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Abstract 260 

 261 

Background: Activated phosphoinositide-3-kinase (PI3K) δ Syndrome (APDS) is an inborn 262 

error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically 263 

overlapping with other conditions. Management depends on disease evolution, but predictors 264 

of severe disease are lacking. 265 

Objectives: Report the extended spectrum of disease manifestations in APDS1 versus 266 

APDS2, compare these to CTLA-4 deficiency, NFkB1 deficiency, and STAT3 gain-of-function 267 

(GOF) disease; identify predictors of severity in APDS.  268 

Methods: Data collection with the European Society for Immunodeficiencies (ESID)-APDS 269 

registry. Comparison with published cohorts of the other IEIs. 270 

Results: The analysis of 170 APDS patients outlines high penetrance and early-onset of 271 

APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the 272 

same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease 273 

phenotype and course. The high clinical overlap between APDS and the other investigated 274 

IEIs suggests relevant pathophysiological convergence of the affected pathways. 275 

Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is 276 

typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF 277 

and CTLA-4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth 278 

impairment is also common particularly in APDS2. Early clinical presentation is a risk factor 279 

for severe disease in APDS.  280 

Conclusion: APDS illustrates how a single genetic variant can result in a diverse 281 

autoimmune-lymphoproliferative phenotype. Overlap with other IEI is substantial. Some 282 

specific features distinguish APDS1 from APDS2. Early-onset is a risk factor for severe 283 

disease course calling for specific treatment studies in younger patients. 284 

 285 

 286 

 287 
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Clinical Implications 288 

We report the largest APDS-cohort worldwide. APDS illustrates how a single genetic variant 289 

can cause a highly diverse autoimmune-lymphoproliferative phenotype overlapping with 290 

similar IEI. Early disease onset confers more severe disease.  291 

 292 

Capsule summary 293 

When comparing the phenotypic overlap of autoimmune-lymphoproliferative inborn errors of 294 

immunity (IEI) APDS demonstrates high penetrance, low genetic heterogeneity, early-onset 295 

as risk factor for severe disease and high phenotypic overlap with other IEIs. 296 

 297 

Key words 298 

APDS; PIK3CD; PIK3R1; PI3K; STAT3; CTLA-4; NFkB1; IEI; ESID; immunodeficiency. 299 

 300 

Abbreviations 301 

AD: autosomal dominant 302 

AIHA: autoimmune haemolytic anemia 303 

APDS: Activated phosphoinositide 3-kinase (PI3K) δ Syndrome 304 

BCG: Bacillus Calmette-Guérin 305 

CMV: cytomegalovirus 306 

CTLA-4: cytotoxic T lymphocyte antigen 4 307 

EBV: Epstein-Barr-Virus 308 

ESID: European Society for Immunodeficiencies 309 

GLILD: granulomatous-lymphocytic interstitial lung disease 310 

GOF: gain of function 311 

HPV: human papillomavirus 312 

HSCT: hematopoietic stem cell transplantation 313 

IEI: inborn error of immunity 314 
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NFkB1: nuclear factor of kappa light polypeptide gene enhancer in B cells 315 

PASLI: p110-delta-activating mutation causing senescent T cells, lymphadenopathy, and 316 

immunodeficiency 317 

STAT3: signal transducer and activator of transcription 3 318 
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Introduction 343 

Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), also called PASLI (p110-344 

delta-activating mutation causing senescent T cells, lymphadenopathy, and 345 

immunodeficiency), is an autosomal-dominant (AD) inborn error of immunity (IEI). 346 

Heterozygous gain-of-PI3Kd-activity variants in PIK3CD or PIK3R1 cause APDS 1 and 2 347 

respectively (1–5), which show large phenotypic overlap. APDS is characterized by early-348 

onset recurrent respiratory infections, chronic lymphoproliferation (benign and malignant) and 349 

other signs of immune dysregulation such as enteropathy and cytopenia (6–10). While 350 

previous cohort studies have illustrated a variety of clinical features of APDS, the identification 351 

and standardized documentation of additional patients allows extending the spectrum of 352 

disease manifestations that can be reliably associated with the two variants of the disease.  353 

Interestingly, many clinical features of APDS are shared with other autoimmune-354 

lymphoproliferative IEIs, including cytotoxic T lymphocyte antigen 4 (CTLA-4) deficiency (11–355 

13), nuclear factor of kappa light polypeptide gene enhancer in B cells (NFkB1) deficiency 356 

