, . . . , T is

discrete and finite. The final period T is greater than N̄ − 2. The agent’s action

at each time t is to choose an element rt ∈ Θ to test.

The test at time t has two outcomes: pass or fail. The element chosen fails

the test if it is greater than the true value, and it passes otherwise. By choosing

the test at time t, the agent effectively chooses the information structure as

described below. The information structure at each time t consists of a binary

signal st ∈ {0, 1} and a probability distribution over the signals. The 0 signal is
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the fail signal, while the 1 signal is the pass signal. Conditional on the true value

of the parameter and the test chosen, the probabilities of receiving the signals

are

Pr(st = 0 | θ < rt) = Pr(st = 1 | θ ≥ rt) = 1.

A pair (rt, st) is the agent’s action and the signal received at time t. The

agent remembers her past actions and the past signals received. Let rt =

{r0, r1, . . . , rt−1} be the sequence of the past actions, and let st = {s0, s1, . . . , st−1}
be the sequence of the past signals. At the beginning of time t, It = {rt, st} de-

notes the history up to that point. The set of histories is denoted by I =⋃
t=1,2,...,T It ∪ ∅. The strategy of the agent is given by a mapping R : I → Θ

from the histories to the test choices.

The agent has the prior belief f0 =
(
f0(θ)

)
θ∈Θ with f0(θ) ∈ (0, 1) for ∀θ ∈ Θ.

At the start of time t, the agent has the belief ft. After choosing the action rt,

the agent receives the signal st and updates the belief to ft+1 using Bayes rule.

I assume the agent has a uniform prior belief. That is f0(θ) =
1
N̄

for ∀θ ∈ Θ.

At each time t, the agent either learns or fails to learn the true value of the

parameter. If she learns the true value of the parameter at time t, then she gets

a reward xt = x > 0, and the game ends. If she fails to learn the true value of

the parameter at time t, she gets xt = 0 and the game enters time t + 1. Let

u : R → R+ ∪ {0} be the utility function that maps from the ex-post reward

to the set of positive real numbers. The agent evaluates the ex-post reward xt

at time t by u(xt), where u(·) is increasing and u(0) = 0. The objective of the

agent is to choose the strategy that maximises her lifetime utility

E
[
ϕ

(
δτu(x)

)]
, (2.1)

where ϕ is strictly increases, τ is the time that the agent learns the value of the

parameter, and the expectation is taken over the distribution of learning time

τ . This lifetime utility is the generalised expected discounted utility introduced

in DeJarnette et al. (2020). It allows for different time risk attitude. When

ϕ(z) = z, we have the standard exponential discounting.

2.2 Discussion

This model is a single agent’s learning problem. The unknown parameter is

predetermined and fixed overtime. The agent can costlessly do tests in order

to obtain information about the unknown parameter. The results of the tests

are purely informational. That is, the agent’s flow payoff at time t does not

78



depend on the results of the tests. Therefore, the agent does not have incentive

to pass the test. These assumptions are similar to Meyer (1994), where the

learner (‘the principal’ in their model) can costlessly design tasks to learn the

type of the worker and the principal does not gain any payoffs related to the task

completion. Deb & Stewart (2018) also has the similar learning feature, but the

object the learner wants to learn in their model is a strategic player, and hence

not a fixed parameter.

The agent in this paper just wants to learn the true value of the parameter.

There is no exploitation and exploration tradeoffs. Since the agent only gets a

reward when she learns the unknown parameter, there is no exploitation. The

agent does not settle before learning the true value of the parameter. Therefore,

the model is not about when the agent stop learning. It is about how the

agent acquires information to learn the true parameter when she has different

intertemporal preferences.

The parameter set is assumed to be finite and sorted. It is assumed to be

finite so that the agent can eventually learn the true parameter. This assumption

is equivalent to assuming the unknown parameter is drawn from a compact set,

and the agent learns the unknown parameter when she is ϵ-close to the true value

where ϵ is exogenous. The parameter set is assumed to be sorted to simplify the

expression of the agent’s action and the signal structure. If this assumption is

dropped, the following specification of the agent’s action and the signal structure

is equivalent to what is in the model setup. The agent’s action is to partition

the parameter set into two subsets. The signal tells the agent which subset the

true parameter belongs to. Then Linear Search and Binary Search should also

be redefined. The partition is considered to be equivalent to Linear Search if

one of the subsets only contains one element. The partition is considered to be

equivalent to Binary Search if the two subsets have the same number of elements.

In the computer science literature, Binary Search always requires the parameter

set to be sorted. But for the purpose of this paper, this assumption is not needed.

This assumption is made to simplify the expression of the agent’s action and the

signal structure.

Time is finite and the duration of the game is long enough such that the

agent always has enough time to learn the unknown parameter. 4 Linear Search

4This requires that the agent does not choose fully uninformative signals. An alternative
situation is when there exists a deadline such that the agent may not have enough time to
learn. That is, the final period T is smaller than N̄ − 2. If there were a deadline, it may result
in different optimal search behaviour. An extreme case is that if the agent only has one period
to learn the value of the parameter, then Linear Search is always optimal, as it allows the agent
to learn with positive probability, while other search strategies do not. When a deadline exists,
the agent might want to maximise the probability of learning the unknown parameter. The
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requires the longest time to learn. If the cardinality of the parameter set is N̄ ,

it requires at most N̄ − 1 periods to learn the unknown parameter. Therefore,

with the assumption that T ≥ N̄−2, the agent always has enough time to learn.

The agent is assumed to be Bayesian. However, because of the signal struc-

ture, where the the signal is binary and noise free, the Bayesian assumption

is not as demanding as in the literature. The agent just needs to be able to

partition the parameter set and then re-scale the prior belief after receiving the

signal. Bayes rule is not needed for the agent to revise her belief.

Finally, the agent’s prior belief is assumed to be uniform. Uniform distri-

bution is symmetric. It describes that all the parameters in the parameter set

are equally likely. Following the Principle of Insufficient Reason, if there are N

indistinguishable parameters, each of them should be assigned a probability 1
N .

In Bayesian probability, the uniform prior is the simplest diffuse prior. It ba-

sically describes that the agent only has vague information about the unknown

parameter. The important property I exploit in this paper is the symmetry of

the uniform prior. The result that the agent does not switch between Binary

Search and Linear Search relies on this symmetry property. In Section 1.2, I

discuss a simple relaxation of the uniform prior assumption.

3 The Benchmark Case

I consider the case that ϕ(z) = z and u(z) = z as the benchmark case. The agent

discounts the future payoff exponentially, and the time-t utility is risk neutral.

The lifetime utility now becomes

maxE
[
δτx

]
, (2.2)

where δ ∈ (0, 1) is the discount factor. I normalise the reward x to 1 in the

following discussion to simplify the calculation.

I first rewrite the agent’s problem as a dynamic programming problem and

then characterise the optimal strategy. The main results Proposition 2.1 char-

acterise the optimal strategy.

3.1 Dynamic Programming Setup

I first define the state variable and the choice at time t, and then formally define

Binary Search and Linear Search. Then I write down the Bellman equation.

optimal search behaviours might be different from the optimal ones in this paper.
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At each time t, by choosing the test rt, the agent partitions the parameter set

into two subsets. The signals tell the agent which set the true parameter belongs

to. The agent then can eliminate the other subset. Therefore, from the agent’s

point of view, the parameter set shrinks to one of the subsets after receiving the

signal. Since the agent remembers the past actions and the past signals, the

optimal action at next time must belong to the subset that is not eliminated. It

is then sufficient to keep track of the evolution of the parameter set. Let Θ0 = Θ

be the initial parameter set. Let Θt be the parameter set at the beginning of

time t. Since the agent’s action can be considered as partitioning the parameter

set, and the agent has uniform prior, the cardinality of the parameter set can

be modelled as the state variable at time t. The action of the agent at time t

is to choose how to partition the parameter set into two subsets. Let Nt be the

cardinality of the parameter set Θt. Let mt and nt be the cardinalities of the

two subsets the agent chooses. Thus, at time t, the state variable is Nt, and the

choice is (mt, nt) ∈ Ft = {(mt, nt)|mt + nt = Nt, (mt, nt) ∈ ((Z+)
2 ∩ [1, Nt])

2},
where Ft is the feasible set of the choice at time t. Due to symmetry, assume

without loss of generality that mt ≤ nt. The evolution of the state is as follows.

Given the state at time t and the choice (mt, nt), the state at time t+ 1 is

Nt+1 =

mt with probability mt
Nt

nt with probability nt
Nt

.

Next, I formally define Binary Search, Linear Search and the agent learns

the true parameter at time t using the terminologies defined above.

Definition 2.1. The Binary Search Policy in state Nt is the choice (mt, nt) ∈ Ft

such that mt = ⌊Nt
2 ⌋ and nt = ⌈Nt

2 ⌉ 5 . The Binary Search Strategy is the strategy

that prescribes the agent the Binary Search Policy in all the states.

Definition 2.2. The Linear Search Policy in state Nt is the choice (mt, nt) ∈ Ft

such that mt = 1 and nt = Nt − 1. The Linear Search Strategy is the strategy

that prescribes the agent the Linear Search Policy in all the states.

Definition 2.3. The agent learns the true parameter at time t if Nt+1 = 1 (Nt+1

is the state at the end of the period t).

To simplify the expression, I ignore the t subscript in the following discussion.

If the agent uses the Linear Search Policy in state N , the agent can learn the

true parameter with probability 1
N . The state evolves to N−1 in the next period

5The notation ⌊x⌋ rounds x ∈ R to the nearest integer less than or equal to x, and the
notation ⌈x⌉ rounds x ∈ R to the nearest integer greater than or equal to x.
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with probability N−1
N . If the agent uses the choices other than the Linear Search

Policy in state N , the agent cannot learn the true parameter today if N > 2,

and the state evolves according to his choice. Define another set F† = F \{(m =

1, n = N − 1)} to be the set of the choices excluding Linear Search in state N .

The Bellman equation is

V (N) = max

{
1

N
+
N − 1

N
δV (N − 1), max

(m,n)∈F†
δ
{m
N
V (m) +

n

N
V (n)

}}
.

The first term is the value of the Linear Search Policy in state N and the second

term is the value of other choices in state N . If N = 2, the agent learns the

value of the parameter at the end of this period. That is, V (2) = 1. From this,

the initial condition of the dynamic programming problem is V (1) = 1
δ . If there

is only on element in the parameter set, it means that the agent learns the true

parameter in the last time period. The Bellman equation can be simplified to

V (N) = max
(m,n)∈F

δ
{m
N
V (m) +

n

N
V (n)

}
(2.3)

with the initial condition V (1) = 1
δ . The closed form of the value function

when N ≤ 3 are easy to compute, where V (2) = 1 and V (3) = 1
3 + 2

3δ. Let

W (N) := NV (N) be the product of N and the value function V (N). The

Bellman equation (2.3) can be rewritten as

W (N) = max
(m,n)∈F

δ
{
W (m) +W (n)

}
.

3.2 The Optimal Strategy

In this section, I will show that the Linear Search Strategy is optimal if the agent

is sufficiently impatient, and the Binary Search Strategy is optimal otherwise.

All other strategies are weakly sub-optimal.

Using the Linear Search Strategy allows the agent to test one element at

each time in any state N > 2. The best-case scenario is that the agent learns

the unknown parameter immediately at t = 0, but most likely the agent learns

the unknown parameter at some other time 0 < t < N̄ − 2. By using the Linear

Search Strategy, the agent effectively check one element in the parameter set at

a time. But, when there are only two parameters in the parameter set, learning

that one parameter is not the true value of parameter is equivalent to learning

that the other parameter left is. It is as if the agent is able to check both

parameters at once. Since the agent’s prior belief is uniform, the expected value
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associated with the Linear Search Strategy is thus the sum of the geometric

series L = ( 1
N ,

1
N δ, . . . ,

1
N δ

N−3) plus 2
N δ

N−2.

Using the Binary Search Strategy, the agent can learn the value of the pa-

rameter within two consecutive periods. When the state is a power of two, say

N = 2K , where K is a positive integer, the agent learns the unknown parameter

at time τN2 = K − 1 with probability one. If the state is greater than 2K and

smaller than 2K+1, the agent learns the unknown parameter at time τN1 = K

or τN2 = K − 1 with positive probabilities πN

N and 1 − πN

N respectively. The

uncertainties associated with the timing of learning is small compared to that of

the Linear Search Strategy. The agent does face uncertainties in each state that

is not a power of two. In an odd state, the uncertainty arises because the fol-

lowing state is not deterministic. In an even state, the uncertainty can still arise

if the following state is odd. When starting from a large initial state N̄ , a big

number of states can be visited before learning the unknown parameter. Since

there can be uncertainties in each of the odd state visited, one may think that

there could be a high aggregate uncertainty associated with the Binary Search

Strategy. However, this is not true. This is because the agent only learns the

unknown parameter when the state evolves to one. By using the Binary Search

Strategy, in any state N > 3, the state never evolves to one directly. Instead,

state one only occurs after states N = 2 and N = 3. When the state N = 3

occurs, with probability of a third, the agent learns the unknown parameter.

When the state N = 2 occurs, the agent learns the parameter for sure today.

If the state evolves to N = 2 directly without reaching state three, the agent

learns the unknown for certain. If the state evolves to N = 3 before evolving to

N = 2, the agent might learn the unknown parameter today or tomorrow. By

using the Binary Search Strategy, the learning procedure ends in visiting either

state N = 2 or N = 3. As a consequence, the agent always learn the unknown

parameter within two consecutive periods.

Let V L(·) and V B(·) be the values associated with the Linear Search Strategy

and the Binary Search Strategy. Let πN = 2N − 2⌊log2 N⌋+1, τN1 = ⌈log2N⌉ − 1,

and τN2 = ⌊log2N⌋− 1, where τN1 and τN2 are the two consecutive time at which

the agent learns the unknown parameter, and πN

N ∈ [0, 1) is the probability that

the agent learns the unknown parameter at time τN1 .

Lemma 2.1. The value associated with the Linear Search Strategy is

V L(N) =
1

N

(
1− δN−1

1− δ
+ δN−2

)
.
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The value associated with the Linear Search Strategy is

V B(N) =
1

N

[
πNδτ

N
1 + (N − πN )δτ

N
2
]
.

Given the reward x, the function V L(·) and V B(·) decrease in N . Let

WL(N) := NV L(N) and WB(N) := NV B(N).

Lemma 2.2. When δ > 0.5 (δ < 0.5), the first-order difference of WL(·) is pos-
itive (negative), and the second-order difference of WL(·) is negative (positive).

The first-order difference of WB(·) is positive (negative), and the second-order

difference of WB(·) is non-positive (non-negative). When δ = 0.5, both WL(N)

and WB(N) are independent of N .

Lemma 2.1 and Lemma 2.2 can be used to show the optimality of the Linear

and Binary Search Strategy.

Proposition 2.1. There exists a unique threshold δ̄ = 0.5 such that the Linear

Search Strategy is weakly optimal if the agent has a discount factor δ ≤ δ̄, and

the Binary Search Strategy is weakly optimal if the agent has a discount factor

δ ≥ δ̄.

To check the optimality of the Linear (Binary) Search Strategy, I define a

Linear (Binary) Search Deviating Strategy and then show that the Linear (Bi-

nary) Search Deviating Strategy that gives the agent a higher payoff than the

Linear (Binary) Search Strategy does not exist. A Linear (Binary) Search Devi-

ating Strategy is a one-step deviation strategy from the Linear Search Strategy,

such that the agent follows Linear (Binary) Search Strategy in all the states

n ̸= N , and deviates from the Linear (Binary) Search Policy in state N .

When the agent deviates from the Linear Search Policy to some other policy

(m,n) ∈ F† in state N , the payoff today will be zero. The most profitable one-

step deviation strategy hence must maximise the continuation value. If the agent

uses the (m,n) ∈ F† policy in state N , then, the (undiscounted) continuation

value is the convex combination of V L(m) and V L(n), with the weights being
m
N and n

N . Since m ≤ n and V L(·) is decreasing, the value of V L(m) is greater

than the value of V L(n), but the weight attaches to V L(m) is smaller than the

weight attaches to V L(n). Increasing m (i.e. decreasing n) decreases the value of

V L(m), but puts a higher weight to that value. At the same time, it increases the

value of V L(n), but decreases the weight attaches to V L(n). As a consequence, it

is ambiguous whether increasing m and decreasing n increases the continuation

value. Whether increasing m is optimal depends on the value of the function
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WL(·). According to Lemma 2.2, the function WL(·) is decreasing and convex

when δ ≤ δ̄. Therefore, the increase of the continuation value from decreasing n

is smaller than the decrease of the continuation value from increasing m. Thus,

if the agent were to deviate from the Linear Search Strategy in state N , the most

profitable Linear Search Deviating Strategy is to choose (m,n) = (2, N − 2) in

state N .

In state N , When the agent deviates from the Linear Search Policy in

state N to (m,n) = (2, N − 2), the agent gives up the flow payoff of 1
N to-

day, and increases the (discounted) continuation value from δN−1
N V L(N − 1) to

δ[N−2
N V L(N−2)+ 2

N V
L(2)]. To check whether the one-step deviation is optimal,

the agent compares the value she gives up today (the loss) with the increase of

the discounted continuation value (the gain). If the loss and the gain are scaled

up by N , then the rescaled loss is a constant and the rescaled gain is decreasing

in N when δ < δ̄. That is, the rescaled gain is maximised in the smallest state

N = 4. Therefore, if it is not optimal for the agent to deviate from the Linear

Search Policy in state N = 4, then, the agent would not want to deviate from the

Linear Search Policy in any other state that is greater than four. In state N = 4,

when δ ≤ δ̄, the discounted increase in the continuation payoff by deviating from

the Linear Search Policy is smaller than the payoff given up today. The agent

hence does not want to deviate in state N = 4, and does not want to deviate in

any other states greater than four.

When the agent deviates from the Binary Search Strategy to the policy

(m,n) ∈ F† in state N , it does not change the payoff today, which is still zero.

but changes the continuation values. If the continuation value in stateN is scaled

up byN , then, given any policy (m,n) ∈ F† in stateN , the rescaled continuation

value is the sum of the two elements mV B(m) and nV B(n). By definition, the

Binary Search Policy in stateN maximises the value ofm. Whether decreasingm

increases the continuation value depends on the property of the function WB(·).
According to Lemma 2.2, WB(·) function is increasing and concave when δ > δ̄.

