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Abstract

Let Ω = Pn,m(Z[Cp]) and A = Pn,m(Z) where p is a positive integer and
Pn,m(R) is the R-algebra Pn,m(R) = R[t1, t

−1
1 , . . . , tn, t

−1
n ]⊗R R[x1, . . . , xm].

A Swan module is an extension module of the form 0→ I(k) → X → A(k) → 0
where I is the kernel of the augmentation homomorphism ε : Ω→ A. We show
that, when p is prime, every such projective Swan module is free; this is false
if p is not prime and n + m > 0. The proof relies on the fact that when R is
the ring of algebraic integers in Q(ζp) and Fp is the field with p elements then
the canonical homomorphism GLk(Pn,m(R)) � GLk(Pn,m(Fp)) is surjective
for all k ≥ 1.
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Let Ω be an algebra over a commutative ring A, augmented by an A-algebra
homomorphism ε : Ω→ A. By a Swan module of rank k we shall mean an extension
module X of the form 0 → I(k) → X → A(k) → 0 where I = Ker(ε). The
augmentation exact sequence 0→ I ↪→ Ω

ε→ A→ 0 then shows that Ω(k) is a Swan
module of rank k. Given another such Swan module X ′ we write X ∼=Id X ′ when
there exists a commutative diagram of Ω homomorphisms.

0 → I(k) i→ X
p→ A(k) → 0

↓ α ↓ α̂ ↓ Id

0 → I(k) i′→ X ′
p′→ A(k) → 0

in which α, and hence also α̂, is an isomorphism.
If A is a commutative ring and n,m are non-negative integers we denote by

Pn,m(A) the A-algebra Pn,m(A) = A[t1, t
−1
1 , . . . , tn, t

−1
n ] ⊗A A[x1, . . . , xm] where

A[t1, t
−1
1 , . . . , tn, t

−1
n ] is the algebra of Laurent polynomials in n commuting variables

and A[x1, . . . , xm] is the algebra of ordinary polynomials in m commuting variables.
We allow the degenerate cases n = 0, m = 0 provided that n + m > 0. Now take
Ω = Pn,m(Z[Cp]) where Cp = 〈x |xp = 1 〉 is the finite cyclic group of order p ≥ 2
and A = Pn,m(Z). With the augmentation ε : Ω→ A defined by the correspondence
x 7→ 1 we shall then prove:

(I) Let X be a projective Swan module of rank k ≥ 1; if p is prime then X ∼=Id Ω(k).

We point out that, by the theorem of Montgomery and Uchida (cf. [14], Chapter 11),
for each prime p ≥ 23 there are projective modules induced from Z[Cp] which are not
Swan modules and which are not free.
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Our primary interest is in the cases n ≥ 1 and m = 0 when we may identify Ω
and A with the integral group rings Ω = Z[Tn × Cp ], A = Z[Tn]. Statement (I)
is then best possible and may be compared with the original theorem of Swan ([10],
Corollary 6.1) which corresponds to the (degenerate) cases n = m = 0, k = 1 of
the present paper. In that case projective Swan modules are free for all finite cyclic
groups whereas the statement of (I) is already false for k = 1 whenever p fails to be
prime, as can be seen from a result of Bass and Murthy ([1], Theorem 8.10).

To prove (I) we consider a statement of independent interest. We denote by
Ek(A) the subgroup of GLk(A) generated by elementary matrices. If the ring homo-
morphism f : B → A is surjective the induced homomorphism f∗ : Ek(B) → Ek(A)
is also surjective. It is natural to ask under what conditions the homomorphism
f∗ : GLk(B)→ GLk(A) is also surjective. In this connection, it has long been appar-
ent that particular difficulties surround the study of GL2 and its subgroups (cf [3],
[12]). As an example, consider the groups

SL±k (F[x1, . . . , xm]) = {X ∈ GLk(F[x1, . . . , xm]) | det(X) = ±1 }

where F is a field. When m = 1, SL±k (F[x1]) = Ek(F[x1]). When m ≥ 2, the
following matrix (cf [3]) shows the corresponding statement is false for k = 2;(

1 + x1x2 x2
2

−x2
1 1− x1x2

)
.