(14,15) and signal transducer and activator of transcription (STAT3) gain-of-function (GOF)  357 

disease (16,17). All four IEI present an AD mode of inheritance, can cause increased infection 358 

susceptibility, early-onset benign lymphoproliferation, multisystem autoimmunity and an 359 

increased risk of lymphoma. Biomarkers facilitating diagnosis such as soluble FAS ligand and 360 

vitamin B12 for ALPS are lacking, rendering the differential diagnosis between these 4 IEI 361 

particularly challenging. However, a comparison of clinical manifestations between these 362 

conditions has not been performed. Delineation of entity-specific disease patterns can have 363 

diagnostic implications, while overlapping disease features may indicate pathophysiological 364 

convergence of affected signalling pathways, potentially offering opportunities for shared 365 

targeted interventions. 366 

The clinical course of APDS is highly variable. While it can be life-threatening in childhood, 367 

stable disease into late adulthood has also been reported (6–8). This variability makes it 368 

difficult to advise patients about their individual prognosis and best treatment approach. The 369 
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most promising current therapeutic options include rapamycin, PI3Kd inhibitors, and 370 

hematopoietic stem cell transplantation (HSCT) (8,18–22). Yet, the standard of care and use 371 

of these therapies in the long-term management of APDS patients remains to be defined. 372 

These interventions and their potential side effects must be balanced against the risks of the 373 

natural disease course. However, information on the natural history of APDS is still limited, 374 

and no clear risk factors for severe disease evolution have been identified.  375 

In this study, we used an updated dataset of the European Society for Immunodeficiencies 376 

(ESID)-APDS registry of 170 patients with APDS and published datasets on other 377 

autoimmune-lymphoproliferative IEIs to address the following questions: (i) what are the 378 

clinical overlaps and characteristic differences between APDS, CTLA-4 deficiency, NFkB1 379 

deficiency, and STAT3 GOF disease? (ii) are there differences in the spectrum of disease 380 

manifestations between APDS1 and APDS2? and (iii) can we identify early predictors of  381 

severe disease evolution in APDS patients? 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 
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Methods 397 

The ESID-APDS Registry 398 

The European Society for Immunodeficiencies (ESID) is a non-profit association whose aim 399 

is to improve knowledge in the field of IEIs. The APDS subregistry is the first level 3 dataset 400 

within the international internet-based ESID registry (https://esid.org/Working-401 

Parties/Registry-Working-Party/ESID-Registry/The-3-levels-datasets-and-driving-questions).  402 

Documentation into the ESID-Registry is organized in three Levels. Level 1 is open to capture 403 

all IEI patients and includes a minimal dataset on initial manifestations, age at diagnosis, 404 

immunoglobulin replacement and HSCT with yearly follow-up on survival and changes in 405 

therapy (23). Level 2 allows to set up research projects that include some laboratory values 406 

and more details on treatments for a selected group of diseases. Level 3 allows to implement 407 

large datasets designed to address specific and extended clinical questions on a single IEI 408 

defined by a study protocol, including a statistical evaluation plan. All level 2 and 3 projects 409 

include level 1 data. Requirements for patients’ registration are: positive vote from the local 410 

ethics committees; agreement between treating centre and ESID; signed ESID patient 411 

consent. Patient registration in the APDS subregistry also requires approval of evidence 412 

supporting the functional relevance of the mutation by one of the principal investigators. 413 

Patient data can be entered by authorized users via a standard web browser through 414 

encrypted communication (24). The first patient was registered in September 2015. The 415 

number of new patients documented per year is shown in Figure E1 A, the percentage of 416 

patients registered by the different countries in Figure E1 B.  417 

 418 

Patients 419 

46 centres collected data on 170 APDS patients (data closure for analysis: November 10th, 420 

2022). 68 patients were already reported (8) (Table E1). The study was carried out in 421 

accordance with the recommendations of Section 15 of the Code of Conduct of the General 422 

Medical Council of Baden-Württemberg, Germany. The protocol was approved by the Ethics 423 
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committee of the University of Freiburg, Germany (IRB approval No. ESID registry: 493/14; 424 

IRB approval No. APDS registry: 458/15). All subjects or their parents/legal caregivers gave 425 

written informed consent in accordance with the Declaration of Helsinki.  426 

To perform the comparison with other AD IEIs, the largest published cohort studies (13,15,17) 427 

were taken as reference and the frequency of reported clinical and immunological features 428 

were compared between all four IEI, since there are currently no level 3 ESID registry data on 429 

the other IEIs. A study proposal was written and was approved by the ESID registry steering 430 

committee, to collect level 1 data on the initial presentation of the analysed IEIs from the ESID 431 