Since m is assumed to be smaller than n, decreasing m by one does not offset

the effect of increasing n by one. Therefore, deviating to the policy (m,n) ∈ F†

in state N is not optimal when δ is sufficiently big.

If instead of deviating to a policy (m,n) ∈ F†, the agent deviates to the

Linear Search Policy in state N , effectively, the agent postpones Binary Search

until tomorrow and takes the risk of learning the unknown parameter today. If

the agent fails to learn the unknown parameter today, she gets a small benefit

of decreasing the state by one in next period. The cost and benefit of deviating

to the choice Linear Search in state N are different in different states. It is more
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beneficial to deviate to the Linear Search Policy in a small state, say in state

N = 4, rather than in a big state, say in state N = 400. First, it is because

the probability of learning the unknown parameter, which is 1
N , is higher when

N is small. Second, it is because Binary Search is more efficient in terms of

eliminating the number of impossible candidates when the state is big. For

example, in state N = 400, the Binary Search Policy today will eliminate 200

impossible candidates, while in state N = 4, the Binary Search Policy will only

eliminate 2 impossible candidates. Because of the two reasons above, if the

agent would like to deviate to the Linear Search Policy in some state, it is most

profitable for him to deviate in state N = 4, rather than in state N = 400.

If deviating to the Linear Search Policy in state N = 4 is not optimal, then

deviating to Linear Search Policy in other states is also not optimal. The gain

from deviating to the Linear Search Policy in state N = 4 is 1
4x, and the loss is

V B(4)−δ 34V
(3). When δ > δ̄, the gain is always smaller than the loss. Deviating

to the Linear Search Policy in state N = 4 is thus not optimal. Therefore, when

δ > δ̄, deviating to the Linear Search Policy in any state N is not optimal.

3.3 Discussion

The thresholds δ̄ in Proposition 2.1 is a constant 1
2 . This means that for any

value δ ∈ (0, 1), either the Binary Search Strategy or the Linear Search Strategy

are weakly optimal. Some of the alternative strategies are weakly sub-optimal

but not strictly sub-optimal because they induce the same distribution of the

learning time as is induced by the Linear or Binary Search Strategy. For example,

when N = 6, the following two strategies induce the same distribution of the

learning time. That is, the agent learns the parameter at t = 1 with probability
1
3 and learns the parameter at t = 2 with probability 2

3 .

Strategy One: The Binary Search Strategy.

Strategy Two: The agent chooses (m,n) = (2, 4) in state N = 6. If the state

4 occurs, the agent chooses (m,n) = (2, 2). and if the state 2 occurs, the agent

chooses (m,n) = (1, 1).

Since these two strategies induce the same distribution of the learning time,

these two strategies induce the same expected utility. The Strategy Two above

is only weakly dominated by the Binary Search Strategy.

The threshold δ̄ is a constant, and is independent of the state N . For

example, if an agent has the discount parameter δ = 0.45, then it is optimal for

him to use the Linear Search Policy in state N = 4, and it is also optimal for

the agent to use the Linear Search Policy in state N = 400. If the agent has the

discount parameter δ = 0.9, then it is optimal for him to use the Binary Search
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Policy in state N = 4 and in state N = 400. Thus the agent does not need to

commit to these policies, they are the consequences of the optimal choices at

every state. The simple form of the policy is due to the simple form of the state

variable. The state variable is just the cardinality of the parameter set because

of the uniform prior assumption. Since the agent’s prior belief is assumed to be

uniform, the agent’s posterior belief is still uniform. The agent always believes

that the remaining candidates are equally likely, that is, the likelihood ratio

of any two candidates is one. The number of candidates in the parameter set

only scales up or down the absolute value of the probability attached to each

candidate, but does not change the likelihood ratio of any two candidates. As a

result, with the uniform prior assumption, in different states, the agent is facing

the problem with the same properties: all the elements in the parameter set are

equally likely to be the true value of the parameter. If the likelihood ratio of any

two elements changes as the state changes, the agent might use different policies

in different states. For example, let N be the cardinality of the initial parameter

set, which is the initial state. Consider the agent’s prior belief to be such that

the first element θ1 in the parameter set is the most likely one with probability

a half, and all other parameters are equally likely. The likelihood ratio of θ1 to

other elements is N − 1. In this case, since θ1 is very likely compared to other

elements in the parameter set, the agent has a strong incentive to choose the

Linear Search Policy in state N regardless the value of δ. If the agent does not

learn the unknown parameter, the state N − 1 occurs and the agent’s belief is

revised to a uniform distribution. In state N − 1, the agent hence is facing the

problem as in the benchmark case. The likelihood ratio of any two elements is

one. The agent’s strategy then depends on δ. In Section 1.2, I consider another

prior belief to check how the it can affect the agent’s optimal strategy.

The argument above appears to say that being patient or impatient explains

why the Linear Search Strategy or Binary Search Strategy is optimal. But,

there are other models of time preference where this apparent relationship fails.

Consider the expected utility with a linear discounting, that is, the agent pays

a fixed cost c at each time t if she searches and does not learn the unknown

parameter (see Section 1.1 for details). My main result in this case is that

the Binary Search Strategy is always optimal as long as the cost c is positive

and bounded. The agent is also impatient in this case, but this impatience is

modelled by a linear discounting. Even though the linear discounting and the

exponential discounting both describe the agent being impatient, the optimal

strategies in these case are different from each other. In fact, the expected

utility with the exponential discounting does not just describe the agent being
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impatient, it also describes the agent being “time risk loving”. To understand

time risk, consider the following two options one can choose from. These are

just illustrative examples to show what time risk refers to 6.

Option One: Learn the unknown parameter today (t = 0) or the day after

tomorrow (t = 2) with equal probabilities.

Option Two: Learn the unknown parameter tomorrow (t = 1) for certain.

If the agent discounts future utilities exponentially, Option One gives the

agent an ex-ante utility of 1
2(1 + δ2)x, and Option Two gives the agent an ex-

ante utility of δx. The agent then always prefers Option One, as it gives the

agent a higher expected utility with any δ < 1. Since these two options yield

the same expected learning time: tomorrow (t = 1), and the agent prefers the

one that is risky in terms of learning time, the agent is hence time risk loving.

If the agent discounts future utilities with linear discounting, then the agent is

indifferent between these two. The agent is hence time risk neutral.

The comparison between the two different preferences shows that the time

risk preference affects the optimal strategy. In fact, the fixed search cost utility

can be expressed as the utility function (2.1) with ϕ(z) = log(z). The ϕ(·)
function determines the agent’s time risk attitude (DeJarnette et al. (2020)) and

affects the agent’s optimal strategy.

4 Time Risk Attitude

In this section, I consider the lifetime utility as in (2.1). The lifetime utility is

identified with a triple (ϕ, δ, u). As discussed in DeJarnette et al. (2020), the

agent’s time risk attitude is determined by the concavity of ϕ, the intertemporal

substitution is determined by δ and ϕ, and the atemporal risk attitude towards

the lotteries with only immediate payment is determined by ϕ ◦ u. I show that

if ϕ is a power function with power 1 − γ and u is the inverse of ϕ, then, the

optimal strategy of the agent with utility (ϕ, δ, u) is the same as the benchmark

agent (the agent with utility function as in (2.2)) with a discount parameter ρ

where ρ = δ1−γ .

If ϕ is a power function, say ϕ(z) = 1
1−γ z

1−γ where γ ∈ (0, 1) ∪ (1,+∞),

then, eq. (2.1) can describe both time risk loving and time risk averse utility.

The following lemma presents this result.

Lemma 2.3. If ϕ(z) = sign(1 − γ)az1−γ where a > 0 is a constant, then, for

any increasing u function, when γ ∈ (0, 1), (ϕ, δ, u) describes time risk loving

6This example and the discussion of the time risk are borrowed from DeJarnette et al.
(2020).
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preference, and when γ > 1, (ϕ, δ, u) describes time risk averse preference.

This lemma follows directly from DeJarnette et al. (2020) Prop 2. To un-

derstand why this is true, reconsider the two options introduced in Section 3.

Option One: Learn the unknown parameter and get a reward of one today

(t = 0) or the day after tomorrow (t = 2) with equal probabilities.

Option Two: Learn the unknown parameter and get a reward of one tomor-

row (t = 1) for certain.

Suppose ϕ(z) = 1
1−γ z

1−γ . Given the preference (ϕ, δ, u), the utility from

Option One is 1
1−γ (

1
2u(1)

1−γ+ 1
2 [δ

2u(1)]1−γ), and the utility from Option Two is
1

1−γ [δu(1)]
1−γ . When γ ∈ (0, 1), the utility from Option One is greater than the

utility from Option Two. When γ > 1, the utility from Option One is smaller

than the utility from Option Two, and The special cases discussed in Section 3,

the exponential discounting and the search with a fixed cost, are limiting cases.

When γ → 0, ϕ(z) converges to ϕ(z) = z, which is the exponential discounting

case. When γ → 1, ϕ(z) converges to the natural log function, which describes

the linear discounting preference.

Next, I show that there exists a (ϕ, δ, u) such that given any strategy, the

utility derived from (ϕ, δ, u) equals the utility derived from the exponential dis-

counting with a different discount parameter ρ. In addition, such functional

forms of ϕ and u are unique.

Lemma 2.4. Let a ̸= 0 be a constant. Then, ϕ
(
δτu(x)

)
= ρτx if and only if

ϕ̂(z) = az
log ρ
log δ and û(x) =

(
x
a

) log δ
log ρ . If in addition ρ = δc where c ̸= 0, then,

ϕ̂(z) = azc and û(x) =
(
x
a

) 1
c .

Each strategy pins down a distribution of the learning time. According

to Lemma 2.4, given a strategy, the utility derived from (ϕ̂, δ, û), which is

E
[
ϕ
(
δτu(x)

)]
, equals the utility derived from the exponential discounting with a

different discount parameter ρ, which is E
[
ρτx
]
. This shows that the agent with

preference (ϕ̂, δ, û) behaves as if she discounts future payoffs exponentially with

a discount parameter ρ = δc. Because of this equivalence of the behaviour, this

lemma together with Proposition 2.1 can be used to find the optimal strategy of

the agent with preference (ϕ̂, δ, û).

In the following discussion, let ϕ̂(z) = 1
1−γ z

1−γ and û(x) = [(1 − γ)x]
1

1−γ

where γ ∈ (0, 1) ∪ (1,∞). This specification is not necessary for the following

results, but it gives a clearer intuition. I refer to ρ = δ1−γ as a virtual discount

parameter.

The following proposition characterises the optimal strategy for preference

(ϕ̂, ρ, û).
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Proposition 2.2. For each γ ∈ (0, 1), there exists a unique threshold δ̆γ :=(
δ̄
) 1

1−γ < δ̄ = 1
2 , such that the Linear Search Strategy is optimal if δ ≤ δ̆γ and

the Binary Search Strategy is optimal if δ ≥ δ̆γ. The threshold δ̆γ is decreasing

in γ, and it approaches δ̄ when γ approaches zero.

For γ > 1, the Binary Search Strategy is optimal given any discount param-

eter δ ∈ (0, 1).

When γ ∈ (0, 1), as shown in Lemma 2.4, the agent with preference (ϕ̂, δ, û)

behaves as if she discounts the future payoffs exponential with a discount pa-

rameter ρ = δ1−γ . Given Proposition 2.1, the Linear Search Strategy is optimal

if the discount parameter ρ is weakly smaller than a half. That is, the Linear

Search Strategy is optimal if δ is weakly smaller than
(
1
2

) 1
1−γ := δ̆γ . The similar

argument holds for the Binary Search Strategy. Since γ ∈ (0, 1), δ̆γ decreases in

γ.

When γ ∈ (0, 1), the agent’s virtual discount parameter ρ is greater than his

real discount parameter δ. Due to the effect of the time risk aversion, the agent

behaves as if she is more patient. For example, consider an agent A who has the

benchmark utility and discounts future payoffs exponentially with the discount

parameter δ̃ < 1
2 . The optimal strategy of this agent is then the Linear Search

Strategy. Consider another agent B with preference (ϕ̂, δ̃, û) where γ ∈ (0, 1).

Suppose γ takes the value such that the optimal strategy of the agent B is the

Binary Search Strategy. Imagine there is an outside observer observing these

two agents’ strategies. If the outside observer incorrectly believes that the agent

B has the preference as in the benchmark case, then the outside observer would

conclude that the agent B is more patient than the agent A. However, the fact

is that the agent B is as patient as the agent A, but less time risk loving. The

decreasing δ̆γ shows that when γ increases, the agent becomes less time risk

loving, and has a stronger incentive to use the Binary Search Strategy. Being

less time risk loving, the less patient agent still prefers to use the Binary Search

Strategy.

When γ > 1, the agent is time risk averse. Since we know from Section 3

that the Binary Search Strategy is optimal for the time risk neutral agent as

it induces a distribution of learning time with a smaller mean, when the agent

becomes time risk averse, the agent prefers the Binary Search Strategy more.

Since the Binary Search Strategy induces a distribution of the learning time

with a smaller variance, it is hence also optimal for the risk averse agent.

Figure 2.1 demonstrates the optimal strategy given the value of the discount

parameter δ and the time risk aversion parameter γ. From Proposition 2.2, we

know that the functional form of the red curve in Figure 2.1 is δ1−γ = 1
2 . When
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Figure 2.1: The optimal strategy for each value of the discount parameter δ and
the risk-aversion parameter γ. The functional form of the red curve is δ1−γ = 1

2 .

the discount parameter δ is greater than a half, the optimal strategy is the Binary

Search Strategy given any value of the time risk aversion parameter γ. That

is, when the agent is sufficiently patient, the effect of being patient dominates

the effect of time risk attitude. It is optimal for the agent with δ > 1
2 to use

the Binary Search Strategy regardless the time risk attitude. When the time

risk aversion parameter γ is greater than one, the optimal strategy is the Binary

Search Strategy given any value of δ. That is, when the agent is time risk averse,

the effect of the time risk attitude dominates the effect of patience. It is optimal

for the time risk averse agent to use the Binary Search Strategy regardless the

patience level. When the agent is time risk loving and not sufficiently patient,

that is, when δ < 1
2 and γ < 1, there is a trade-off between learning in a risky way

and learning faster in expectation. Being time risk loving incentivises the agent

to take the risk of learning the parameter today, while being patient incentivises

the agent to learn faster in expectation. As a consequence, the optimal strategy

depends on the effect that dominates.

Given the value of γ, the threshold δ̆γ in Proposition 2.2 is a constant, and

it does not depend on N . This means that the agent’s optimal strategies have

the same time-consistent property as in Section 3. That is, if the agent has the

discount parameter δ and the risk-aversion parameter γ such that ρ = δ1−γ =

0.45, then it is optimal for him to use the Linear Search Policy in state N = 4

and the state N = 400. If the agent has the discount parameter δ and the risk-

aversion parameter γ such that ρ = δ1−γ = 0.9, then it is optimal for him to use

the Binary Search Policy in state N = 4 and the state N = 400. Therefore, the

agent does not need to commit to a certain policy, the commitment to a certain
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policy along the path of learning is a result of the optimal strategy. This is

true because of the equivalence condition specified in Lemma 2.4. The optimal

strategies in this section thus preserve the same properties as in the benchmark

case.

The Linear Search Strategy is not only risky in terms of the timing of learning

the unknown parameter, it is also risky in terms of whether the agent can learn

at a certain time t. That is, if N is the state at time t, by using the Linear

Search Strategy, the agent learns the parameter with the probability 1
N , and

does not learn the parameter with the probability N−1
N . There are two different

types of risks associated with the Linear Search Strategy. One is the time risk

that has been discussed in the previous part of this section, and the other one

is the temporal risk at each time t. Because û is the inverse of ϕ̂, the agent is

assumed to be risk-neutral towards time-t lotteries. To discuss the effect of the

temporal risk attitude, I consider EZ preferences in Section 5.

5 Epstein and Zin Preferences

In order to discuss the EZ preferences, I first rewrite the one time reward at time

t as a stream of reward over time. Since the agent essentially gets a reward of

zero at the time when the parameter is not learned, learning the parameter at

time τ is equivalent to getting a reward stream (x1, x2, . . . , xτ , xτ+1 . . . , xT ) =

(0, 0, . . . , x, 0, . . . , 0). After introducing this reward stream, the EZ recursive

setup can be used to evaluate the agent’s lifetime utility.

The recursive formulation of EZ preferences is developed in Epstein & Zin

(1989), which is originated in Kreps & Porteus (1978) in a finite time setting. The

EZ recursive utility function consists of two components: a CES time aggregator

that characterises the preference over the deterministic payoff vector, and a risk

aggregator that aggregates the risk associated with future uncertain payoffs.

Consider a deterministic payoff vector (z0, z1, . . . , zT ), with zt denoting the payoff

at time t. The utility from time t onwards is

U(zt, zt+1, . . . , zT ) =
(
zρt + δU(zt+1, . . . , zT )

ρ
) 1

ρ (2.4)

where δ ∈ (0, 1) is the discount factor and 1
1−ρ > 0 is the elasticity of intertem-

poral substitution (EIS). The greater the value of EIS, the greater willingness

the agent has (or, the easier it is) to substitute today’s payoff to tomorrow’s

payoff. In case of the uncertain payoffs, the utility is evaluated by a certainty

equivalent operator that is introduced in Kreps & Porteus (1978). Let z be a set

92



of future payoff vectors. Let p be a probability measure on the set z. Then the

utility from the uncertain payoffs is

(
EpU(z)α

) 1
α (2.5)

where 1 − α > 0 is the relative risk aversion (RRA). A smaller value of α

corresponds to a greater risk aversion.

How does this utility specification affect the agent’s evaluation of Binary

Search and Linear Search? The Binary Search Policy ensures the agent a certain

payoff today, either zero or one, but the Linear Search Policy gives the agent

an uncertain payoff both today and in the future. To be more specific, if the

agent chooses the Binary Search Policy at time t, then the payoff at time t is

deterministic and the future payoffs are uncertain. The agent then evaluates the

uncertain future payoffs by the certainty equivalent operator, and the total utility

at time t aggregates the certain payoff at time t and the certainty equivalent of

the future uncertain payoffs using the CES aggregator. If the agent chooses

the Linear Search Policy at time t, the payoff today and the payoffs in the

future are both uncertain. To evaluate the total utility associated with the

uncertain payoffs, the agent first evaluates the utility of each payoff stream using

the CES aggregator. The total utility is then calculated using the certainty

equivalent operator. In other words, when the agent chooses Binary Search, the

CES aggregator is the ‘outside operator’. The certainty equivalent operator is

only used to evaluate the future payoffs, and hence is the ‘inside operator’ When

the agent chooses the Linear Search Policy, the CES aggregator becomes the

inside aggregator, and the certainty equivalent operator is the outside operator.