Registry. Subsequently, complete data from patients whose documenting centres agreed to 432 

the protocol were included in the analysis.  433 

 434 

Statistical Analysis 435 

Data were exported and organized using Microsoft Excel (Microsoft, Redmond WA). Data 436 

visualisation and statistical analysis were performed using R version 4.1.0. Proportions 437 

between all IEI were compared using Pearson's chi-squared test. Analyses with a p value < 438 

0.05 (*) were considered to be statistically significant. Only significant comparisons between 439 

all IEIs were shown in the figures. We performed a logistic regression to analyse the probability 440 

of severity in dependency of variables shown in Figure E4. For missing value imputation, we 441 

used the R package mice with predictive mean matching for numeric data and logistic 442 

regression imputation for binary data. To avoid overfitting, we performed bidirectional stepwise 443 

model selection by AIC. Weighted Cox Regression: Data are doubly truncated since the age 444 

at severity onset falls in the time interval between age at disease onset and age at study entry. 445 

We used inverse probability weighted Cox regression for doubly truncated data (25) to analyse 446 

the cumulative probability of severity in dependency of the binary variable age at onset 447 

under/over 1 year. 448 

 449 

  450 
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Results 451 

APDS has low genetic heterogeneity, early onset and strong penetrance  452 

Among the 170 APDS patients, 115 had heterozygous disease-causing variants in PIK3CD 453 

and 55 in PIK3R1 (Table E1). Eight different disease-causing variants were found spanning 454 

p110d with E1021K accounting for 90% (Figure 1A and 1B). All APDS2 patients carried 455 

deleterious splice site disease-causing variants resulting in “skipping” of exon 11 of p85a 456 

(Table E1). In contrast, 45 different CTLA4 disease-causing variants were found among 133 457 

patients (13), 56 disease-causing variants were identified in 157 NFkB1 deficient patients (15) 458 

and 72 different variants were reported in 191 STAT3 GOF patients (17). Thus, genetic 459 

heterogeneity of APDS appears to be lower compared to the other three IEIs. Median age at 460 

first clinical manifestation was 1 year in APDS patients, with no gender difference and no 461 

difference between APDS1 and 2. Age at onset was lower than that reported for CTLA-4 462 

(median 11y) (13) and NFkB1 (median 12y) (15) deficiency, while patients with STAT3 GOF 463 

disease also presented early in life (median 2.3y) (17) (Figure 2A). The initial clinical 464 

manifestations experienced by APDS patients were most frequently infections (54%) and 465 

infections combined with immune dysregulation (29%), less frequently immune dysregulation 466 

without infections (8%) (Figure 2B). This was similar to NFkB1 deficiency (Figure 2B), while 467 

patients with STAT3 GOF and CTLA-4 deficiency more frequently first presented with immune 468 

dysregulation without infection (37% and 44%, respectively). Only 4 APDS patients were 469 

reported to be without clinical symptoms at registration (age at registration 1, 1, 3 and 44y), 470 

but two of them received immunoglobulin replacement for hypogammaglobulinemia. In the 471 

CTLA-4 and NFkB1 cohorts, 19.5% and 23% were reported to be clinically healthy, 472 

respectively. While unaffected STAT3 GOF carriers were not included in the Leiding cohort 473 

(17), a recent review (26) included 18% asymptomatic STAT3 GOF individuals. Hence, 474 

compared to these 3 other IEIs with overlapping phenotypes disease penetrance appears to 475 

be higher in APDS.  476 

 477 
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APDS has an earlier and more severe infection profile 478 

Respiratory infections were frequent in all 4 IEIs with the highest occurrence in APDS (92%) 479 

(Figure 3A). Other common infections in APDS included invasive bacterial infections (53%) 480 

and infectious lymphadenitis (30%). Only one case of CMV-associated lymphadenitis was 481 

reported in the CTLA-4 cohort, and no cases were mentioned among the NFkB1 or STAT3 482 

GOF patients. Haemophilus influenzae, Streptococcus pneumoniae and Staphylococcus 483 

aureus were the most frequently reported respiratory pathogens in all diseases, while 484 

infections with Pseudomonas aeruginosa were reported more frequently in APDS (n=15/169) 485 

and STAT3 GOF (n=8/191). Escherichia coli and Salmonella were the most frequently isolated 486 

pathogens in bacterial intestinal infections. Chronic EBV (22%, age range 1-37y, median 5y) 487 

and chronic CMV (14%, age range 1-35y, median 8.5y) were present in APDS patients (Figure 488 

3A). Similarly, in CTLA-4 deficient patients EBV and CMV led to clinically relevant infections 489 

in 18% and 10% respectively, while the reported incidence was below 5% in NFkB1 deficiency 490 

and STAT3 GOF. Acute viral infections were reported in 47% APDS patients. No cases of 491 

Pneumocystis jirovecii infection were reported in the APDS cohort and mycobacterial 492 

infections were rare (4 patients with Bacillus Calmette-Guérin (BCG) disease and 1 with 493 

pneumonia due to Mycobacterium xenopi). Parasitic infections were rare in all conditions; 2 494 

cases of infection with Cryptosporidium parvum, 2 with Giardia lamblia and 2 with Toxoplasma 495 

were reported in the APDS cohort. Opportunistic infections were all prior to HSCT. 496 

 497 

Bronchiectasis is more prominent than interstitial lung disease in APDS 498 

143 APDS patients had chest imaging (CT-scan or MRI) performed: pathological findings were 499 

detected in 73%. Bronchiectasis was most frequent in APDS (50%, age range 1-43y; median 500 

7y), but was also reported in the other IEIs (Figure 3B). Small airway disease was noted in 501 

29% of APDS patients (age range 1-50y; median 8y). Interstitial lung disease (ILD) was only 502 

reported in 2% of APDS and in 7% of NFkB1 deficient patients. In contrast, CTLA-4 deficient 503 

patients were often (36%) reported to have granulomatous-lymphocytic interstitial lung 504 
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disease (GLILD) (Figure 3B). Similarly, ILD occurred in 43% of STAT3 GOF patients. Lung 505 

disease was severe enough to justify lung transplantation in 2 CTLA-4 patients and 2 STAT3 506 

GOF patients. Interestingly, 30 APDS patients (18%) had asthma as concomitant diagnosis, 507 

compared to 6% in the CTLA-4 cohort and no reported cases in the other two cohorts. Lung 508 

function, assessed in 91 APDS patients, was abnormal in 47%.  509 

 510 

APDS is characterized by chronic benign lymphoproliferation and early malignancy 511 

Chronic benign lymphoproliferation, including both splenomegaly and persistent 512 

lymphadenopathy (defined as lymph nodes larger than 1 cm, affecting more than 1 site for 513 

longer than 1 month), was most frequent in APDS (86%), followed by CTLA-4 deficiency (73%) 514 

and STAT3 GOF disease (73%) with a lower incidence of 52% in NFkB1 deficiency (Figure 515 

3C). Conversely, cytopenia was significantly less frequent in APDS (19%, most frequent: AIHA 516 

in 12 patients) than in CTLA-4 deficiency (62%), NFkB1 deficiency (43.9%), and STAT3 GOF 517 

disease (68%) (Figure 3C). Lymphoma was documented in 14% of APDS, 11% of NFkB1, 9% 518 

of CTLA-4 patients, but only 4% of STAT3 GOF patients (Figure 3D). Lymphomas in APDS 519 

included 7 Hodgkin lymphomas, 10 non-Hodgkin lymphomas, 1 intestinal large B cell 520 

lymphoma with plasmablastic differentiation, 1 follicular lymphoma, 1 large B-cell lymphoma, 521 

1 mature T/NK lymphoma,  1 lymphoma without further histological information; 17/22 522 

lymphoma cases were preceded by chronic benign lymphoproliferation. Of note, 10/20 523 

lymphoma cases in APDS were EBV-associated. Moreover, of the 22 APDS patients with 524 

lymphoma, 4 suffered also from other malignancies (2 ovary neoplasms; 1 papillary renal cell 525 

carcinoma; 1 malignant neoplasm of the submandibular gland). Furthermore, one APDS 526 

patient had a B cell chronic lymphocytic leukaemia, one suffered from hepatocellular 527 

carcinoma, one had a breast ductal carcinoma in situ, one patient had a papillary thyroid 528 

carcinoma and one a rhabdomyosarcoma. The median age at diagnosis of any malignancy 529 

was much lower in APDS (19y) than in NFkB1 (46y) patients. 530 

 531 
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Autoimmune and inflammatory diseases are relevant in APDS, but less frequent than 532 

in the other diseases 533 

Enteropathy, ranging from protracted diarrhoea to inflammatory bowel disease, was reported 534 

in 35% of APDS patients, less frequently than in the other IEIs (Figure 3E). Rare cases of 535 

eosinophilic oesophagitis and sclerosing cholangitis were also reported (27). Autoimmune 536 

hepatitis was particularly frequent in STAT3 GOF (Figure 3E). Non-infectious skin disease 537 

was reported in 25% of APDS patients and mainly included eczema and granulomas (Figure 538 