Given the recursive formulation of the EZ preference, the Bellman equation

in state N is

V EZ(N) = max

{( 1

N
(1ρ + δ0ρ)

α
ρ +

N − 1

N
(0ρ + δV EZ(N − 1)ρ)

α
ρ

) 1
α
,

max
(m,n)∈F†

(
0ρ + δ

(m
N
V EZ(m)α +

n

N
V EZ(n)α

) ρ
α

) 1
ρ

}

with the initial condition V EZ(1) = δ
ρ

α2 . The initial condition is computed from

the fact that V EZ(2) = 1, that is, when the state N = 2, the agent learns the

true value of the parameter immediately after one search. The first element

in the Bellman equation is the value associated with the Linear Search Policy

in state N . By choosing the Linear Search Policy today, the agent either gets

a payoff of one today and zero tomorrow, or a payoff of zero today and the
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continuation value V EZ(N − 1) tomorrow. It is then as if the agent is facing

two possible payoff vectors: (1, 0) and (0, V EZ(N − 1)), with probability 1
N

and N−1
N respectively. The utility is evaluated by the certainty equivalent of

the utilities associated with the two payoff vectors. The second element in the

Bellman equation is the value associated with the policy (m,n) ∈ F† in state

N . By choosing the policy (m,n) ∈ F†, the payoff of zero today is certain. The

continuation value however, is V EZ(m) or V EZ(n) with probability m
N and n

N .

The certainty equivalent operator is used to calculate the value associated with

the future payoff, and the CES aggregator aggregates the payoff today and the

certainty equivalent of the payoff tomorrow. The agent chooses the policy (m,n)

that gives the agent the highest value. With the initial condition V EZ(1) = δ
ρ

α2 ,

the Bellman equation can be simplified to

V EZ(N) = max
(m,n)∈F

(
ζ
(m
N
V EZ(m)α +

n

N
V EZ(n)α

)) 1
α

, (2.6)

where ζ ≡ δ
α
ρ is a virtual discount parameter.

In general, the parameters α and ρ can take any value smaller than one, that

is, both of the parameters can be negative. But, in the following discussion, I

restrict the values of α and ρ to be positive. First, to make sure the parameter

ζ is indeed a virtual discount parameter, I restrict the parameters α and ρ to

have the same sign. Second, Epstein & Zin (1989) points out that decreasing

α can change the agent’s preference in terms of the timing of the resolution of

uncertainty. To shut down this possible effect, I restrict the value of α to be

positive. That is, I only consider the case that the agent is not ‘too risk averse’,

and it is not ‘too hard’ to substitute the consumption intertemporally.

5.1 The Optimal Strategy

This section discusses the agent’s optimal strategy and compares it with the

benchmark case.

To find the agent’s optimal strategy in this section, I show that the Bellman

equation (2.6) is closely related to the Bellman equation (2.3) in the benchmark

case. Let W(N) = V EZ(N)α. Equation (2.6) can be rewritten as

W(N) = max
(m,n)∈F

ζ
(m
N

W(m) +
n

N
W(n)

)
(2.7)

with the initial condition W(1) = 1
ζ . Equation (2.7) is essentially the same

Bellman equation as Equation (2.3) with the same initial condition. The only

94



difference is that the discount parameter in Equation (2.7) is the virtual discount

parameter ζ, and the discount parameter in Equation (2.3) is the real discount

parameter δ. Since the Bellman equation in this section and the Bellman equa-

tion in the benchmark case are closely related in the way described above, the

agent with EZ preferences behaves the same as the agent in the benchmark case

with a discount parameter ζ. In the benchmark case, the value of the real dis-

count parameter determines the agent’s optimal strategy. In this section, the

virtual discount parameter ζ hence determines the optimal strategy of the agent

with EZ preferences. That is, if ζ is greater than a half, the Binary Search Strat-

egy is optimal. If ζ is smaller than a half, the Linear Search Strategy is optimal.

Since the result Proposition 2.1 in the benchmark case are presented as how the

real discount parameter δ affects the agent’s optimal strategy, I characterise the

agent’s optimal strategy below in the similar way. Let ζ̄ = 1
2 .

Proposition 2.3. If the agent has EZ preferences, given any (α, ρ) pair, there

exists a unique threshold δ̃ = (ζ̄)
ρ
α such that if δ > δ̃, the Binary Search Strategy

is the optimal strategy. If δ < δ̃, the Linear Search Strategy is the optimal

strategy. If δ = δ̃, the agent is indifferent between the Binary Search Strategy

and the Linear Search Strategy.

To better understand how the benchmark agent and the agent with EZ

preferences behave differently, I consider the marginal agent who is just indif-

ferent between the Linear Search Strategy and the Binary Search Strategy. The

marginal agent in the benchmark case (the benchmark marginal agent) has a

discount parameter δ = δ̄, and the marginal agent with EZ preference (the EZ

marginal agent) has the parameter triple (δ, α, ρ) such that δ = δ̃ = (ζ̄)
ρ
α . Since

the two thresholds δ̄ and ζ̄ are indeed the same, the relationship of δ̄ and δ̃

depends on the value of the ratio of ρ and α. Proposition 2.3 hence can be

used to check which marginal agent is more patient. Note that EIS = 1
1−ρ and

RRA = 1− α.

Lemma 2.5. If α > ρ (EIS < 1
RRA), then δ̃ > δ̄. If α < ρ (RRA > 1

EIS ), then

δ̃ < δ̄.

Lemma 2.5 says that if EIS is smaller than the reciprocal of RRA, then the

EZ marginal agent is more patient than the benchmark marginal agent. If RRA is

greater than the reciprocal of EIS, then the EZ marginal agent is less patient than

the benchmark marginal agent. This can be better understood by considering the

agent’s incentives and the features of the Linear and Binary Search Strategies.

When EIS is small, it is hard to substitute the payoffs intertemporally. The agent
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hence has stronger incentives to use Linear Search Strategy, as it allows the agent

to get immediately payoff. However, this payoff is uncertain. Therefore, there

is a tradeoff between getting the payoff today and facing uncertain payoffs. The

optimality of Linear Search or Binary Search depends on the value of EIS and

RRA. If it is sufficiently hard to substitute intertemporal payoffs such that the

gain of getting a payoff today overweighs the agent’s aversion towards risky

payoff, that is, if EIS < 1
RRA , then the agent with EZ preference is willing to

use Linear Search even when the agent has the discount parameter δ > δ̄. This

case is referred to the case that EIS dominates RRA. If, however, the agent

is sufficiently risk averse such that the aversion towards risky overweighs the

benefits of getting the payoff today, that is, if RRA > 1
EIS , then the agent

with EZ preference is willing to use Binary Search even when the agent has

the discount parameter δ < δ̄. This case is referred to as the case that RRA

dominates EIS. Figure 2.2 plots the virtual discount parameter ζ as a function of

the real discount parameter δ. The left panel plots the case that EIS dominates

RRA, and the right panel plots the case that RRA dominates EIS. When EIS

dominates RRA, it is optimal for the agent with the discount parameter δ ∈ (δ̄, δ̃)

(thick black line on the left panel) to use the Binary Search Strategy in the

benchmark case, but to use the Linear Search Strategy in the EZ preference case.

This is because Linear Search satisfies the agent’s preference on not willing to

substitute intertemporal payoffs. When RRA dominates EIS, it is optimal for

the agent with the discount parameter δ ∈ (δ̃, δ̄) (thick black line on the right

panel) to use the Linear Search Strategy in the benchmark case, but to use the

Binary Search Strategy in the EZ preference case. This is because Binary Search

is less risky than Linear Search. Since the agent is very risk averse, she prefers

Binary Search.

6 The Present-biased Preference

The optimal strategies in previous sections all have a consistent property. That

is, if it is optimal for the agent to use the Linear Search Policy in state N = 400,

then it is also optimal for the agent to use the Linear Search Policy in state

N = 4. It is not optimal for the agent to switch between actions. In this

section, I show that if the agent has a time-inconsistent preference, there exists

the situation such that it is optimal for the agent to use the Binary Search Policy

when the state is big, say N = 400, and it is optimal for him to use the Linear

Search Policy when the state is small, say N = 4.

This section discusses the present-biased preference. Consider the case that
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an agent is asked which of the two options she prefers: one is to get a payment

of one on Wednesday, and the other one is to get a payment of two on Friday.

If the agent has the time-consistent preference, she will make the same decision

regardless the question is asked on Monday or Wednesday. If the agent has

the present-biased preference, she may, however, make different decisions when

asked on different days. That is, when asked on Monday and Tuesday, the agent

prefers to get the payment of two on Friday, but when asked on Wednesday, she

changes his mind and prefers to get the payment of one on Wednesday, which is

today. The agent changes his mind when the future becomes the present. The

agent is biased towards the payment at the present when asked on Wednesday

and thus has a stronger incentive to get the payment today.

These present-biased preferences could be described by quasi-hyperbolic

discounting (see Phelps & Pollak (1968), Laibson (1997), Fischer (1999) and

O’Donoghue & Rabin (1999)). To discuss the agent’s present-biased preference,

I consider the reward stream as in Section 5. Since the agent’s preference changes

over time, it is as if the agent has different selves at different times. The agent’s

time-t self evaluates the payments at and after time t as

E
[
xt + β

T∑
τ=t+1

δτ−txτ

]
, (2.8)

where β ∈ (0, 1) is the present-biased parameter, and δ ∈ (0, 1) is the time-

consistent discount parameter. The present-biased parameter β describes the

magnitude of the present bias. When β = 1, there is no present bias, and quasi-

hyperbolic discounting is identical to exponential discounting. When β < 1, the

smaller the β, the smaller weight the agent attaches to the time that is ‘the

future’, and hence the greater the present bias is. When β = 0, the agent only

cares about the payment today. In addition to the fact that the agent is present-

biased, the agent is also assumed to be aware of his present bias. That is, the

agent knows that when the future becomes the present, his preference changes.

This type of the agent is referred to as the sophisticated agent in the literature.

In this section, I show that the optimal strategy for the present-biased agent

with the discount parameter δ ≤ δ̄ and the present-biased parameter β ∈ (0, 1)

is still the Linear Search Strategy. This is because the present-biased preference

gives the agent a stronger incentive to choose the Linear Search Policy in each

state. Since it is already optimal for his time-consistent counterpart to choose the

Linear Search Policy in each state, it is hence also optimal for the present-biased

agent to choose the Linear Search Policy in each state when δ ≤ δ̄.
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For the present-biased agent with δ > δ̄, the optimal strategy depends on the

agent’s present-biased parameter. When the agent is not very present-biased,

the Binary Search Strategy is still the optimal strategy. Suppose the agent’s

future selves use the Binary Search Policy in all future states. First notice that

when δ > δ̄, any (m,n) ∈ F† policy gives a weakly smaller payoff than that of the

Binary Search Policy in state N . This is because (m,n) ∈ F† policy and Binary

Search Policy give the agent zero immediate reward. Since the present-biased

agent is assumed to be consistent when evaluating the future payoffs, she behaves

essentially the same as the time-consistent agent when there is no immediate

payoff getting involved. As a result, I only consider whether it is optimal for the

agent to use the Linear Search Policy in the current state. If the agent uses the

Linear Search Policy in the current state, the benefit is the immediate expected

reward associated with learning. That is 1
N . The (future) cost is the difference

between using the Binary Search today and tomorrow V B(N)−δN−1
N V B(N−1).

If the agent is not very present-biased, that is, the present-biased parameter is

greater than the ratio of the benefit to the cost, then, using the Linear Search

Policy in current state N is not optimal. Using the Binary Search Policy in

state N hence is optimal, given that her future selves use the Binary Search

Policy. Using the idea of backward induction, one can check whether using the

Binary Search Policy is optimal in state N given that the agent’s future selves

use the Binary Search Policy. If this is true for all the states, then, the Binary

Search Strategy is the optimal strategy. This requires the agent’s present-biased

parameter to be greater than β̄N :=
1
N

V B(N)−δN−1
N

V B(N−1)
for N = 4, 5, . . . , N̄

where N̄ is the cardinality of the parameter set. The benefit associated with

the Linear Search Policy is the highest in state N = 4, and the cost associated

with the Binary Search Policy is the lowest in state N = 4. As a result, if the

present-biased parameter β is weakly greater than β̌ := β̄4, then, the Binary

Search Strategy is the optimal strategy.

When δ > δ̄, for any β < β̌, there exists a state N such that the Linear

Search Policy is optimal in all the states H < N , and the Binary Search Policy

is optimal in state N . That is, there exists a switch of actions from Binary

Search (when the state is big) to Linear Search (when the state becomes small).

Suppose the agent’s future selves use the Linear Search Policy in all future states.

In order to check which policy is optimal in state N , let

P (N) ≡ max
{m,n}∈F†

δ

{
m

N
V L(m) +

n

N
V L(n)

}
be the highest value associated with the policy (m,n) ∈ F† in state N given that
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the agent’s future selves use the Linear Search Policy in all the states smaller

than N . If the agent uses the Linear Search Policy in the current state, the

benefit is the immediate expected reward associated with learning. That is 1
N .

The cost of using the Linear Search Policy in state N is the forgone payoff from

using the (m,n) ∈ F† policy, which is P (N) − δN−1
N V L(N − 1). Using the

idea of backward induction, one can check which Policy is optimal in state N

given that the agent’s future selves use the Linear Search Policy. If the agent’s

present-biased parameter is smaller than β̃N :=
1
N

P (N)−δN−1
N

V L(N−1)
, the ratio of

the benefit to the cost of using the Linear Search Policy in state N , then, it is

optimal for the agent to use the Linear Search Policy in state N . Otherwise,

it is optimal for her to use the (m,n) ∈ F† policy that achieves P (N) in state

N . From the discussion in the benchmark case,we know that when δ > δ̄, the

(m,n) ∈ F† policy that achieves P (N) in state N is the Binary Search Policy

because of the concavity of the function WL(N) = NV L(N). Therefore, when

the agent’s present-biased parameter is smaller than β̃N , it is optimal for the

agent to use the Binary Search Policy in state N .

When it is optimal for the agent to use the Binary Search Policy in a state

N given the belief that her future selves use the Linear Search Policy, we still

need to check whether it is indeed optimal for her future selves to use the Linear

Search Policy. In the appendix, I show that β̃N decreases in N . This is because

the benefit of using the Linear Search Policy in state N decreases in N , and the

cost increases in N . As a result, in order to guarantee that it is optimal for the

agent to use the Linear Search Policy in any state smaller than N , the agent’s

present-biased parameter should be greater than β̃N−1.

The following proposition concludes the result discussed above.

Proposition 2.4. When the present-biased agent has the discount parameter

δ ≤ δ̄ and the present-biased parameter β ∈ (0, 1), the optimal strategy is the

Linear Search Strategy.

When the present-biased agent has the discount parameter δ > δ̄ and the

present-biased parameter β ≥ β̌, the optimal strategy is the Binary Search Strat-

egy.

When the present-biased agent has the discount parameter δ > δ̄ and the

present-biased parameter β ∈ [β̃N , β̃N−1), it is optimal for the agent to use the

Binary Search Policy in state N and to use the Linear Search Policy in state

H < N .

Consider an agent with discount parameter δ > δ̄ and the present-biased pa-

rameter β ∈ [β̃N , β̃N−1), the last point of Proposition 2.4 indicates that in states
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N < N , the agent’s optimal policy is the Linear Search Policy, and the agent’s

optimal policy in state N is the Binary Search Policy. But in states N > N ,

we do not know what the optimal policy of the agent is. Proposition 2.4 does

not characterise the complete optimal strategy when δ > δ̄ and β < β̃4 due to

the complexity of the calculation. Instead, it only specifies that there exists at

least one switch between the Linear Search Policy and the Binary Search Policy.

If there exists more than one switch between actions, the last point of Propo-

sition 2.4 characterises the smallest state in which the agent switches actions.

This serves the purpose to show that when the agent has time-inconsistent pref-

erences, the optimal strategy does not have the consistent property as in the

cases with time-consistent preferences.

To better explain the result, I introduce the present-biased agent’s time-

consistent counterpart. If a present-biased agent has a discount parameter δ̂ and

a present-biased parameter β̂, then his time-consistent counterpart also has a dis-

count parameter δ̂, but a present-biased parameter β = 1. The result above in-

dicates that in comparison with the present-biased agent’s time-consistent coun-

terpart, it is optimal for the present-biased agent to use the Linear Search Policy

in small states, while it is always optimal for his time-consistent counterpart to

use the Binary Search Policy. This is because the value associated with a policy

in state N consists of two parts: the expected payment today and the perceived

discounted continuation value. Given the future policies remaining the same,

consider the cost and the benefit of the Linear Search Policy in the current state

N . The cost of the Linear Search Policy comes from the discounted continuation

value. The greater the current state N , the more costly to use the Linear Search

Policy. The benefit of the Linear Search Policy is from the expected payment

today. The smaller the state N , the greater the benefit associated with the Lin-

ear Search Policy. Notice that when the agent is present-biased, the cost of the

Linear Search is perceived to be smaller because of the present-biased parameter,

but she evaluates the expected payment today the same as his time-consistent

counterpart. As a result, there are two driving forces that incentivise the agent

to use the Linear Search Policy: one is that the state is sufficiently small and

thus the benefit of Linear Search becomes higher, and the other one is that the

agent is sufficiently present-biased and thus perceives the cost of Linear Search

to be smaller. The main tradeoff is that when the agent is very present-biased,

that is, she has a smaller present-biased parameter β, she perceives the Linear

Search Policy to be attractive in bigger states, while for the agent who is less

present-biased, she only perceives the Linear Search Policy to be attractive in

smaller states.
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7 Winner Takes All

In the previous section, I have discussed a single agent’s decision problem. There

is only one agent learning the unknown parameter. In this section, I consider

a game where the players compete to learn the unknown parameter. At each

time t, the player i ∈ {1, 2, . . . , I} is active with probability pi where
∑I

i pi = 1

and pi ∈ (0, 1) for all i. There is only one active player at each time t. The

active player i can use the Linear Search Policy, the Binary Search Policy, or

any (m,n) ∈ F† policy in state N . At time t, if the active player learns the

unknown parameter, then, she gets the reward associated with learning and

the game ends. All other players get no reward. If the active player does not

learn the unknown parameter, the game enters next period. Assume the lifetime

utility of the players is as in eq. (2.2) and all the players have the same discount

parameter δ.