3E). This was less prominent than in CTLA-4 deficiency (56%, mainly eczema) and STAT3 539 

GOF disease (48% skin lesions including eczema, psoriasis and alopecia) but more frequent 540 

than in the NFkB1 cohort (15%), where patients suffered more frequently from skin infections. 541 

Endocrinopathies, including autoimmune thyroiditis and type 1 diabetes mellitus were reported 542 

in all four IEIs (Figure 3F) but were most frequent in STAT3 GOF disease. Renal disease 543 

affected 6-12% of APDS, CTLA-4 and STAT3 GOF patients, while it was not reported in 544 

NFkB1 deficiency. Moreover, 5 APDS patients were diagnosed with vasculitis and 2 different 545 

patients had systemic lupus erythematosus. One patient was diagnosed with chronic kidney 546 

disease, two received a kidney transplantation. Arthritis incidence was similar in all IEIs 547 

studied (Figure 3E). Less than 5% of APDS, STAT3 GOF and NFkB1 patients had 548 

inflammatory brain disease, while this was significantly more frequent in CTLA-4 patients 549 

(12%). In APDS non-inflammatory neurological manifestations including neurodevelopmental 550 

delay were observed in 16% of patients. Growth impairment was frequent in APDS (32%) and 551 

STAT3 GOF disease (57%), less frequent in CTLA-4 deficiency (14%), and not reported in 552 

NFkB1 deficiency (Figure 3F).  553 

 554 

Increased immunoglobulin M and reduced naïve T cells are characteristic 555 

immunological abnormalities of APDS 556 

Hypogammaglobulinemia was common in all four IEIs, but most frequent in NFkB1 deficiency. 557 

APDS is often characterized by elevated serum IgM (35%), while low IgM, a common feature 558 
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in the other 3 diseases, was rare in APDS (Figure 4A). While T-cell lymphopenia is common 559 

in all four IEIs, a low frequency of naïve CD4 T cells was most frequently reported in APDS. 560 

Reduced switched memory B cells and increased transitional B cells were reported but not 561 

particularly characteristic for APDS patients (Figure 4B).  562 

 563 

Distinct features of APDS1 versus APDS2 indicate pathophysiological differences 564 

Among initial presenting manifestations, syndromic features, mainly growth impairment and 565 

facial dysmorphism, were more frequent in APDS2 (Figure 5A; details are provided in Table 566 

E2). Infectious complications were equally distributed (Figure E2), but opportunistic infections 567 

were more frequent in APDS1. Significantly, bronchiectasis was more frequent in APDS1 568 

(60%) than in APDS2 (26%) (Figure 5B). The prevalence of asthma was similar (18% vs. 569 

16%). Splenomegaly and cytopenia were more frequent in APDS1 but lymphoma was more 570 

frequent in APDS2 (Figure 5C). Growth impairment was more frequent in APDS2, skin disease 571 

in APDS1 (Figure 5D). Among immunological abnormalities, low T-cell counts were more 572 

frequent in APDS1, while IgA reduction was more frequent in APDS2 (Figure 5E). 573 

 574 

Age at first clinical presentation predicts disease severity in APDS 575 

The majority of APDS patients received immunoglobulin replacement treatment (73%), many 576 

patients received immunomodulating therapies (Figure E3 A and B), ranging from rapamycin 577 

(37%) to PI3Kd inhibitors (5%). 29/168 (17%) APDS patients underwent allogenic HSCT 578 

between the age of 5 and 51 years (median 13.5y). 14/170 (8%) APDS patients died at a 579 

median age of 18,5 years (5-44y). 5 deaths were lymphoma-related, 5 were HSCT-related, 1 580 

related to both. Two patients died from severe respiratory infection, one from intracranial 581 

bleeding secondary to thrombocytopenia. To evaluate prognostic factors for a severe disease 582 

course in APDS, we defined severe disease as follows: (i) severe invasive infection and 583 

immune dysregulation (excluding chronic benign lymphoproliferation and cytopenia) or chronic 584 

lung disease, (ii) severe immune dysregulation, (iii) malignancy. If a patient had already 585 

developed a severe invasive infection or severe immune dysregulation or chronic lung disease 586 
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before age 13 years, the disease course was also considered severe. Criteria for severe 587 

disease were fulfilled by 93/169 patients (range 2-50y; median age at transition to severe 588 

disease 9.5y) (Figure 6A, Table E3). All deceased patients had severe disease with a median 589 

time between fulfilling these criteria and death of 6 years (range 1-21y). The risk for severe 590 

disease increased with patient age (Figure 6B) and with years since the first clinical disease 591 

manifestation (Figure 6C). The risk doubled in the age range 10-15 years compared to age 592 

range 0-10 years. Age at onset below 1 year significantly correlated with the probability of 593 

developing severe disease (Figure 6D). Other significant risk factors could not be identified 594 

through a multivariate logistic regression analysis (Figure E4).  595 

 596 

 597 

 598 

 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 

 607 

 608 

 609 

 610 

 611 
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Discussion 612 

We report the evaluation of the so far largest APDS cohort of 170 patients with functionally 613 

validated, germline heterozygous variants in PIK3CD or PIK3R1 documented through a 614 

standardised registry. 615 

While highlighting the low genetic heterogeneity among APDS patients, we show that APDS1 616 

patients, the majority of which carry the PIK3CD E1021K mutation, display high phenotypic 617 

diversity. This illustrates that identical variants in a disease causing-gene can lead to diverse 618 

clinical consequences. This emphasizes the significance of additional genetic, epigenetic and 619 

environmental factors in determining disease manifestations in autoimmune-620 

lymphoproliferative diseases. This clinical variability is associated with a very high penetrance, 621 

as there was only one patient above the age of 5 years reported to be asymptomatic in the 622 

registry. However, systematic segregation studies would be needed in APDS as well as in the 623 

other IEI cohorts to better evaluate the true penetrance of these diseases and indirectly 624 

estimate the extent of underdiagnosed cases.  625 

We structured the updated analysis of the APDS cohort in the context of a comparison with 626 

three other AD autoimmune-lymphoproliferative IEIs for which substantial cohorts have been 627 

published: CTLA-4 deficiency, NFkB1 deficiency, and STAT3 GOF disease. In general, there 628 

was a high clinical overlap between the investigated IEI, indicating relevant pathophysiological 629 

convergence of the different affected pathways. This convergence is supported by 630 

experimental observations: for example, a link between mTOR activation and disease 631 

pathophysiology is evident not only in APDS (4), but also in STAT3 GOF (28) and CTLA-4 632 

deficiency (29). This justifies the frequent use of the mTOR inhibitor rapamycin in these three 633 

diseases, although variable treatment success indicates involvement of additional pathways. 634 

A potential link of mTOR activation to NFkB1 deficiency is less clear, mirrored by the reported 635 

use of rapamycin in only 2% of the patients in the largest published cohort (15). 636 

Variability and overlap between the IEIs render it difficult to predict the diagnosis prior to 637 

genetic evaluation. However, some differences emerge from the comparative analysis. APDS 638 
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has the earliest onset, mainly with recurrent respiratory infections and this is in contrast to the 639 

frequent initial presentation with immune dysregulation typical of CTLA-4 deficiency and 640 

STAT3 GOF disease. Of note, the initial presentation with recurrent infections only rarely leads 641 

to the diagnosis of APDS, as recently highlighted by Ahmed et al. (30) who could diagnose 642 

only 1 APDS patient among 79 children admitted to the hospital for severe or recurrent 643 

respiratory infections. Infections are a crucial aspect in all 4 IEIs throughout the disease 644 

course, with highest frequencies observed in APDS and NFkB1 deficiency. These two 645 

conditions present mechanistically different but equally profound B-cell dysfunction (14,31–646 

33). Regarding infections, it is important to note that regional exposure to different pathogens 647 

can influence the reported frequency of the infections. For example, a recent paper on a 648 

Chinese APDS cohort (34) reported a much higher incidence of primary mycobacterial 649 

infections than in this APDS series of patients. Chronic viral infections are confirmed to be 650 

relevant, especially in APDS and CTLA-4 insufficiency. On the other hand, our extended 651 

APDS registry cohort analysis reveals that opportunistic infections are rather rare in this 652 

disease. 653 

Lung disease is a prominent feature in APDS and its early identification is crucial in the 654 

management of IEI patients. Of note, bronchiectasis and small airway disease were 655 

characteristic, while ILD was reported infrequently in APDS. It is important to note that small 656 

airway disease is likely underestimated in APDS, since specific expiratory imaging is needed 657 

for early detection (35). Importantly, asthma was recently pointed out as a relevant 658 

manifestation in an American APDS cohort (36) and had been already reported in some 659 

patients of small case series (37). The ESID-APDS registry does not specifically ask for 660 