If all the players use the Linear Search Strategy,then, the outcome of the

game, that is, the distribution of the learning time, is the same as the case with

one player learning alone using the Linear Search Strategy. The players’ payoffs

are different because now they only have the chance to get the reward associated

with learning when they are active. One could imagine that now the players have

less incentives to use the Binary Search Strategy because it gives the player zero

probability of getting the reward in state greater than two. In addition, using

the Binary Search Strategy increases the other players’ probabilities of getting

the reward by shrinking the parameter set. It is then interesting to check when

it is an equilibrium such that all the players use the Linear Search Strategy I

show that this equilibrium exists when the discount parameter δ is not too close

to one.

Proposition 2.5. There exists an upperbound δ̊ = min 1
1+pi

such that if δ ≤ δ̊,

there exists an equilibrium where all the players use the Linear Search Strategy.

Suppose all the players use the Linear Search Strategy and then I check

whether there exists any deviation in state N that gives the player a higher

payoff. First notice that, when δ ≤ 1
2 , the player does not want to deviate to

other policies in any state. This is because when players are competing to get the

reward associated with learning, the players have stronger incentives to use the

Linear Search Strategy. If it is optimal for the player to use the Linear Search

Strategy when she is learning alone, it is still optimal for her to use the Linear

Search Strategy when competing with other players. When δ > 1
2 , the player

faces a tradeoff where the Linear Search Policy gives the player the probability

of getting the immediate payoff, while using other policies reduces the future
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state and increases her payoff when she is active again in the future. Which

effect dominates depends on the player’s discount parameter and the probability

that she is active in each state. If the player is active with a high probability,

say, pi is close to one, then, the Linear Search Strategy best responses to other

players using the Linear Search Strategy only when δ is close to 1
2 . If the player

is active with a probability close to zero, then, the Linear Search Strategy best

responses to other players using the Linear Search Strategy even when δ is close

to one. If the best response of the most active player (i.e. the player with the

highest probability of being active) to the Linear Search Strategy is the Linear

Search Strategy, then, it is an equilibrium where all the players use the Linear

Search Strategy.

When pi is smaller than one for all i, the upperbound δ̊ is greater than a half.

This shows that the sufficiently patient players (whose optimal strategy is the

Binary Search Strategy when learning alone) can switch to the Linear Search

Strategy when competing with others. This leads to an inefficient outcome

because it takes longer to learn the parameter in expectation when the players

use the Linear Search Strategy. This inefficiency prevails for a larger range of

the discount parameter when the players are active with equal probabilities. In

addition, if the players are active with equal probabilities, increasing the number

of players intensifies the inefficiency. That is, all the players using the Linear

Search Strategy is an equilibrium for a larger range of the discount parameter.

Suppose there are two players who are active in each state with probability

0.9 and 0.1 respectively. Then, the upperbound δ̊ is 0.53. Thus, both players

using the Linear Search Strategy is an equilibrium when the discount parameter

δ is weakly smaller than 0.53. If both players are active in each state with

probability a half, then, the upperbound δ̊ is 0.67. In this case, both players

using the Linear Search Strategy is an equilibrium when the discount parameter

δ is weakly smaller than 0.67. When the players are active with equal probability,

both players using the Linear Search Strategy is an equilibrium for a greater

range of the discount parameter. When there are I players and all the players

are active with equal probability in each state, we have pi = 1
I . Since the

upperbound δ̊ = I
I+1 increases in I, all the players using the Linear Search

Strategy is an equilibrium for a larger discount parameter set when I increases.

Increasing the number of players hence intensifies the inefficiency.
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Appendix to Chapter 2

1 Extensions

1.1 Search with a Fixed Cost

In this section, the agent does not discount future payoffs with a discount param-

eter. Instead, she pays a fixed cost c > 0 for each search if she does not learn the

true parameter. As mentioned in Section 3, the agent’s preference is time risk

neutral. The agent’s optimal strategy is the Binary Search Strategy as long as

the fixed cost c is bounded. Otherwise, the agent does not search. The main in-

tuition is that since the agent has to pay a fixed cost c for each search, the agent’s

only incentive is to learn with the least number of searches. The Binary Search

Strategy satisfies this requirement. However, since the agent only gets a reward

of one associated with learning, she is thus not willing to search when the fixed

cost c is too high. Let N̄ denote the initial state, which is the cardinality of the

parameter set Θ. Let c̄(N̄) ≡ N̄
(2N̄−2⌊log2 N̄⌋+1)(⌈log2 N̄⌉−1)+(2⌊log2 N̄⌋+1−N̄)(⌊log2 N̄⌋−1)

.

Proposition 2.6. Given any initial state N̄ , if the fixed cost c ≤ c̄(N̄), the agent

searches and the optimal strategy is the Binary Search Strategy. Otherwise, the

agent does not search. The Linear Search Strategy is always sub-optimal.

The idea of the proof is the same as in the benchmark case: compare the

lifetime utility of the Binary (Linear, resp) Search Strategy and the lifetime

utility of the Binary (Linear, resp) Search Deviating Strategies. There is always

a Linear Search Deviating Strategy that gives a higher lifetime utility than the

Linear Search Strategy, and no Binary Search Deviating Strategy gives a higher

lifetime utility than the Binary Search Strategy.

1.2 Relax the Uniform Prior Assumption

Note that the agent’s prior belief is f0 = (f0(θ))θ∈Θ with f0(θ) ∈ (0, 1) for ∀θ ∈
Θ. In the previous discussion, f0 is assumed to be uniform. That is, f0(θ) =

1
N̄

for ∀θ ∈ Θ, where N̄ is the cardinality of the parameter set Θ. In this section,
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I assume that the agent believes that θ1, the first element in the parameter

set, is most likely to be the true parameter, whereas all other parameters in

the parameter set are equally likely. That is f(θ1) = f1, and f(θ) = 1−f1
N−1

for θ ∈ Θ \ {θ1}. I refer to this distribution as a pseudo-uniform distribution

with a peak of f1. To keep the model simple, I consider the preference in the

benchmark case: expected utility with exponential discounting. In addition, I

make the following assumption.

Assumption 2.1. The probability attached to the element θ1 is not smaller than

a half, which is f1 ≥ 1
2 .

This assumption guarantees that any revised belief of the agent is either a

uniform distribution or a distribution with a peak. If this assumption is violated,

the revised belief may not describe the fact that the agent believes the first

element is most likely to be the true parameter, but rather the first element

is least likely to be the true parameter. This assumption allows me to retain

the simplification of the agent’s choice in each state. In the previous discussion,

the feasible set of the choice in state N is denoted by F = {(m,n)|m + n =

N,m, n ∈ Z+ ∩ [1, N ]}. In the benchmark case, due to the symmetry of the

uniform distribution, assuming m ≤ n is without loss of generality. In this

section, with the assumption that f1 ≥ 1
2 , choosing m > N

2 is always sub-

optimal. For example, if N is even, choosing m = N
2 + 1 is dominated by

choosing m
′
= N

2 − 1. The simplification that m ≤ n is still without loss of

generality.

The main question of interest in this section is to find the conditions under

which the Focal Point Search Strategy (defined below) is optimal.

Definition 2.4. The Focal Point Search Strategy is a strategy such that (1) in

state N , if the belief of the agent has a peak, then the agent chooses (m,n) =

(1, N − 1), (2) in state N , if the belief of the agent is uniform, then the agent

chooses the Linear Search Policy if δ ≤ 0.5 and the Binary Search Policy if

δ > 0.5.

When δ ≤ 0.5, the Focal Point Search Strategy coincides with the Linear

Search Strategy. When δ > 0.5, the Focal Point Search Strategy can be consid-

ered as the agent uses the Linear Search Policy when the belief is not uniform,

and then switch to the Binary Search Strategy when the belief becomes uniform.

The agent with δ > 0.5 is only willing to use the Linear Search Policy under one

situation: when she is quite certain that the first element in the parameter set

is the true value of the parameter. Hence, asking the question that under what
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conditions the Focal Point Search Strategy is optimal, is equivalent to asking

how certain the agent has to be so that she is willing to test the first element in

the parameter set before doing anything else.

Proposition 2.7. When δ ≤ 0.5, the Focal Point Search Strategy is optimal.

The intuition is that when the agent uses the Linear Search Strategy, the

agent’s utility is a convex combination of the payoff of learning the unknown

parameter and the discounted continuation value. The continuation value is the

same under uniform prior and under the prior with a peak, and it is smaller

than the payoff of learning the unknown parameter. When the agent’s prior

belief is the distribution with a peak, the agent puts higher weight to the payoff

of learning the unknown parameter today. Therefore, if it is optimal for the

agent to use the Linear Search Strategy when the prior is uniform, it is also

optimal for the agent to use the Focal Point Search Strategy when the prior is

the distribution with a peak.

Proposition 2.8. If δ ∈ (0.5, f1], then the Focal Point Search Strategy is opti-

mal.

This proposition says that given the value of f1, when the agent is not

too patient, that is, when δ ≤ f1, the Focal Point Search Strategy is optimal.

The other way to interpret this proposition is that given the value of the agent’s

discount parameter δ > 1
2 , if the agent is sufficiently certain that the first element

is the true value of the parameter, that is, f1 ≥ δ, then, he/she is willing to use

the Linear Search Policy to check the first element in the parameter set, and

then uses the Binary Search Strategy if the first element is not the true value of

the parameter.

This proposition provides a sufficient condition under which the Focal Point

Search Strategy is optimal. It does not characterise the optimal strategy when

δ > f1. Even with this seemingly simple prior assumption, it is still hard to

get the characterisation of the optimal strategy for any given value of δ and

f1. However, the optimal strategy under some extreme cases may be helpful to

understand the agent’s behaviour. When the agent has δ = 1, she is indifferent

between the Linear Search Strategy, the Binary Search Strategy and the Focal

Point Search Strategy because all the future payoffs are perceived to be the same.

Whenever and however the agent learns the unknown parameter, he/she gets a

payoff of one. This shows that increasing δ does not monotonically increase the

agent’s incentive to use the Binary Search Strategy, otherwise, when δ takes the

highest value, the optimal strategy must be unique: the Binary Search Strategy.
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I may make the conjecture that when δ is close to one, it might be optimal for

the agent to use the Focal Point Search Strategy. The intuition is that when the

agent is very patient, the agent does not mind using one period of Linear Search

Policy to test the most likely element. But, this is just a conjecture, there is yet

no proof to support this conjecture.

2 Proofs

2.1 Proof of Lemma 2.1

The value associated with the Linear Search Strategy is

V L(N) =
1

N
+ δ

N − 1

N
V L(N − 1)

. . .

=
1

N
+ δ

1

N
+ δ2

1

N
+ · · ·+ δN−2 2

N
V L(2)

=
1

N

(N−2∑
i=0

δi + δN−2
)
=

1

N

(1− δN−1

1− δ
+ δN−2

)

To derive the value associated with the Binary Search Strategy, I use math-

ematical induction. To simplify the notation, I rewrite the value in the following

way

NV B(N) = πNδτ
N
1 + (N − πN )δτ

N
2 . (2.9)

I also establish the properties of πN and τN .

Remark 2.1. The following equations hold.

π2N = 2πN

τ2Ni = τNi + 1 for i = 1, 2

I first show that if eq. (2.9) is the value function in state N associated with

the Binary Search Strategy, then we have 2NV B(2N), the value function in state

2N associated with the Binary Search Strategy, following the same functional

107



form as eq. (2.9). The calculation is as follows.

2NV B(2N) = δ
{
NV B(N) +NV B(N)

}
= 2πNδτ

N
1 +1 + (2N − 2πN )δτ

N
2 +1

= π2Nδτ
2N
1 + (2N − π2N )δτ

2N
2

Before showing the next part of the proof, I establish some properties of πN

and τN . Let K ∈ Z+.

Remark 2.2. If N = 2K , the following equations hold.

π2N+1 = πN + πN+1 = πN+1

τ2N+1
1 = τN+1

1 + 1 = τN1 + 2

τ2N+1
2 = τN+1

2 + 1 = τN2 + 1

If N ∈ [2K + 1, 2K+1 − 2], the following equations hold.

π2N+1 = πN + πN+1

τ2N+1
i = τNi + 1 = τN+1

i + 1 for i = 1, 2

If N = 2K+1 − 1, the following equations hold.

N − πN = (2N + 1)− π2N+1

πN = N − 1; π2N+1 = 2N ; πN+1 = 0

τN1 = τN+1
1 = τN+1

2

τ2N+1
1 = τN1 + 1 = τN+1

1 + 1

τ2N+1
2 = τN2 + 1 = τN+1

2

Next, I show that If the value function in state N associated with the Binary

Search Strategy follows the functional form eq. (2.9), and the value function in

state N + 1 associated with the Binary Search Strategy follows the functional

form eq. (2.9), then, the value function in state 2N+1 associated with the Binary

Search Strategy follows the same function form as eq. (2.9). The calculation is

as follows.

(2N + 1)V B(2N + 1) = δ
{
NV B(N) + (N + 1)V B(N + 1)

}
= πNδτ

N
1 +1 + (N − πN )δτ

N
2 +1 + πN+1δτ

N+1
1 +1 + (N + 1− πN+1)δτ

N+1
2 +1
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If N = 2K , then

(2N + 1)V B(2N + 1) = Nδτ
N
2 +1 + πN+1δτ

N+1
1 +1 + (N + 1− πN+1)δτ

N+1
2 +1

= Nδτ
2N+1
2 + π2N+1δτ

2N+1
1 + (N + 1− π2N+1)δτ

2N+1
2

= π2N+1δτ
2N+1
1 + (2N + 1− π2N+1)δτ

2N+1
2

follows the same functional form as eq. (2.9). If N ∈ [2K + 1, 2K+1 − 2], then

(2N + 1)V B(2N + 1) = πNδτ
2N+1
1 + (N − πN )δτ

2N+1
2 + πN+1δτ

2N+1
1 + (N + 1− πN+1)δτ

2N+1
2

= π2N+1δτ
2N+1
1 + (2N + 1− π2N+1)δτ

2N+1
2

follows the same functional form as eq. (2.9). If N = 2K+1 − 1, then

(2N + 1)V B(2N + 1) = πNδτ
N
1 +1 + (N − πN )δτ

N
2 +1 + (N + 1)δτ

N+1
2 +1

= (N − 1)δτ
2N+1
1 + (2N + 1− π2N+1)δτ

2N+1
2 + (N + 1)δτ

2N+1
1

= π2N+1δτ
2N+1
1 + (2N + 1− π2N+1)δτ

2N+1
2

follows the same functional form as eq. (2.9).

Lastly, I show that when N ∈ {3, 4, 5}, the value function in state N associ-

ated with Binary Search follows the same functional form as eq. (2.9). If N = 3,

3V B(3) = 1 + 2δ follows eq. (2.9). If N = 4, 4V B(4) = 4δ follows eq. (2.9). If

N = 5, 5V B(5) = 3δ + 2δ2 follows eq. (2.9).

2.2 Proof of Lemma 2.2

To show the properties of WL(N), It is without loss of generality to treat N as

a continuous variable and then compute the first and second order derivatives.

The first order derivative of WL(N) is (log δ)1−2δ
1−δ δ

N−2, and the second order

derivative of WL(N) is (log2 δ)1−2δ
1−δ δ

N−2. When δ < 1
2 , the first order derivative

of WL(N) is negative and the second order derivative is positive. When δ > 1
2 ,

the first order derivative of WL(N) is positive and the second order derivative

is negative. When δ = 1
2 , W

L(N) is independent of N .

The first and second order difference of WB(N) is summarised in the fol-

lowing lemma. Let △WB(N) := WB(N) − WB(N − 1) and △2WB(N) :=

△WB(N)−△WB(N − 1).

Lemma 2.6. If N = 2Y , then, △WB(N) = δY−2(2δ − 1) for all Y ∈ Z+.

If 2Y < N < 2Y+1, then, △WB(N) = δY−1(2δ − 1) for all Y ∈ Z+.

If N = 2Y and 2Y−1 < N − 1 < 2Y , then, △2WB(N) = 0.
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If 2Y < N < 2Y+1 and 2Y < N − 1 < 2Y+1, then, △2WB(N) = 0.

If 2Y < N < 2Y+1 and N −1 = 2Y , then, △2WB(N) = (2δ−1)(δ−1)δY−2.

Lemma 2.6 is derived directly from calculating the first difference of the

function WB(·). When δ > 0.5 (δ < 0.5), The first-order difference of WB(·)
is positive (negative), and the second-order difference of WB(·) is non-positive

(non-negative). When δ = 0.5, WB(N) is independent of N .

2.3 Proof of Proposition 2.1

To show that the Linear Search Strategy is optimal, I show that there is no

Linear Search Deviating Strategy give the agent a higher payoff than that of the

Linear Search Strategy. In state N , the value associated with the Linear Search

Deviating Strategy is

V D(N) = δ

{
m

N
V L(m) +

n

N
V L(n)

}
= δ

[
m

N

1

m

(1− δm−1

1− δ
+ δm−2

)
+
n

N

1

n

(1− δn−1

1− δ
+ δn−2

)]
= V L(N)

2δ + (1− 2δ)(δm−1 + δn−1)

2δ + (1− 2δ)(1 + δN−2)

LetM = 2δ+(1−2δ)(δm−1+δn−1)
2δ+(1−2δ)(1+δN−2)

. I show thatM ≤ 1 when δ ≤ 0.5 andM > 1 when

δ > 0.5. Notice that 2δ + (1− 2δ)(δm−1 + δn−1) > 0 and 2δ + (1− 2δ)(1 + δN−2) >

0. I calculate the differences of the denominator and numerator of M .[
2δ + (1− 2δ)(δm−1 + δn−1)

]
−
[
2δ + (1− 2δ)(1 + δN−2)

]
= (1− 2δ)

[
(δm−1 + δn−1)− (1 + δm+n−2)

]
Notice that (δm−1+δn−1)−(1+δm+n−2) = −(1−δn−1)(1−δm−1) < 0 Therefore,

2δ+(1−2δ)(δm−1+ δn−1) > 2δ+(1−2δ)(1+ δN−2) when δ > 0.5 and 2δ+(1−
2δ)(δm−1 + δn−1) ≤ 2δ + (1 − 2δ)(1 + δN−2) when δ ≤ 0.5. Therefore, M ≤ 1

when δ ≤ 0.5 and M > 1 when δ > 0.5. Thus, V L(N) ≥ V D(N) if δ ≤ 0.5. As

a result, a Linear Search Deviating Strategy that gives the agent a higher payoff

than the Linear Search Strategy does not exist.