asthma, but it was repeatedly documented as “further diagnosis”, thereby providing additional 661 

evidence to consider it an APDS-related manifestation.  662 

Of the IEIs evaluated, APDS had the highest incidence of benign and malignant 663 

lymphoproliferation. This implies a diagnostic challenge of differentiating between benign and 664 

malignant lymphoproliferation (38). Imaging and FDG-PET do not provide a definitive 665 
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diagnosis, similar to other lymphoproliferative IEIs (39). For this reason, a thorough evaluation 666 

of the clinical course by experienced clinicians and an adequate histological analysis by 667 

pathologists trained in analysing lymphoid tissue of patients with IEIs is paramount to rule out 668 

lymphoma in these patients. The high incidence of non-lymphoid malignancies reported in our 669 

APDS cohort is noteworthy: while the increased risk of malignancy in IEI patients has long 670 

been known (40), increased awareness of APDS as cancer predisposition syndrome (41) calls 671 

for improved clinical care and research at the critical interface between immunology and 672 

oncology (42).  673 

The analysis of the large APDS registry cohort also identifies arthritis, renal disease, 674 

neuroinflammatory disease or type 1 diabetes as rare but possible APDS-related 675 

complications. Overall, the differences between APDS and clinically overlapping IEI 676 

highlighted by our work are not sufficient to define a specific APDS-pattern or clinical 677 

diagnostic criteria for the disease. It is possible that including a higher resolution 678 

immunological analysis (such as high-dimensional multi-omics single cell data) may help 679 

identifying diagnostic biomarkers but at the moment, identification of a genetic variant in 680 

combination with its functional validation remains the only valid criteria. 681 

Our analysis also highlights some new differences between the two forms of APDS 682 

corroborates others already noted through confirmation in a larger cohort and does not confirm 683 

others previously observed (6–8,36,43,44): thus, we report a significantly higher incidence of 684 

cytopenia and skin disease in APDS1 patients and a significantly higher incidence of reduced 685 

IgA in APDS2; we confirmed a higher incidence of bronchiectasis and reduced CD3 T cells in 686 

APDS1 and a higher incidence of lymphoma, growth retardation and syndromic features 687 

(detailed in this study) in APDS2. Regarding syndromic features, APDS2 can be differentiated 688 

from the SHORT (Short stature, hyperextensibility of joints and/or inguinal hernia, ocular 689 

depression, Rieger anomaly, and teething delay) syndrome, caused by mutations in the same 690 

gene (PIK3R1) but affecting another region (C-terminal Src homology 2 domain) resulting in 691 

a different effect (impairment of interaction with phosphorylated receptor tyrosine kinases) 692 
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(45). However, patients with overlapping clinical features have been reported (46–48). These 693 

clinical observations are relevant for the patient management and for research studies that 694 

further investigate pathophysiological differences between the catalytic and regulatory kinase 695 

components encoded by the mutated genes. Indeed, a recent work could identify relevant 696 

differences in B-cell abnormalities between APDS1 and APDS2 and  highlight an increased 697 

perinatal mortality in APDS2 mice, but not in the APDS1 counterpart (49). Finally, a recently 698 

reported higher incidence of enteropathy in APDS1 patients and of elevated IgM in APDS2 699 

patients (44) could not be confirmed. 700 

It should be noted, that this registry analysis bears some relevant limitations: (i) The compared 701 

IEIs were not assessed using the same dataset, which may affect the reported frequency of 702 

some symptoms or diagnoses. (ii) Some manifestations are per se difficult to categorize, e.g. 703 

enteropathy can be difficult to distinguish from infectious enteritis. Internationally accepted 704 

standards of diagnosis and monitoring of these patients could help defining comparable data-705 

sets and efforts are already taken in that direction (50). (iii) The registry- and the retrospective 706 

cohort study-structure are inevitably linked to the problem of missing data which leads to 707 

incomplete information and the eventual need of statistical corrections. In this study missing 708 

values were particularly relevant for laboratory parameters. Data completeness was only 709 

sufficient for some basic parameters, revealing that increased immunoglobulin M and reduced 710 

naïve T cells are characteristic, but not specific for APDS. It would be of interest to correlate 711 

more in-depth immunological parameters to identify possible disease-specific immune 712 

signatures and their role as prognostic factors.  713 

One further aim of the current study was to identify predictors for severe disease in APDS, 714 

which could be useful for treatment and management choices. The number of variables 715 

evaluated as severe disease predictors was limited by the fact that many parameters were 716 

used in the definition of severe disease. Moreover, a registry-dependent bias in the 717 

identification and registration of younger patients with clinical symptoms of the disease must 718 

be taken into consideration, since the disease is not diagnosed through a screening but based 719 
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on clinical suspicion. The analysis revealed early disease onset as a prognostic factor, with 720 

the clinical implication that early-onset cases should be followed closely and evaluated early 721 

for treatments such as HSCT. It will be interesting to see in the future how targeted therapy 722 

with PI3Kd inhibitors will impact on the long-term evolution of disease manifestations in APDS. 723 