To show that the Binary Search Strategy is optimal, I first show that the

Binary Search Deviating Strategy such that the (m,n) ∈ F† policy in state N

is used gives the agent a lower payoff than the Binary Search Strategy. Since I

assume that m ≤ n, the Binary Search Policy in state N by definition maximises

m and minimises n. To show that deviating to other choices (m,n) ∈ F† is not
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profitable, I show that

δ
{
mV B(m) + nV B(n)

}
≥ δ
{
(m− 1)V B(m− 1) + (n+ 1)V B(n+ 1)

}
if δ ≥ 0.5.

Rearrange the inequality, it is equivalent to show that

△WB(m) ≥ △WB(n+ 1). (2.10)

According to Lemma 2.6, I consider four cases based on the values of m and

n.

Case 1: 2Y < m < 2Y+1 and 2K − 1 < n < 2K+1 − 1. Since m ≤ n,

log2m ≤ log2 n. Then, ⌊log2m⌋ ≤ ⌊log2 n⌋, which is Y ≤ K. Therefore,

δY−1(2δ − 1) ≥ δK−1(2δ − 1).

The inequality (2.10) holds if δ ≥ 0.5.

Case 2: m = 2Y and n = 2K − 1. Since m ≤ n, we have Y ≤ K − 1. Thus

Y − 2 < K − 2 Therefore,

δY−2(2δ − 1) > δK−2(2δ − 1).

The inequality (2.10) holds if δ ≥ 0.5.

Case 3: 2Y < m < 2Y+1 and n = 2K −1. Since m ≤ n, we have Y ≤ K−1.

Therefore

δY−1(2δ − 1) ≥ δK−2(2δ − 1).

The inequality (2.10) holds if δ ≥ 0.5.

Case 4: m = 2Y and 2K−1 < n < 2K+1−1. Since m ≤ n, we have Y ≤ K.

Therefore,

δY−2(2δ − 1) > δK−1(2δ − 1).

The inequality (2.10) holds if δ ≥ 0.5.

Next I show that deviating to Linear Search in state N is not profitable.

Before showing the result, I introduce the following lemma.

Lemma 2.7. If δ ∈ [0.5, 1), WB(N)− δWB(N − 1) weakly increases in N .

This lemma can be shown given Lemma 2.6

To show that deviating to Linear Search in state N is not profitable, I show
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that

1

N
+
N − 1

N
δV B(N − 1) ≤ V B(N),

which is equivalent to

1 ≤ NV B(N)− δ(N − 1)V B(N − 1).

Given Lemma 2.7, the minimum of W (N) is 1. Since W (N) is increasing,

W (N) ≥ 1. Therefore, deviating to Linear Search in state N is not profitable if

δ ≥ 0.5.

To summarise, there is no Binary Search Deviating strategy that gives the

agent a higher payoff than the Binary Search Strategy if δ ≥ 0.5.

2.4 Proof of Lemma 2.4

In this proof, I find ϕ(·) and u(·) such that ϕ
(
δτu(x)

)
= ρτx. Let z = δτ and

u(x) = y. Then,

ϕ
(
δτu(x)

)
= ϕ(zy) = z

log ρ
log δ u−1(y).

Let t = zy. Then,

ϕ(t) = u−1(y)

(
1

y

) log ρ
log δ

t
log ρ
log δ := at

log ρ
log δ

where a := u−1(y)
(
1
y

) log ρ
log δ

. Given the functional form of ϕ(·), next, I find the

functional form of u(·) such that

a [δτu (x)]
log ρ
log δ = ρτx.

Then, we have u(x) =
(
x
a

) log δ
log ρ . Let c := log ρ

log δ . Then, ϕ(x) = axc and u(x) =(
x
a

) 1
c .

2.5 Proof of Proposition 2.3

Let T (W)(N) = max(m,n)∈F ζ
(
m
NW(m)+ n

NW(n)
)
and B(Z+) be a space of the

bounded functions W: Z+ → R. The operator T (W) is a contraction mapping

maps from B(Z+) to B(Z+). The fixed point can be derived based on the dis-

cussion in the benchmark case. If ζ ∈ (0, ζ̄), the fixed point of the mapping is

W(N) = V L(N). The corresponding strategy is the Linear Search Strategy. If

ζ ∈ (ζ̄, 1), the fixed point of the mapping is W(N) = V B(N). The correspond-
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ing strategy is the Binary Search Strategy. Since α ∈ (0, 1), the value function

E(N) is maximised when W(N) is maximised. Therefore, if ζ ∈ (0, ζ̄), the op-

timal strategy to achieve the maximum E(N) is the Linear Search Strategy. If

ζ ∈ (ζ̄, 1), the optimal strategy to achieve the maximum E(N) is the Binary

Search Strategy. Since ζ = δ
α
ρ , given any (α, ρ) pair, there exists a unique

threshold δ̃ = (ζ̄)
ρ
α such that if δ > δ̃, the Binary Search Strategy is the optimal

strategy. If δ < δ̃, the Linear Search Strategy is the optimal strategy.

2.6 Proof of Proposition 2.4

Before showing the proofs of the propositions, I first introduce some definitions

that will be used in the proofs.

Given a strategy, the agent’s state-N self’s value function associated with

that strategy is related to the value functions of the time-consistent agent. For

example, the agent’s state-N self’s value associated with the Linear Search Strat-

egy UL(N) is

UL(N) =
1

N
+ βδ

N − 1

N
V L(N − 1),

where V L(·) is the value associated with the Linear Search Strategy in the bench-

mark case (see Lemma 2.1). This is because the present-biased agent perceives

all the future payments to be less important than the payment at present. This

idea is formally characterised in the following lemma. Let S be a strategy and

let US(N) be the agent’s state-N self’s value function associated with this strat-

egy. Let V S(·) be the time-consistent agent’s value function associated with the

strategy S, and let (mS , nS) denote the strategy S induced policy in state N .

Lemma 2.8. The present-biased agent’s state-N self ’s value function associated

with the strategy S is

US(N) =

 1
N + βδN−1

N V S(N − 1) if (mS , nS) = (1, N − 1),

βδ
{
mS

N V S(mS) + nS

M V S(nS)
}

otherwise.

This lemma can be used to check the optimality of the strategy S induced

policy (mS , nS) for the agent’s state-N self, and hence the optimality of the

strategy S for the present-biased agent.

Definition 2.5. The strategy S induced policy (mS , nS) in state N is optimal

for the agent’s state-N self if it is not optimal for the agent’s state-N self to

deviate to other policies given that he will follow the strategy S in the future.
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Then, the optimality of the strategy S is defined in the following way.

Definition 2.6. The strategy S is optimal for the present-biased agent, if, for all

N , the strategy S induced policy (mS , nS) in state N is optimal for the agent’s

state-N self.

The optimality of a strategy can be shown using the same one-step deviation

principle as in the benchmark case. The difference is that in the benchmark case,

since the agent is time-consistent, it can be considered as the agent’s state-N

selves are the same for all N . To show the optimality of the Linear Search

Strategy (Binary Search Strategy, resp), it is thus sufficient to show that no

Linear Search Deviating Strategy (Binary Search Deviating Strategy, resp) is

beneficial in an arbitrary state N . However, when the agent is present-biased,

the agent’s preferences are different in each state N , to show the optimality of

a strategy, we need to check that for all N , the agent’s state-N self does not

want to deviate. This idea coincides with the backward induction. The agent’s

state-N self chooses the optimal policy in state N given that for all m < N , his

state-m selves use the optimal policies in state m.

I first show the first bullet point of Proposition 2.4. I ask the question:

if the present-biased agent believes that his future selves will use the Linear

Search Policy, what is the smallest state N such that the agent’s state-N self

finds it beneficial to use other policies in state N? If the state N does not

exist, then I have shown that the first bullet point of Proposition 2.4 is true.

This proof uses the idea of backward induction. Since the agent does not make

effective decisions in state N ≤ 3, where the Linear Search Policy the Binary

Search Policy coincide, it can be considered as the agent uses Linear Search

Policy in state N ≤ 3. By backward induction, the optimal policy in state 4

gives the agent’s state-4 self the highest value function given that the agent’s

future selves will use the Linear Search Policy. In state 4, given that the agent’s

future selves will use the Linear Search Policy, the agent’s state-4 self’s value

function associated with Linear Search is UL(4) = 1
4 + δβ 3

4V
L(3), where V L(·)

is the value function associated with the Linear Search Strategy when the agent

is time consistent (see Lemma 2.1). If the agent’s state-4 self uses some other

policies, which can only be Binary Search in state 4, given the agent’s future

selves use the Linear Search Policy, then the value function UD(·) associated

with this deviation is UD(4) = βδV L(2). By deviating to the Binary Search

Policy in state 4, the agent gives up the payment of 1
4 at present, and increases

the discounted continuation value by δ[V L(2)− 3
4V

L(3)]. Proposition 2.1 implies

that when the agent is time consistent and has the discount parameter δ < δ̄, the
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increasing of the discounted continuation value is smaller than the payment the

agent gives up today, and the Linear Search Policy is hence optimal in state 4.

When the agent is present-biased, he perceives the increasing of the discounted

continuation value to be even smaller than the real discounted continuation value.

The Linear Search Policy is thus also optimal in state 4 for the present-biased

agent’s state-4 self. This argument can be generalised to the present-biased

agent’s state-N self for all N . The Linear Search Strategy is thus optimal for

the present-biased agent with δ < δ̄ and β ∈ (0, 1).

To find the optimal strategy of the present-biased agent with δ > δ̄, I ask

the following two questions:

• If the present-biased agent’s future selves will use the Binary Search Policy,

what is the smallest state N such that the agent’s state-N self finds it

beneficial to use other policies in state N?

• If the present-biased agent’s future selves will use the Linear Search Policy,

what is the smallest state N such that the agent’s state-N self finds it

beneficial to use other policies in state N?

Answering the first question is useful to show the second bullet point of Propo-

sition 2.4, while answering the second question is useful to show the third bullet

point. If the smallest state N in the first question does not exist, then the Binary

Search Strategy is optimal.

The proof uses the idea of backward induction. Since the agent does not

make any effective decisions in state N ≤ 3, and the Binary Search Policy and

the Linear Search Policy coincide, it can be considered as the agent uses Binary

Search Policy in state N ≤ 3. The optimal policy in state 4 gives the agent’s

state-4 self the highest value function given that the agent’s future selves will use

the Binary Search Policy. In state 4, given that the agent’s future selves will use

the Binary Search Policy, the agent’s state-4 self’s value function associated with

Binary Search is UB(4) = βδV L(2) = βV B(4), where V B(·) is the value function
associated with the Binary Search Strategy when the agent is time consistent

(see Lemma 2.1). Proposition 2.1 implies that deviating to any policy that gives

the agent zero payment today is not beneficial. Therefore, only the Linear Search

Policy should be considered. If the agent’s state-4 self believes that his future

selves will use the Binary Search Policy, and he uses Linear Search Policy in

state 4, the value function is UD(4) = 1
4 + βδ 34V

B(3). It can be regarded as the

agent asks himself this question: in comparison with always using Binary Search

Policy, is it beneficial for me to postpone the Binary Search to tomorrow and

use Linear Search today? The benefit of using the Linear Search Policy today is
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the positive expected payment 1
4 , and the cost of using the Linear Search Policy

is from the delay of Binary Search, which is V B(4)− δ 34V
B(3). Since this cost is

future cost, the present-biased agent perceives the cost as β[V B(4)− δ 34V
B(3)].

In state 4, delaying the Binary Search to tomorrow is not beneficial when the

agent’s state-4 self’s perceived cost is greater than the benefit, that is, when

β > β̄4, where β̄4 =
1
4

V B(4)−δ 3
4
V B(3)

is the ratio of the benefit to the cost of

delaying the Binary Search Policy and use the Linear Search Policy in state 4

instead. The discussion above shows that when the present-biased agent has

δ > δ̄ and β > β̄4, the Binary Search Policy is optimal in state 4 for the agent’s

state-4 self. Using the idea of backward induction, the Binary Search Policy

can be shown to be optimal in state 5 for the agent’s state-5 self if β > β̄5.

The Binary Search Policy is thus optimal for the present-biased agent in all the

states up to N if β > max{β̄m}m={4,5,...,N}, where β̄
m :=

1
m

V B(m)−δm−1
m

V B(m−1)

is the ratio of the benefit to the cost of using the Linear Search Policy in state

m given that the agent’s future selves will use the Binary Search Policy. The

cost V B(m) − δm−1
m V B(m − 1) is increasing in m because the value function

V B(·) is concave, and the benefit 1
m is decreasing in m. The value of β̄m is thus

decreasing in m. Therefore, if β > β̄4, then the value of β is greater than β̄N for

all N > 4. The intuition is that delaying the Binary Search Policy to tomorrow

is the most beneficial for the present-biased agent’s state-4 self. If the present-

biased agent’s state-4 self finds it optimal to use the Binary Search Policy, then

all the present-biased agent’s selves will find it optimal to use the Binary Search

Policy. When the present-biased agent is not too present-biased, that is, when

β is big enough, the present-biased agent has the same optimal strategy as the

time-consistent agent.

In state N , if the agent’s future selves all use the Linear Search Policy, and

the agent’s state-N self uses the (m,n) ∈ F† policy, the highest payoff from

these policies is

βP (N) ≡ β max
{m,n}∈F†

δ

{
m

N
V L(m) +

n

N
V L(n)

}
where V L(·) is value associated with the Linear Search Strategy (see Lemma 2.1).

When δ > δ̄, it has been shown that the maximum value is achieved at the

Binary Search Policy in state N . Following the backward induction method,

consider the agent’s state-4 self. Since Linear Search and Binary Search coincide

in states smaller than 4, it can be considered as the agent’s future selves use

Linear Search Policy in each future states. If the agent uses the Linear Search

Policy in state 4, then the expected payoff is 1
4 + βδ 34V

L(3). If the agent uses
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the Binary Search Policy in state 4, then the expected payoff is βP (4). Then,

given that the agent’s future selves all use the Linear Search Policy, the agent’s

state-4 self uses the Binary Search Policy if β ≥ β̃4 where β̃4 ≡
1
4

P (4)−δ 3
4
V L(3)

is

the ratio of the benefit to the cost of using the Linear Search Policy in state 4.

Let β̃N ≡
1
N

P (N)−δN−1
N

V L(N)
be the ratio of the benefit to the cost of using the

Linear Search Policy in state N . Note that β̃4 = β̄4 because Linear Search and

Binary Search coincide in states smaller than 4.

When β < β̃4, the agent uses the Linear Search Policy in state 4 given that

his future selves also use Linear Search Policy. Then, consider the optimal policy

in state 5 given that the agent’s all future selves use the Linear Search Policy.

Following the same calculation as in state 4, the agent uses the Binary Search

Policy if β ≥ β̃5, and uses the Linear Search Policy if β < β̃5.

Lemma 2.9. The ratio of the benefit to the cost of using the Linear Search

Policy in state N given that the agent’s future selves all use the Linear Search

Policy β̃N is decreasing in N .

This is because the benefit of using the Linear Search Policy in state N is

decreasing in N , and due to the concavity of the function V L(·), the cost of using
the Linear Search Policy is increasing in N . As a result, β̃N is decreasing in N .

Given this lemma, in state 5, it can be concluded that if the agent has the

present-biased parameter β ∈ [β̃5, β̃4), it is optimal for him to use the Binary

Search Policy in state 5, and to use the Linear Search Policy in all future states.

For β < β̃5, I can keep discussing the agent’s policy in state 6 using the same

approach. Because of the decreasing property of β̃N , it will be the case that if

the agent has the present-biased parameter β ∈ [β̃N , β̃N−1), it is optimal for him

to use the Binary Search Policy in state N , and to use the Linear Search Policy

in all future states.

2.7 Proof of Proposition 2.5

Suppose all the players use the Linear Search Strategy. In state N , prior to

knowing whether she is active or not, if player i uses the Linear Search Strategy

when she is active, her value is

V L
i (N) = pi

{
1

N
+ δ

N − 1

N
V L
i (N − 1)

}
+ (1− pi)

{
δ
N − 1

N
V L
i (N − 1)

}
.
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Given the initial condition V L
i (2) = pi, it can be computed that

V L
i (N) =

1

N
pi

[
1− δN−1

1− δ
+ δN−2

]
.

If player i uses the (m,n) ∈ F† policy in state N , and uses the Linear Search

Policy in all other states, prior to knowing whether she is active or not, her value

is

V D
i (N) = pi

{
δ
m

N
V L
i (m) + δ

n

N
V L
i (n)

}
+ (1− pi)

{
δ
N − 1

N
V L
i (N − 1)

}
.

Next, I show that when δ ≤ 1
1+pi

, we have V D
i (N) ≤ V L

i (N). That is, given

that all other player uses the Linear Search Strategy, it is optimal for player i

to use the Linear Search Strategy (if she is active). Let WL
i (N) := NV L

i (N)

and WD
i (N) := NV D

i (N). To show that V D
i (N) ≤ V L

i (N) is equivalent to show

that WD
i (N) ≤WL

i (N). We have

WD
i (N)−WL

i (N) = δWL
i (m) + δWL

i (n)− δWL
i (N − 1)− 1.

If δ > 1
2 , W

L
i (m) +WL

i (n) is maximised at m = N
2 . If δ ≤

1
2 , W

L
i (m) +WL

i (n)

is maximised at m = 2. When δ ≤ 1
2 ,

WD
i (N)−WL

i (N) < δWL
i (1) + δWL

i (N − 1)− δWL
i (N − 1)− 1

= 2δpi ≤ pi < 1.

Therefore, when δ ≤ 1
2 , there exists an equilibrium where all the players use the

Linear Search Strategy. When δ > 1
2 ,

WD
i (N)−WL

i (N) ≤ δ2WL
i (
N

2
)− δWL

i (N − 1)− 1

=
δ + (2δ − 1)

(
δN−2 − 2δ

N
2
−1
)

1− δ
pi − 1

<
δ

1− δ
pi − 1.

If δ < 1
1+pi

, we have WD
i (N)−WL

i (N) < 0. As a result, if 1
2 < δ < 1

1+pi
, given

that all the players use the Linear Search Strategy, it is optimal for player i to

use the Linear Search Strategy.

118



2.8 Proof of Proposition 2.6

In this proof, I first derive the lifetime utility associated with the Linear Search

Strategy and the Binary Search Strategy. Next, I show that there is always

a Linear Search Deviating Strategy that gives a higher lifetime utility than the

Linear Search Strategy. The Linear Search Strategy is hence always sub-optimal.

Then, I show that no Binary Search Deviating Strategy gives a higher lifetime

utility than the Binary Search Strategy, and hence the Binary Search Strategy

is optimal.

To derive the lifetime utility associated with the Linear Search Strategy, I

first write down the Bellman equation

SL(N) =
1

N
+
N − 1

N
(SL(N − 1)− c).

Iterate backwards and plug in the initial condition S(2) = 1, we have

SL(N) =
1

N
+
N − 1

N

(
1

N − 1
+
N − 2

N − 1

(
SL(N − 2)− c

)
− c

)
= 1− (N + 1)(N − 2)

2N
c

By using the Binary Search Strategy, the agent learns the state after ⌈log2(N)⌉−
1 periods with probability 2N−2⌊log2 N⌋+1

N and learns the state after ⌊log2(N)⌋− 1

periods with probability 2⌊log2 N⌋+1−N
N . The lifetime utility associated with the

Binary Search Strategy is hence

SB(N) =
2N − 2⌊log2 N⌋+1

N

(
1− (⌈log2(N)⌉ − 1)c

)
+

2⌊log2 N⌋+1 −N

N

(
1− (⌊log2(N)⌋ − 1)c

)
= 1− (2N − 2⌊log2 N⌋+1)(⌈log2N⌉ − 1) + (2⌊log2 N⌋+1 −N)(⌊log2N⌋ − 1)

N
c.

Next, I show that there is always a Linear Search Deviating Strategy that

gives a higher lifetime utility than the Linear Search Strategy if c > 0. The

Linear Search Deviating Strategy is to choose (m,n) ∈ F† in state N , and use

the Linear Search Policy in all other states. Let SD(N) be the lifetime utility

associated with the Linear Search Deviating Strategy in state N , then

SD(N) =
m

N
SL(m) +

n

N
SL(n)− c

= 1− m2 + n2 +N − 4

2N
c
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If N is even, SD(N) is maximised at m = N
2 , where

maxSD(N) = 1− N2 + 2N − 8

4N
c > SL(N)

if N > 2. If N is odd, SD(N) is maximised at m = N−1
2 , where

maxSD(N) = 1− N2 + 2N − 7

4N
c > SL(N)

if N > 3. Therefore, whenever the Binary Search Strategy and the Linear Search

Strategy does not coincide, there is always a Linear Search Deviating Strategy

that gives a higher lifetime utility than the Linear Search Strategy if c > 0.

Linear Search is hence sub-optimal.

Then, I show that no Binary Search Deviating Strategy gives a higher life-

time utility than the Binary Search Strategy. I first derive the expression of

mSB(m) − (m − 1)SB(m − 1), which will be useful for the rest of the proof. I

will show that one-step deviation to the Linear Search Policy in state N is not

profitable, and then I show that one-step deviation to (m,n) ∈ F† in state N is

not profitable. Lastly, I show that search happens in state N when the cost c is

smaller than a threshold c̄(N).

Let K ∈ Z+ and K ≥ 2 be a constant.

Lemma 2.10. If m = 2K ,

mSB(m)− (m− 1)SB(m− 1) = 1−Kc.

If m ∈ [2K + 1, 2K+1 − 1] ∩ Z+,

mSB(m)− (m− 1)SB(m− 1) = 1− (K + 1)c.

Proof. We have

mSB(m) = m− (2m− 2⌊log2 m⌋+1)(⌈log2m⌉ − 1) + (2⌊log2 m⌋+1 −m)(⌊log2m⌋ − 1)c.
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Then, the difference is

mSB(m)− (m− 1)SB(m− 1) = 1−
[
m
(
2(⌈log2m⌉ − 1)− ⌊log2m⌋ − 1

)
− (m− 1)

(
2(⌈log2(m− 1)⌉ − 1)− ⌊log2(m− 1)⌋ − 1

)
− 2⌊log2 m⌋+1

(
⌈log2m⌉ − ⌊log2m⌋

)
+ 2⌊log2(m−1)⌋+1

(
⌈log2(m− 1)⌉ − ⌊log2(m− 1)⌋

)]
c

Case 1. First consider the case that m = 2K . In this case, ⌈log2m⌉ =

⌊log2m⌋ = ⌈log2(m− 1)⌉ = K, and ⌊log2(m− 1)⌋ = K − 1. Then,

mSB(m)− (m− 1)SB(m− 1) = 1−Kc.

Case 2. Then consider the case thatm = 2K+1. In this case, ⌈log2m⌉ = K+1,

and ⌊log2m⌋ = ⌈log2(m− 1)⌉ = ⌊log2(m− 1)⌋ = K. Then,

mSB(m)− (m− 1)SB(m− 1) = 1− (K + 1)c.

Case 3. Finally, consider the case that m ∈ [2K+2, 2K+1−1]∩Z+. In this case,

⌈log2m⌉ = ⌈log2(m− 1)⌉ = K + 1 = K + 1, and ⌊log2m⌋ = ⌊log2(m− 1)⌋ = K.

Then,

mSB(m)− (m− 1)SB(m− 1) = 1− (K + 1)c.

Next, I show that one-step deviation to the Linear Search Policy in state N

is not profitable. Let DL(N) be the lifetime utility in state N given that the

agent uses the Binary Search Deviating Strategy and chooses the Linear Search

Policy in state N , We have

DL(N) =
1

N
+
N − 1

N

(
SB(N − 1)− c

)
.

To show that the one-step deviation is not profitable is equivalent to show

NDL(N) < NSB(N), which is equivalent to show 1 − (N − 1)c < NSB(N) −
(N − 1)SB(N − 1). According to Lemma 2.10, the inequality holds when N > 2.

Then, I show that one-step deviation to (m,n) ∈ F† in state N is not

profitable. Let DP (N) be the lifetime utility in state N if the agent uses the
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Binary Search Deviating Strategy and chooses (m,n) ∈ F† in state N , then

DP (N) = max
(m,n)∈F†

{m
N

SB(m) +
n

N
SB(n)− c

}
If I can show that DP (N) = SB(N) when the agent chooses Binary Search in

state N , then there is no profitable Binary Search Deviating Strategy. To show

this, I introduce the following corollary.

Corollary 2.1. For (m,n) ∈ F†, the following inequality holds.

mSB(m)− (m− 1)SB(m− 1) ≥ (n+ 1)SB(n+ 1)− nSB(n)

Proof. Given Lemma 2.10, I consider four cases. Let K,J ∈ Z+ and K,J ≥ 2

be two constants. Case 1. First consider the case that m = 2K and n+1 = 2J .

The left-hand side of the inequality is 1 − Kc and the right-hand side of the

inequality is 1 − Jc. Since m ≤ n, we have K < J . Therefore, the inequality

holds with the strict inequality. Case 2. Next, consider the case that m = 2K

and n + 1 ∈ [2J + 1, 2J − 1]. The left-hand side of the inequality is 1 − Kc

and the right-hand side of the inequality is 1− (J + 1)c. Since m ≤ n, we have

K < J . Therefore, the inequality holds with the strict inequality. Case 3.

Next, consider the case that m ∈ [2K +1, 2K − 1] and n+1 = 2J . The left-hand

side of the inequality is 1 − (K + 1)c and the right-hand side of the inequality

is 1 − Jc. Since m ≤ n, we have m < n + 1 and hence 2K+1 < 2J + 1. Since

m,n ∈ Z+, it must be that K + 1 ≤ J . Therefore, the inequality holds with the

weak inequality. Case 4. Lastly, consider the case that m ∈ [2K + 1, 2K − 1]

and n+ 1 ∈ [2J + 1, 2J − 1]. The left-hand side of the inequality is 1− (K + 1)c

and the right-hand side of the inequality is 1− (J + 1)c. Since m ≤ n, we have

K ≤ J . Therefore, the inequality holds with the weak inequality.

Given Corollary 2.1, the following inequality holds

mSB(m) + nSB(n) ≥ (m− 1)SB(m− 1) + (n+ 1)SB(n+ 1).

Therefore, DP (N) is achieved by using the Binary Search Policy in state N .

Therefore, there is no profitable Binary Search Deviating Strategy.

Since the agent only searches when learning gives the agent a non-negative

payoff. That is V B(N) ≥ 0. Therefore, the fixed cost c has to be smaller than

the threshold c̄(N) so that the agent starts searching.
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2.9 Proof of Proposition 2.8

This proof follows the following steps. I first write down the Bellman equation.

Next, I compute the value associated with the Focal Point Search Strategy. Then,

I derive a sufficient condition under which there is no one-step deviation strategy

that gives the agent a higher payoff than the Focal Point Search Strategy.

The Bellman equation consists of the payoff at the current period and the

continuation value. The agent’s revised belief determines the continuation value.

If the prior belief is a distribution with a peak, the revised belief at the next

time can be one of the following three distributions: a degenerated distribution,

a uniform distribution, or a distribution with a peak with a different support.

The shape of the revised belief depends on the agent’s policy at that time. If

the agent uses the Linear Search Policy, the revised belief will be a degenerated

distribution or a uniform distribution. If the agent chooses (m,n) ∈ F†, the

revised belief will be a uniform distribution or a distribution with a peak with

a different support. Since the degenerated revised belief means that the agent

learns the unknown parameter, the continuation value is hence zero. The positive

continuation value thus takes two different functional forms: one corresponding

to the uniform revised belief, and the other corresponding to the belief with a

peak.

Let Vp(N) be the value function in state N when the belief of the agent is a

distribution with a peak of f1. Let Vu(N) be the value function in state N when

the belief of the agent is a uniform distribution. If the agent’s belief in state N

is the distribution with a peak f1, the Bellman equation in state N is

Vp(N) = max

{
f1 + (1− f1)δVu(N − 1), max

(m,n)∈F†
δ
{
µVp(m) + (1− µ)Vu(n)

}}
,

with the initial condition Vp(1) =
1
δ and µ = f1+

1−f1
N−1 (m−1). The first element

is the value associated with the Linear Search Policy in state N , and the second

element without the max operator is the value associated with (m,n) in state

N . With the max operator, it is the highest value the agent can get by choosing

(m,n) ∈ F†.

Let V F
p (N) be the value associated with the Focal Point Search Strategy.

Then,

V F
p (N) = f1 + (1− f1)δV

B(N − 1),

where V B(·) is the value function in the benchmark case associated with the

Binary Search Strategy (see Lemma 2.1). This is because if the agent uses the
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Focal Point Search Strategy and does not learn the unknown parameter, the

revised belief becomes the uniform distribution. Then the problem becomes the

one that has been discussed in the benchmark case. Since the discount parameter

is greater than a half, the corresponding value function is V B(·).
To check the optimality of the Focal Search Strategy, I derive a sufficient

condition under which there is no one-step deviation strategy that gives the

agent a higher payoff than the Focal Point Search Strategy.

Definition 2.7. The Focal Point Search Deviating Strategy is an one-step devi-

ation strategy such that the agent chooses (m,N −m) ∈ F† in state N and uses

the Focal Point Search Strategy in all other states.

Let G(m) be the value associated with the Focal Point Search Deviating

Strategy. Then,

G(m) = δ
{
µV F

p (m) + (1− µ)V B(N −m)
}
.

Plug in the value function associated with the Focal Point Search Strategy, we

have

G(m) = δ
{
µ
(
f1 + (1− f1)δV

B(m− 1)
)
+ (1− µ)V B(N −m)

}
.

The functional form of V B(·) is known (see Lemma 2.1). Since m ≥ 2 and

m ≤ N − m, the upperbound of V B(m − 1) is V B(1), which is 1
δ , and the

upperbound of V B(N −m) is V B(2) = 1. Therefore,

G(m) ≤ δ
{
µ
(
f1 + (1− f1)δ

1

δ

)
+ (1− µ)

}
= δ.

Then, if δ ≤ f1, it is always true that G(m) ≤ V F
p (N). As a consequence, when

δ ∈ (12 , f1], there is no Focal Point Search Deviating Strategy that gives the

agent a higher payoff than the Focal Point Search Strategy. The Focal Point

Search Strategy is hence optimal.
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Chapter 3

Learning How People Learn

1 Introduction

When a payoff-relevant state is unknown, a decision maker (DM) learns from

information about the state before making decisions. For example, before buying

a product, the consumers watch the advertisement and the introduction of the

product, search the internet for reviews about the product, and then decide

whether to buy or not. Investors read the financial report and news of a company

to check if the company is worth investing in and then decide whether to invest

or not. Chain restaurants do market research and use the data from the market

research to see whether it is profitable to open a new restaurant. The DM collects

information, processes information and learns from the information.

How does a DM learn from the information? One of the canonical theories

posits that the DM holds a prior belief about the unknown state. When the DM

receives new signals and information about the unknown state, she adjusts her

prior belief based on these new observations. This process is referred to as ‘learn-

ing from the information’ in this chapter. Mainstream economic theories impose

Bayesian DM assumptions where the DM updates the belief using Bayes rule

given some prior. However, the psychology and behavioural economic literature

suggest that people tend to process information in a manner that deviates from

Bayesian updating rules (see Tversky & Kahneman (1974), Rabin (1998) and

Camerer (1998)). Behavioural economists have explored and developed theories

regarding alternative belief updating rules. Epstein et al. (2010) provides a non-

Bayesian updating rule to capture the underreaction and overreaction to signals.

Rabin (1998) analyses the bias in beliefs when the order of the signals matters

in how people infer future signals. Besides the theories about the non-Bayesian

updating rules, there are some ad hoc tests used to understand how a DM learn
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from the information. For example, Angrisani et al. (2017) studies how people

process information in a social learning network.

The question of interest is whether it is possible that a third party could

learn how a DM learns from the information they received by observing what this

DM sees and what they do. For example, consider the experimental economists

designing an experiment to learn how the experiment participant processes the

information. If the designer sees the information received by the participant

and the actions taken by the participant, then, is it possible for the designer

to learn about the participant’s beliefs? Theoretically speaking, answering this

question provides a theoretical foundation for the experiments that are interested

in detecting how people learn from the information. In addition, answering this

question has applications in industry. Firms can benefit from learning how their

consumers react to the information they provide. For example, firms can design

advertising and free trials better to attract targeted consumers. Central banks

can benefit from knowing how the public process the news they release if they

can do better forward guidance.

In this chapter, I investigate this question in the following situation. Suppose

it is common knowledge that the DM updates their beliefs using Bayes rule but

the prior is unknown, I investigate whether it is possible for the designer to learn

the DM’s prior belief by observing the signals she received and the actions she

took. Learning the DM’s prior can be considered a starting point for learning

how the DM learns due to its tractability. Given that the DM updates beliefs

using Bayes rule, if the state is binary, all the designer needs to learn is one

parameter. If the state is finite but not binary, the designer just needs to learn

a distribution with a finite number of parameters. This is the least demanding

situation in terms of what the designer needs to learn. If the designer cannot

learn how the DM learns in this situation, then, it is very likely that the designer

is not able to learn in a more demanding environment. It is hence considered a

starting point.

Whether the designer can learn the DM’s prior depends on the variation in

the DM’s actions and the informativeness of the signals. The variation in the

DM’s actions determines how much information is involved in the DM’s action.

For example, if the DM always takes the same action regardless of the beliefs,

then, the designer can learn nothing about the DM from observing her actions.

If the DM’s action is reporting the beliefs directly, it is likely that the designer

can learn how the decision maker learns with sufficiently many observations. The

informativeness of the signals about the state determines how quickly the DM’s

actions stabilise. If the signals are very informative, the decision-maker learns
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the state very fast. Then, there will not be too many variations in the DM’s

actions eventually. It is likely that the designer cannot learn anything after a

certain point. If the signals are not very informative, the DM’s beliefs fluctuate

a lot. The fluctuation of the beliefs then may induce variations in the actions.

Then it is more likely that the designer can learn how the DM learns.

In this chapter, I consider the case where there are two possible states. It

is drawn at the beginning and it is constant over time. At each time, the DM

can observe a signal about the state and then take an action. The DM’s action

at each time is binary. There is a designer who can observe the signals received

and the action taken by the DM at each time. The designer wants to learn the

DM’s prior belief. I assume the designer can design the DM’s payoff function

in order to achieve her objective. An example of this setting is that a DM has

some initial opinions on whether being vegan is a good idea or not. She can read

the news about being vegan and observe the purchasing history of plant-based

meals and then decide whether she wants to purchase plant-based meals. The

seller of plant-based meals can choose the price of the plant-based meals, sees

what the DM sees on the news and whether the DM purchased the plant-based

meal. The seller then tries to recover the DM’s initial opinion on whether being

vegan is a good idea or not.

1.1 Related Literature

This chapter is related to the experimental economics papers about detecting

the bounded rationality of individuals. Angrisani et al. (2017) design the exper-

iment to detect how individuals to update beliefs in a social learning network.

The agents in their model act sequentially after observing statements from the

neighbours and a private signal about the state. The agents’ actions in their

model are continuous. This chapter is different from Angrisani et al. (2017).

This chapter focuses on asking the question of whether the experiment designer

can learn how the agents update their beliefs by observing their actions and

the signals. The focus is not on how the individual interprets the signals from

different sources. Augenblick & Rabin (2018) examines the time-inconsistency

preference of individuals. Their paper focuses on the experiment designer ob-

serving the actions to detect the form of the individual’s preferences. The aim

of their paper is different from this one. This chapter is mainly about beliefs

rather than preferences.

Mathematically, this chapter is using the idea of a sequential probability

ratio test by Wald (1945). The sequential probability ratio test considers the

odds ratio as a function of the probability of each observation and the number
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of observations. The sequential probability ratio test is for hypothesis testing.