Recent results of a phase 3 trial show promising efficacy, especially regarding the 724 

lymphoproliferative disease, with a very good safety profile (22). The poorer prognosis for 725 

patients with early disease onset identified in this study highlights the importance of clinical 726 

trials involving younger patients (such as the recently started  NCT05438407). 727 
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Figure Legends 942 

Figure 1. Overview of the PIK3CD disease-causing variants in the registry. A,   943 

Localization of the variants in the PIK3CD gene. B, Frequency of the different variants. ABD  944 

= adaptor-binding domain. RBD = Ras binding domain. 945 

 946 

Figure 2. Initial clinical presentation. A, Age at disease onset of APDS patients (median   947 

represented by the blue line, APDS patients represented by triangles). The median age at  948 

onset of NFkB1 deficiency (red), CTLA-4 deficiency (green) and STAT3 GOF (yellow)  949 

patients is superimposed as a dotted line. B, Initial clinical presentation of APDS patients (n =  950 

170) compared to patients with NFkB1 deficiency (n = 83), CTLA-4 deficiency (n = 113) and  951 

STAT3 GOF (n = 41). Malignancy refers to both lymphoid and non-lymphoid malignancy. Data  952 

on all four IEIs were extracted from the ESID registry. 953 

 954 

Figure 3. Main clinical manifestations. A, Main infectious complications of APDS patients  955 

(n = 170) compared to patients with NFkB1 deficiency (n = 121), CTLA-4 deficiency (n = 90)  956 

and STAT3 GOF (n = 191). B, Lung disease. C, Haematological complications. D, Malignancy.  957 

E, Other inflammatory manifestations. F, Endocrinological manifestations. * indicates p value  958 

< 0.05 in a t-test performed between every IEI. Data on NFkB1 insufficiency, CTLA-4  959 

insufficiency and STAT3 GOF were extracted from published cohort papers.  960 

 961 

Figure 4. Immunological abnormalities. A, Immunoglobulin abnormalities of APDS patients  962 

(IgG n = 145, IgA n = 137, IgM n = 137, IgE n = 56) compared to patients with NFkB1  963 

insufficiency (n = n.a.), CTLA-4 insufficiency (n = 77) and STAT3 GOF (IgG n = 169, IgA n =  964 

161, IgM n = 161, IgE n = 52). B, Cellular abnormalities of APDS patients (CD3 n = 152, CD4  965 

n = 151, naïve CD4 n = 106, transitional B n = 46,  switched memory B n = 83, NK cells n =  966 

116) compared to patients with NFkB1 insufficiency (n = n.a.), CTLA-4 insufficiency (CD3 n =  967 

44, CD4 n = 62, naïve CD4 n = 57, switched memory B n = 30, NK cells n = 61) and STAT3  968 
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GOF (CD3 n = 171, CD4 n = 169, naïve CD4 n = 31, switched memory B n = 31, NK cells n =  969 

151). * indicates p value < 0,05 in a t-test performed between every IEI. N.a. = not available.  970 

Data on NFkB1 insufficiency, CTLA-4 insufficiency and STAT3 GOF were extracted from  971 

published cohort papers.  972 

 973 

Figure 5. APDS1 vs APDS2. A, Initial presentation. Malignancy refers to both lymphoid and  974 

non-lymphoid malignancy. B, Lung disease. C, Haematological complications. D, Other  975 

inflammatory and endocrinological manifestations. E, Immunological abnormalities.  976 

 977 

Figure 6. APDS disease evolution. A, Lexis diagram displaying all patients as lines from  978 

birth to time of last follow-up with the time of onset (blue dot), severity (red dot) and death  979 

(black dot). The line changes from gray to black at the time of entry into the registry  980 

(prospective observation). B, Cumulative probability of fulfilling criteria for a severe disease  981 

course with 95% confidence band; time scale is age in years. C, Cumulative probability of  982 

severe disease with 95% confidence band; time scale is years since onset. D, Weighted Cox  983 

regression to analyse the cumulative probability of severe disease depending on the variable  984 

age at onset </> 1 year. 985 
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