The aim of the test is to decide which hypothesis is correct in the shortest time

period, i.e. with the smallest amount of observations. There are two thresholds:

a lower one and a higher one. The sequential probability ratio test ends if the

odds ratio falls below the lower threshold or jumps above the higher threshold.

The stopping time of the test follows Wald’s identity. It allows us to calculate

the probability that the odds ratio hits the two thresholds. This chapter uses

Wald’s identity to calculate the probability of the designer learning the prior.

2 The Model

2.1 Model Setup

There are two players: a designer and a decision maker (DM). Time t = 0, 1, 2, . . .

is discrete and potentially infinite. The state is drawn from the set Θ = {θ, θ′}
at time t = 0 and is constant over time. Both the designer and the DM are

uninformed about the state. The designer’s prior belief about the state is denoted

µ0 = Pr(θ) > 0 and the DM’s prior belief is denoted p0 = Pr(θ) > 0. The DM’s

prior belief is private information and is referred to as the DM’s type. The

designer believes that p0 is drawn from P according to distribution Σ0. I discuss

two cases in this chapter. One is when the designer believes there are two types

and the other is when the designer believes there are continuous types. In the

two-type case, P = {p0, p̄0} and the probability mass function σ0 of Σ0 is such

that σ0 (p0) > 0 for ∀p0 ∈ P . In the continuous-type case, P = [0, 1] and Σ0 is a

uniform distribution with support P .

At time t = 0, the designer designs the DM’s payoff function U : {0, 1}×Θ →
R+. The DM observes this payoff function and takes an action α0 ∈ {0, 1} . At
each time t > 0, the DM observes a signal st ∈ {1, 2, , . . . , S} := S about the state

and then takes an action αt ∈ {0, 1} . The signal structure is exogenous. If the

state is θ, the DM observes signal st = s with probability Pr(st = s|θ) = πs > 0

where π := (πs)s∈S is the distribution of the signals in state θ. If the state

is θ
′
, the DM observes signal st = s with probability Pr(st = s|π′) = π′s > 0

where π′ := (π′s)s∈S is the distribution of the signals in state θ
′
. Let ht =

(s0, s1, . . . , st−1) ∈ st denote the history of signals. The DM observes ht and

forms a posterior belief pt = Pr(θ|ht) using Bayes rule. The DM’s objective is

to maximise her time-t utility by taking action αt ∈ {0, 1} at each time t. The

payoff at time t is not observed by the DM until the experiment ends. The

designer’s objective is to learn the DM’s type. At time t > 0, the designer

observes the signal st and the action αt, and then updates her belief about the
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DM’s type. If the designer learns the type of DM, the experiment ends. If the

designer does not learn the type of DM, the experiment continues to the next

period.

The notion of ‘learning the DM’s type’ When P = {p0, p̄0}, the designer

learns the DM’s type when the designer believes that the DM’s type must be

p0 but not p̄0, or the other way around. That is, the designer’s posterior belief

is such that σt
(
p0
)
= 1 or σt (p̄0) = 1. This notion of learning can easily be

extended to the case where P has a finite cardinality and σ0 (p0) > 0 for ∀p0 ∈ P .

However, it is less straightforward in the case when there are continuous types.

I introduce the notion of learning in the continuous case in Section 3.

The simplification of the designer’s action Given the binary actions and

binary states, instead of designing the utility function U : {0, 1} ×Θ → R+, the

designer’s action can be simplified to choosing a threshold

r :=
U
(
0, θ

′
)
− U

(
1, θ

′
)

U (1, θ)− U (0, θ) + U (0, θ′)− U (1, θ′)
∈ (0, 1)

such that it is optimal for the DM to take action αt = 1 if and only if pt ≥ r.

2.2 An Example

The designer has two kinds of biased coins: A and B. The name of the coin is

the ‘state’ in the model. Coin A comes up Heads with probability 2
3 and Tails

with probability 1
3 . Coin B comes up Heads with probability 1

3 and Tails with

probability 2
3 . These two kinds of biased coins are in a non-transparent box.

The composition of the coins inside the box is unknown. At the beginning of the

game, the DM draws a coin from the box. Then, the DM tosses the coin and

guesses which coin it is. Since the draw is random and the composition of the

coin is unknown, the state is unknown and the DM’s prior belief is private.

The designer designs the DM’s payoff. The payoff function is announced

before the coin is drawn. An example of the payoff function is as follows. If

the coin is A and the DM guesses it correctly, then, the DM gets M . If the

coin is A and the DM guesses it wrong, then, she gets m. If the coin is B and

the DM guesses it correctly, then, she gets N . If the coin is B and the DM

guesses it wrong, then, she gets n. The designer wants to learn the DM’s prior

by observing the coin toss results and the DM’s guesses.

The timing of the payment guarantees that the DM does not learn the state
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from the payoff. If there is only one period, after the guess, the designer and the

DM check the name of the coin, and then the designer pays the DM accordingly.

If there is more than one period, the coin is tossed and the DM makes guesses at

each time. The payment is made at the end of the experiment. The experiment

ends after a predetermined time period T (if the time horizon is finite), after the

designer learns the type of the DM (if the time horizon is infinite), or continues

forever if there is no learning. Since the state is unknown to both the DM and

the designer, the designer records the DM’s guess at each time and calculates

the payoffs at the end of the experiment when the state is revealed.

2.3 Discussion

I make the assumptions that the designer can design the DM’s payoffs and DM’s

actions are observable. These assumptions make it easier for the designer to learn

the DM’s type. The purpose of this chapter is to check whether the designer can

learn in this environment. If the designer cannot learn in this case, then, it is

even harder to learn when actions are noisy or the utility function is exogenous.

In the example, the DM announces the ‘guess’ each time and the designer

observes this guess when it is announced. This is the case that the action is

observable. It may not always be the case that the action is observable. Some-

times, only the noisy version of the action is observable. For example, suppose

the DM cannot talk but has two coins, A and B, in her pocket. After tossing

the coin drawn from the box, the DM cannot announce her guess but she can

pick up the corresponding coin in her pocket. Then, the designer can flip the

coin picked by the DM, observes a signal of the DM’s guess and then infers the

DM’s guess, The observable action assumption makes it easier for the designer to

learn. During the experiment, what the designer observes are a series of actions

taken by the DM and a series of signals about the state. There is no extra level

of uncertainty compared to the noisy version of the actions. In this section, I

consider the case with observable actions to check if the designer can learn the

type of the DM. If the designer cannot learn the type of the DM in this case, it

is highly possible that the designer cannot learn when the observed actions are

noisy.

In the example, the designer can choose the payoffs the DM gets. This makes

it easier for the designer to learn. Consider the case that the designer cannot

choose the payoff function in the coin example. Suppose that the DM gets 1 if

she makes a correct guess and 0 otherwise. Assume that the DM is risk neutral.

Then the DM would guess A if she believes that the coin is A with a probability

of at least a half. Suppose that the DM has the prior that the coin is A with
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probability 0.8, and if the coin comes up heads more than tails, it is likely that

the DM’s belief is always bigger than a half. The designer then keeps observing

the A guesses. The designer may not learn whether the DM has a prior 0.8 or

the DM has other priors bigger than 0.8. If the DM with prior 0.8 guesses A

all the time, the DM who has a prior bigger than 0.8 would guess A as well.

The designer then cannot learn. However if the designer can choose the payoff

function, the designer has the ability to induce actions that are favourable in

terms of learning. Suppose that the designer somehow believes that the DM has

the prior that the coin is A with a high probability. The DM believes that the

coin is A with a probability of 0.8. Then, the designer may learn the prior of the

DM if the designer chooses the payoff function as follows. If the coin is A and

the DM guesses it correctly, the DM gets 1; if the coin is B and the DM guesses

it correctly, the DM gets 3; if the guess is wrong, the DM gets 0. Given this

payoff function, the DM will guess B if she believes that the probability that the

coin is A is smaller than 3
4 . The payoff of guessing B correctly is big enough so

that it is worth taking the risk. Consider the action of the DM who believes that

the coin is A with a probability of 0.8. Before the first signal, the DM guesses

A because the prior is 0.8. After the first signal, if the signal is tails, the DM

believes that the coin is A with probability 2
3 and then guesses B. Then, the

designer can back up the prior belief of the DM. The designer can back up that

the prior of the DM is in the range (34 ,
6
7).

3 Analysis

This section analyses the model. Section 3.1 gives a positive result where the

designer always learns the DM’s type. Section 3.2 establishes the importance of

observing a switch of action and re-defines the notion of learning. Section 3.3

discusses a special case when there are two signals and Section 3.4 gives a negative

result where the designer does not always learn the DM’s type and characterises

the optimal threshold that maximises the probability of learning.

3.1 Two Types

When there are two types of DM, the designer can learn the type of the DM

immediately.

Theorem 3.1. When P = {p0, p̄0}, the designer can learn the type of the DM

immediately by choosing r∗ ∈
(
p0, p̄0

]
.

By choosing the threshold r∗ ∈
(
p0, p̄0

]
, the p0-type DM takes action α0 = 0
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and the p̄0-type DM takes action α0 = 1. Since different types of the DM take

different actions at time 0, after observing the action taken at time 0, the type of

the DM is fully revealed. The designer then learns the DM’s type immediately.

The role of action α0 The model setup is such that the DM takes an action

α0 at time 0 before receiving any signal. That is, α0 is taken based on the DM’s

prior. This makes it easier for the designer to learn the DM’s type. If, however,

the DM’s first action is taken at time t = 1, that is, α0 ∈ ∅, then, the designer

learns the DM’s type after observing α1 if the two possible types are not too

close. This is summarised in Lemma 3.1. Let p̄1 ∈
[
p̄l1, p̄

r
1

]
be the p̄0-type DM’s

posterior at time t = 1 where p̄l1 is the lowest possible posterior after receiving

any s1 ∈ S and p̄r1 is the highest possible posterior after receiving any s1 ∈ S.
Similarly, let p

1
∈
[
pl
1
, pr

1

]
be the p

0
-type DM’s posterior at time t = 1 where pl

1

is the lowest possible posterior after receiving any s1 ∈ S and pr
1
is the highest

possible posterior after receiving any s1 ∈ S.

Lemma 3.1. Suppose α0 ∈ ∅. If P = {p0, p̄0} and the time t = 1 posterior

beliefs p̄1 ∈
[
p̄l1, p̄

r
1

]
and p

1
∈
[
pl
1
, pr

1

]
satisfy pr

1
< p̄l1, then, the designer can

learn the type of the DM at time t = 1 by choosing r∗ ∈
(
pr
1
, p̄l1

]
.

Lemma 3.1 says that when the two possible types of the DM are significantly

different from each other, that is, the p̄0-type DM’s lowest possible posterior

belief at time t = 1 is higher than the p
0
-type DM’s highest possible posterior

belief at time t = 1, the designer can learn the type of the DM by choosing the

threshold r such that it is optimal for the p̄0-type DM to choose action α1 = 1

and optimal for the p
0
-type DM to choose action α1 = 0. On the contrary, when

p̄0 and p
0
do not satisfy the condition in Lemma 3.1, that is, when p̄0 and p

0

are close to each other, then, the designer may not always learn the DM type at

time t = 1.

To understand this, for simplicity, suppose S = {1, 2} and the distribution

of the two signals is (π, 1− π) in state θ and (1− π, π) in state θ′ where π > 0.5.

Then, the posterior belief of both types after observing st = 1 is greater than

the posterior belief after observing st = 2. After observing st = 1, the DM of

both types believes that it is more likely that the state is θ and then revises the

belief upwards. After observing st = 2, the DM of both types believes that it

is more likely that the state is θ′ and then revises the belief downwards. To be

consistent with the notation in Lemma 3.1, let p̄l1 and pl
1
be the posterior beliefs

after observing st = 2 and let p̄r1 and pr
1
be the posterior beliefs after observing

st = 1.
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When p̄0 and p
0
are far away from each other such that pr

1
< p̄l1, then, if

the designer chooses r∗ ∈
(
pr
1
, p̄l1

]
, after observing any realisation s1 ∈ S at time

t = 1, the p̄0-type DM maker takes action 1 while the p
0
-type DM maker takes

action 0 at time. In this case, the designer always learns the type after observing

the action taken at time t = 1. On the contrary, when p̄0 and p
0
are close to

each such that pr
1
> p̄l1, the designer may or may not learn the DM’s type after

observing one action because the DM may choose the same action given any

choice of r. Suppose the designer chooses r ∈
(
p̄l1, p

r
1

]
, then, both DM types

take action 1 after observing s1 = 1 and take action 0 after observing s1 = 2.

In this case, the designer cannot learn immediately after observing one action.

If the designer chooses r ∈
(
pr
1
, p̄r1

]
, then the designer can learn if the signal

realisation is s1 = 1 but cannot learn if the signal realisation is s1 = 0. This is

because when s1 = 1, the p̄0-type takes action 1 while the p
0
-type takes action 0

at time t = 1. The designer can distinguish these two types. When s1 = 0, both

types take action 0 and then the designer cannot distinguish. As a result, the

designer cannot always learn after observing one action. If the designer chooses

r > p̄r1 or r < pl
1
, she cannot learn after observing one action. This is because

both DM types take the same action at time t = 1 after observing any realisation

of the signal s1 ∈ S.

More than two types The immediate learning relies heavily on the assump-

tion that there are only two types of the DM. When there are three types, since

the DM can only choose one cutoff r, there must be at least two types of the DM

that take the same action at time 0. Then, whether a DM can learn the type or

when the DM can learn the type depends on the sequence of actions and signal

realisations. The next section tackles how to approach a more general case when

there are more than two types.

3.2 Switch of Actions and Notion of Learning Re-defined

In this section, I argue that observing a switch of action is key for the designer to

learn the type of the DM. I then re-introduce the notion of learning as observing

a switch of action. Then, I compute the probability of observing a switch of

action conditional on the state θ and θ′ given a threshold r and a type p0 ∈ P .

Although the time in this model is infinite, the real time for the designer

to learn the type of the DM is actually finite. This is because a Bayesian DM

learns the state after observing sufficiently many signals. Therefore, given any

type p0 ∈ (0, 1), the sequences of the DM’s actions eventually converge. The

sequence of the DM’s actions converges to 1 if the state is θ and converges to 0
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if the state is θ′ for any r ∈ (0, 1). As a result, if a designer wants to recover the

DM’s type, the designer must observe some variation in the actions before the

DM’s action converges.

As discussed in the previous section, the designer can distinguish between

two types of the DM if the sequences of actions taken by these two types are

different after they receive the same sequence of signals. Consider two types of

the DM. After receiving the same sequence of signals, if one type of the DM takes

a sequence of actions (1, 0, 0, 0, . . . , 0, 0, . . . ) and the other type of the DM takes a

sequence of actions (0, 0, 0, 0, . . . , 0, 0, . . . ), the designer will be able to distinguish

between these two types of the DM. When there are more than two types of the

DM, the timing at which the DM switches from one action to the other allows

the designer to recover the DM’s prior. Suppose there are three types of the DM.

After observing the same sequence of signals, if type-1 takes a sequence of actions

(1, 1, 0, 0, . . . , 0, 0, . . . ), type-2 takes a sequence of actions (1, 1, 1, 0, . . . , 0, 0, . . . ),

and type-3 takes a sequence of actions (0, 0, 0, 0, . . . , 0, 0, . . . ), then, the designer

will be able to distinguish between these three types of the DM. Given the

examples above, it appears to be the case that as long as different types take

different sequences of actions is enough for the DM to distinguish the type, a

switch of actions is not necessary. For example, after observing a sequence of

action 0’s, it is still possible to eliminate type 1 and type 2 in the three-type

example. This is because the types are discrete. It is possible to eliminate the

type whose sequence of actions has a switch of actions. If the designer is belief

is such that P = [0, 1] and Σ0 is a uniform distribution, then, I define the notion

of learning as observing a switch of actions.

Definition 3.1. When P = [0, 1] and Σ0 is uniform, the designer learns the

type of the DM at time t if she observes a switch of action at time t.

When does a switch of action happen? It depends on the choice of the

threshold r and the state. Suppose the designer chooses a threshold r. The

DM takes action 1 if the belief about the state being θ is greater than or equal

to r. If the DM has a prior p0 that is smaller than r, then the DM starts by

taking action 0 at time 0. After receiving a sequence of signals, the DM first

switches the action from 0 to 1 if the belief about the state goes from below

the threshold r to above the threshold r. If the state is indeed θ, this switch of

actions happens with probability one as the sequence of actions converges. If,

however, the DM has the prior p0 larger than r, then the DM starts by taking

action 1. The designer can observe a switch of actions only if the DM’s belief

about the state being θ falls below the threshold r. Since the DM is Bayesian
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and the belief converges to 1 if the state is θ, the probability of the DM’s belief

falling below r is positive but not 1. As a result, the designer may or may not

be able to observe such a switch of actions from 1 to 0 if the state is θ

Proposition 3.1 characterises the probability of observing a switch of actions

in state θ and θ
′
given the type of the DM p0 and the threshold r. Let v∗ < 0

satisfy
∑

s∈S πs(
πs
π′
s
)v

∗
= 1, let u∗ > 0 satisfy

∑
s∈S π

′
s(

πs
π′
s
)u

∗
= 1. and let k :=

ln r
1−r − ln p0

1−p0
.

Proposition 3.1. Assume that θ is the underlying state and p0 is the type of

the DM.

If the designer chooses r > p0, the switch of actions is observed w.p. 1.

If the designer chooses r < p0, the switch of actions is observed w.p. 1
ev∗k

.

If the designer chooses r = p0, the switch of actions is observed w.p. 1
ev∗η

where η = limr→p0 k.

Assume that θ′ is the underlying state and p0 is the type of the DM.

If the designer chooses r < p0, the switch of actions is observed w.p. 1.

If the designer chooses r > p0, the switch of actions is observed w.p. 1
eu∗k

.

If the designer chooses r = p0, the switch of actions is observed w.p. 1
eu∗η

where η = limr→p0 k.

3.3 A Special Case: Binary Signals

The probability of observing a switch of actions requires solving for v∗ or u∗

numerically. It is hard to compute the exact values when there are many signals.

In this section, I consider a special binary-signal case.

There are two signals S = {1, 2} with distributions (π, 1− π) in state θ and

(1− π, π) in state θ′. I assume π > 0.5 so that it is more likely to receive signal

1 in state θ and more likely to receive signal 2 in state θ′. When π is very close

to a half, i.e. when the signal is very uninformative, the belief of the DM takes

very small steps after receiving one more signal. In the limit, it is like the case

with continuous times. The probability of learning is easier to compute given

this signal structure.

Proposition 3.2 characterises the probability of observing a switch of actions

when S = {1, 2}. Let B :=
ln r

1−r
−ln

p0
1−p0

ln π
1−π

.

Proposition 3.2. Assume that θ is the underlying state and p0 is the type of

the DM.

If the designer chooses r > p0, a switch of actions is observed with probability

1.
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If the designer chooses r < p0, a switch of actions is observed with probability

(1−π
π )−B.

If the designer chooses r = p0, a switch of actions is observed with probability
1−π
π .

Assume that θ′ is the underlying state and p0 is the type of the DM.

If the designer chooses r ≤ p0, a switch of actions is observed with probability

1.

If the designer chooses r > p0, a switch of actions is observed with probability

(1−π
π )B.

In the following sections, I discuss the designer’s optimal choice of the thresh-

old r and the probability of learning the DM’s type when the signals are binary.

3.4 No Learning in Continuous-Type Case

Suppose P = [0, 1] and Σ0 is uniform. This describes the situation in that the

designer knows nothing about the DM’s prior. The designer does not know the

potential prior the DM may have and the designer does not know which prior is

more likely. The continuously uniformly distributed prior can be considered as

a conservative assumption the designer has about the DM. In this section, I give

a negative result that the designer does not always learn the type of the DM

and then I characterise the optimal threshold r that maximises the probability

of learning when the signals or binary.

Theorem 3.2. When P = [0, 1], Σ0 is a uniform distribution, the probability of

learning the DM’s type is smaller than one.

The main tradeoff facing the designer is to learn for almost certain in one

of the states or to learn with some probability in both states. If the designer

chooses the threshold r very close to 1, then, if the state is indeed θ, she will

observe a switch of actions from 0 to 1 at some point for all the possible types.

If, however, the state is indeed θ′, then, a switch of actions is almost impossible

to be observed. If the designer chooses the threshold r = 0.5, then, if the state

is θ, the types p0 < r will switch their action from 0 to 1 at some point and

then the designer will be able to learn those types. For the types p0 > r, if the

state is θ, a switch of actions from 1 to 0 can only be observed with a positive

probability. The greater the distance between p0 and r, the less likely a switch

of actions will be observed. However, the similar logic applies to the case if the

state is θ′. As a result, the designer can learn with a positive probability in both

states.
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In general, the designer’s prior belief about the state and the designer’s prior

belief about the type of the DM affect the choices of the threshold r when the

designer wants to maximise the probability of learning. The designer’s prior

belief about the state determines whether the threshold r is closer to 0 or closer

to 1. If the designer believes that the state is more likely to be θ, the designer

believes that it is more likely that the beliefs of the DM are going up to 1

regardless of the types of the DM. Choosing the threshold r closer to 1 can

maximise the probability of learning the type of the DM in the state θ. However,

if the designer believes that the state is more likely to be θ′, the designer believes

that it is more likely that the beliefs of the DM are going down to 0 regardless

of the types of the DM. Choosing the threshold r closer to 0 can maximise

the probability of learning the type of the DM in the state θ′. The designer’s

prior belief about the type determines whether the designer wants to choose the

threshold r closer to a certain prior. The closer the threshold r is to a range of

certain priors, the higher the probability is for the designer to learn those priors

when the state is unknown. In this section, since the designer believes that the

Σ0 is a uniform distribution, the second factor affects the designer’s choice of r

less significantly.

Next, I characterise the condition that the optimal threshold r∗ satisfies. I

show that the optimal threshold that maximises the probability of learning the

prior is a function of µ0 and it is increasing in µ0. If the designer believes that

the state is more likely to be θ, the designer will choose r∗ closer to 1. It will

allow the designer to learn more priors in state θ, but learn less in state θ′. If the

designer believes that the state is more likely to be θ′,the designer will choose

the r∗ closer to 0. It will allow the designer to learn more priors in state θ′, but

learn less in state θ.

Proposition 3.3. The optimal choice of the threshold r∗ that maximises the

probability of learning the prior satisfies

(r∗)2

(1− r∗)2
ln r∗ + 1− r∗

ln(1− r∗) + r∗
=

1− µ0
µ0

.

The optimal threshold r∗ increases in µ0.

4 Finite Periods of Learning

Previous sections discuss the cases that the time horizon is infinite. I focus on

discussing the probability of learning in the long run. In this section, I consider

the case that the time t = 0, 1, . . . , T is finite. The finite-time assumption is
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more relevant to real-life applications. For experimental economists who design

experiments to detect the belief of the experiment candidates, the experiments

cannot last forever. For firms that are doing trials to understand their customers,

they cannot do an infinite number of trials

Proposition 3.4 characterises the probability of observing a switch of action

in state θ and θ
′
given the type of the DM, the threshold r and the final time

period of the experiment T . Before presenting the proposition, I define ΦB(s),

ΨB(s), ΞB(s) and ΩB(s) functions where

ΦB(s) := (
1− (1− 4π(1− π)s2)

1
2

2(1− π)s
)B,

ΨB(s) := (
1− (1− 4π(1− π)s2)

1
2

2πs
)−B,

ΞB(s) := (
1− (1− 4π(1− π)s2)

1
2

2πs
)B,

and

ΩB(s) := (
1− (1− 4π(1− π)s2)

1
2

2(1− π)s
)−B.

Let ϕB(τ) =
Φ

(τ)
B (0)
τ ! , ψB(τ) =

Ψ
(τ)
B (0)
τ ! , ξB(τ) =

Ξ
(τ)
B (0)
τ ! , and ωB(τ) =

Ω
(τ)
B (0)
τ ! where

f (τ)(0) is the τ -th derivative of the function f evaluated at 0.

Proposition 3.4. Assume that θ is the underlying state and p0 is the type of

the DM. If the designer sets r > p0, the designer learns the type of the DM with

probability
∑T

τ=1 ϕB(τ). If the designer sets r < p0, the designer learns the type

of the DM with probability
∑T

τ=1 ψB(τ).

Assume that θ′ is the underlying state and p0 is the type of the DM. If the

designer sets r > p0, the designer learns the type of the DM with probability∑T
τ=1 ξB(τ). If the designer sets r < p0, the designer learns the type of the DM

with probability
∑T

τ=1 ωB(τ).

5 Conclusion

This chapter investigates whether a designer can learn a DM’s prior belief about

an underlying state by observing the public signals and the DM’s actions. I show

that when the DM’s action is binary, it is not always the case that the designer
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can learn the DM’s prior. The key to learning the DM’s prior is being able to

observe a switch in the DM’s actions. If the DM’s prior only has two possible

values, then, the designer can immediately learn the DM’s prior. However, if

the DM’s prior is uniformly distributed from zero to one, then, the probability

of learning is smaller than one.
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Appendix to Chapter 3

1 Proof of Proposition 3.1

First, consider the DM’s belief. The DM forms the belief using the Bayes rule.

Define the log odds ratio Λt := ln( pt
1−pt

). The following part shows that Λt

follows a random walk. The odds ratio is

pt+1

1− pt+1
=

pt
1− pt

Pr(st|θ)
Pr(st|θ′)

=
p0

1− p0

t∏
τ=0

Pr(sτ |θ)
Pr(sτ |θ′)

=
p0

1− p0

∏
s∈S

(
πs
π′s

)t̂s

where t̂s is the number of s signals before time t + 1. Taking the logarithms of

the odds ratio, we have

ln
pt+1

1− pt+1
= ln

pt
1− pt

+ ln
πst
π′st

= ln
p0

1− p0
+

t∑
τ=0

ln
πsτ
π′sτ

Thus

Λt+1 = Λt + ln
πst
π′st

(3.1)

The log odds ratio follows a random walk with steps ln
πst
π′
st
. If the underlying

state is θ, the random walk takes steps with the probability determined by the

probability distribution a.

Now consider the DM’s action. The DM takes action αt = 1 if pt ≥ r

and αt = 0 otherwise. Therefore, the DM takes action αt = 1 if Λt ≥ ln r
1−r .

If the DM is observed to switch action from 0 to 1 in period t, then we have

Λt ≈ ln r
1−r . Thus,

ln
p0

1− p0
+

t∑
τ=0

ln
πsτ
π′sτ

≈ ln
r

1− r
.

Therefore, observing a switch of action is equivalent to observing the type of the

DM.
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Next step is to characterise the probability of observing a switch of action

given the choice of r. Let xt := ln
πst
π′
st
. Conditional on the state θ, x1, x2, . . . are

identically and independently distributed random variables. Let yt = x1+· · ·+xt.
The sequence y = {yτ : τ > 0} is a random walk starting at the origin. Let

k := ln r
1−r − ln p0

1−p0
. The probability of observing a switch of action is equal to

the probability that the random walk y hits the value k.

If k > 0, the probability that y hits the value k is 1. Conditional on θ, we

have Eθ[Λt+1 | Λt] > Λt. Therefore, Λt is a submartingale. According to the

Martingale convergence theorem, if the state is θ, Λt → ∞ almost surely. If the

state is θ′, Λt → −∞ almost surely.

Since the random walk y satisfies

yt = Λt+1 − ln
p0

1− p0
,

if the state is θ, the random walk y hits the value k > 0 with probability 1.

Now consider the situation that k < 0. Let A > 0. Define a stopping time

τ to be the first time the random walk y exists the interval [k,A]. The stopping

time τ is finite with probability 1 as the the random walk y tends to infinity.

According to Wald’s Identity, the stopping time τ satisfies

1 = E[
evyτ

(
∑

s πs(
πs
π′
s
)v)τ

] for ∀v ̸= 0 s.t.
∑
s

πs(
πs
π′s

)v ≥ 1.

Choose v∗ < 0 such that
∑

s πs(
πs
π′
s
)v

∗
= 1, then,

1 = E[ev
∗yτ ].

Let τA and τk be the two stopping times that yτ hits A and yτ hits k, then

1 ≈ Pr(yτ = A)ev
∗A + Pr(yτ = k)ev

∗k.

Notice that this is an approximation because when yt hits k, it does not exactly

equal k. The equality holds with an equal sign if either the steps the random

walk takes are infinitely small (the continuous time case) or the random walk

takes steps up and down of the equal sizes. Next section will discuss the case

that the random walk takes steps up and down of the equal sizes. Use the fact

that Pr(yτ = k) = 1− Pr(yτ = A) we can get that

Pr(yτ = k) ≈ 1− ev
∗A

ev∗k − ev∗A
.
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Let A→ ∞, we have

Pr(yτ = k) → 1

ev∗k
.

When the state is θ
′
, the proof follows the same approach.

If k < 0, the random walk y hits the value k with probability 1. From the

proof for lemma 3.1, conditional on θ′, Equation (3.1) implies that Eθ[Λt+1 |
Λt] < Λt. Therefore, −Λt is a submartingale. If the state is θ′, Λt → −∞ almost

surely. The random walk y hits the value k < 0 with probability 1.

Consider the case that k > 0. Let A < 0. Define the stopping time τ to

be the first time the random walk y exits the interval [A, k]. The stopping time

τ is finite with probability 1. According to Wald’s identity, the stopping time

satisfies

1 = E[
euyτ

(
∑

s π
′
s(

πs
π′
s
)u)τ

] for ∀u ̸= 0 s.t.
∑
s

π′s(
πs
π′s

)u ≥ 1.

Choose u∗ > 0 such that
∑

s πs(
πs
π′
s
)u

∗
= 1. Follow the same steps as in the proof

for lemma 3.1. We have

Pr(yτ = k) → 1

eu∗k
.

2 Proof of Proposition 3.2

Consider the random walk y defined previously where yt = x1 + · · ·+ xt. Given

the signal structure characterised above, if st = 1, we have xt = ln π
1−π , and

if st = 2, we have xt = ln 1−π
π . The random walk y now starts at the origin

and takes steps up and down by equal amounts ln π
1−π . If the threshold is r, let

B =
ln r

1−r
−ln

p0
1−p0

ln π
1−π

be the corresponding steps the random walk y takes to hit

the value ln r
1−r − ln π

1−π . The expressions ‘the random walk y hits the value

ln r
1−r − ln π

1−π ’ and the ‘random walk y hits the step B’ are the same.

We now have a random walk y starting at the origin taking steps up and

down by equal amounts ln π
1−π . If the state is θ, the random walk y taking steps

up with probability a and steps down with probability 1− a. If r > p0, B > 0.

The random walk y hits the step B with probability 1. If r < p0, B < 0. The

random walk y hits the step B with probability (1−π
π )−B.

If the state is θ′, the random walk y taking steps up with probability 1− a

and steps down with probability a. If r > p0, B > 0. The random walk y hits

the step B with probability (1−π
π )B. If r < p0, B < 0. The random walk y hits

the step B with probability 1.
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3 Proof of Theorem 3.2 and Proposition 3.3

Let B =
ln r

1−r
−ln

p0
1−p0

ln π
1−π

be the steps. If the state is θ, for p0 < r, the designer

learns the type with probability 1. For p0 > r, the designer learns the type

with probability (1−π
π )−B. If the state is θ′, for p0 < r, the designer learns the

type with probability (1−π
π )B. For p0 > r, the designer learns the type with

probability 1. The probability of learning is

Pr(Learning) = µ0(

∫ r

0
1dp0 +

∫ 1

r
(
1− π

π
)−Bdp0) + (1− µ0)(

∫ r

0
(
1− π

π
)Bdp0 +

∫ 1

r
1dp0)

= µ0(r +
r

1− r
(−1− ln r + r)) + (1− µ0)(

1− r

r
(−r − ln(1− r)) + 1− r)

< 1

Take the first order derivative with respect to r,

dPr(Learning)

dr
= µ0(

d

dr

∫ r

0
1dp0 +

d

dr

∫ 1

r
(
1− π

π
)−Bdp0)

+ (1− µ0)(
d

dr

∫ r

0
(
1− π

π
)Bdp0 +

d

dr

∫ 1

r
1dp0)

= ln
1− π

π

dB

dr
(−µ0

∫ 1

r
(
1− π

π
)−Bdp0 + (1− µ0)

∫ r

0
(
1− π

π
)Bdp0)

= ln
1− π

π
(ln

π

1− π
)−1 1

r(1− r)
[−µ0

r

1− r
(r − 1− ln r)

− (1− µ0)
1− r

r
(r + ln(1− r))]

= µ0
1

(1− r)2
(r − 1− ln r) + (1− µ0)

1

r2
(r + ln(1− r))

Take the second order derivative with respect to r,

d2 Pr(Learning)

dr2
= −µ0

−r2 + 2r ln r + 1

r(1− r)3
− (1− µ0)

2 ln(1− r)− (r−2)r
1−r

r3

< 0

The probability of learning is concave in r ∈ (0, 1).

Therefore, there exists a r∗ ∈ (0, 1) such that the probability of learning is

maximised. Next, show r∗ is increasing in µ0. Take the first order condition, we

have

µ0
1

(1− r∗)2
(r∗ − 1− ln r∗) + (1− µ0)

1

(r∗)2
(r∗ + ln(1− r∗)) = 0
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Then we have

(1− µ0)
1

(r∗)2
(r∗ + ln(1− r∗)) = µ0

1

(1− r∗)2
(ln r∗ + 1− r∗)

Therefore,

µ0
1

(1−r∗)2 (ln r
∗ + 1− r∗)

(1− µ0)
1

(r∗)2 (r
∗ + ln(1− r∗))

= 1

Thus

(r∗)2

(1− r∗)2
ln r∗ + 1− r∗

r∗ + ln(1− r∗)
=

1− µ0
µ0

We can write r∗ as a function of µ0. The left hand side is decreasing in r∗, the

right hand side is decreasing in µ0. Therefore r
∗ is increasing in µ0.

4 Proof of Proposition 3.4

Consider the random walk y defined in Proposition 3.1. Let B =
ln r

1−r
−ln

p0
1−p0

ln π
1−π

.

Let

ϕB(τ) = Pr(y1 ̸= B, . . . , yτ−1 ̸= B, yτ = B)

be the probability that the random walk y first hits the step B at the τ -th step

when B > 0 with generating function

ΦB(s) =

∞∑
τ=1

ϕB(τ)s
n = (

1− (1− 4π(1− π)s2)
1
2

2(1− π)s
)B. (3.2)

Let

ψB(τ) = Pr(y1 ̸= B, . . . , yτ−1 ̸= B, yτ = B)

be the probability that the random walk y first hits the step B at the τ -th step

when B < 0 with generating function

ΨB(s) =
∞∑
τ=1

ψB(τ)s
n = (

1− (1− 4π(1− π)s2)
1
2

2πs
)−B. (3.3)

We have ϕB(τ) =
Φ

(τ)
B (0)
τ ! and ψB(τ) =

Ψ
(τ)
B (0)
τ ! where f (τ)(0) is the τ -th derivative

of the function f evaluated at 0.

Assume that θ is the underlying state. The random walk y takes steps

up with probability π and steps down with probability 1 − π. The generating
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functions can be written as (3.2) and (3.3) 1. Then summing ϕB and ψB over

τ from τ = 1 to τ = T gives us the probability of hitting the step B within T

periods.

Similar results hold for assuming θ′ being the underlying state. Let

ξB(τ) = Pr(y1 ̸= B, . . . , yτ−1 ̸= B, yτ = B)

be the probability that the random walk y first hits the step B at the τ -th step

when B > 0 with generating function

ΞB(s) =
∞∑
τ=1

ξB(τ)s
n = (

1− (1− 4π(1− π)s2)
1
2

2πs
)B. (3.4)

Let

ωB(τ) = Pr(y1 ̸= B, . . . , yτ−1 ̸= B, yτ = B)

be the probability that the random walk y first hits the step B at the τ -th step

when B < 0 with generating function

ΩB(s) =
∞∑
τ=1

ωB(τ)s
n = (

1− (1− 4π(1− π)s2)
1
2

2(1− π)s
)−B. (3.5)

Assume that θ′ is the underlying state. The random walk y takes steps

up with probability 1 − π and steps down with probability π. The generating

functions can be written as (3.4) and (3.5). Then summing ξB and ωB over τ

from τ = 1 to τ = T gives us the probability of hitting the step B within T

periods.

1See Grimmett & Stirzaker (2001)
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