However a remarkable theorem of Suslin [9] shows that if k ≥ 3 then for all n,m,

SL±k (Pn,m(F)) = Ek(Pn,m(F)).

Let p be an odd prime, let R denote the ring of algebraic integers in the field Q(ζ)
where ζ = exp(2πi

p
), let R0 denote its real subring and let Fp be the field with p

elements. If p is odd then R0 = Z(µ) where µ = ζ+ζ−1. The correspondence ζ 7→ 1
induces a surjective ring homomorphism ν : Z(ζp)→ Fp under which µ maps to 2. As
2 generates the additive group of Fp, ν restricts to a surjective ring homomorphism
ν : R0 � Fp and induces a surjective ring homomorphism ν : Pn,m(R0) � Pn,m(Fp).
If p = 2 then R0 = R = Z and we still have a surjective ring homomorphism
ν : Pn,m(R0) � Pn,m(F2). We shall prove

(II) The induced homomorphism ν∗ : GLk(Pn,m(R0)) � GLk(Pn,m(Fp)) is surjec-
tive for all k ≥ 1 and all n,m.

When k 6= 2, the statement (II) follows from the results of Higman [4] and Suslin [9].
In §6 we prove that ν∗ : GL2(Pn,m(R0)) � GL2(Pn,m(Fp)) is also surjective for all
n,m. As an immediate corollary we have:

(III) ν∗ : GLk(Pn,m(R)) � GLk(Pn,m(Fp)) is surjective for all k ≥ 1 and all n,m.

As we shall see in §7, statement (I) above follows directly from (III).
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§1: The derived module category:
Let Ω = A[Φ] be the group algebra of a finite group Φ over a commutative

Noetherian integral domain A. We denote by ModΩ, ModA the categories of
right Ω-modules and right A-modules respectively. The natural inclusion i : A → Ω
induces an extension of scalars functor

i∗ :ModA →ModΩ ; i∗(M) = M ⊗A Ω.

There is a corresponding restriction of scalars functor i∗ : ModΩ → ModA. By
a lattice we shall mean a Ω-module M for which the A-module i∗(M) is finitely
generated and projective. For such lattices we have the following adjointness relations
([5], Chapters 4 and 5). The first of these is universal, namely:

ExtkΩ(i∗(N),M) ∼= ExtkA(N, i∗(M)).

As Φ is finite, we also have the Eckmann-Shapiro isomorphisms
HomA(i∗(M), N) ∼= HomΩ(M, i∗(N))

ExtkA(i∗(M), N) ∼= ExtkΩ(M, i∗(N))

Observe that i∗(A) = Ω. WhenM is a Ω-lattice then ExtkΩ(M,Ω) ∼= ExtkA(i∗(M), A).
However, as i∗(M) is projective over R then ExtkA(i∗(M), A) = 0; hence:

(1.1) If M is a Ω-lattice then ExtkΩ(M,Ω) = 0 for all k ≥ 1.

If X is a Ω-lattice X we denote by X• = HomΩ(X,Ω) the conjugate dual of X on
which Φ acts via (α · g)(x) = α(x · g−1). Then X• is also a Ω-lattice. We note that
Ω lattices are reflexive; that is: X•• ∼= X.

If f, g : M → N are morphisms in ModΩ we write ‘f ≈ g’ when f − g can be
written as a composition f − g = ξ ◦ η via a projective module P thus:

-

@
@@R �

���

M N

P

f − g

η ξ

Then ‘≈’ is an equivalence relation compatible with composition; that is given Ω-
homomorphisms f, f ′ : M0 →M1, g, g′ : M1 →M2 we see that:

f ≈ f ′ and g ≈ g′ =⇒ g ◦ f ≈ g′ ◦ f ′.
The derived module category Der(Ω) is quotient category of ModΩ given by

HomDer(Ω)(M,N) = HomΩ(M,N)/〈M,N〉

〈M,N〉 = { f ∈ HomΩ(M,N) : f ≈ 0 }
As 〈M,N〉 is an A submodule of HomΩ(M,N) then HomDer(M,N) has the natu-
ral structure of an A-module. We distinguish notationally between isomorphism in
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ModΩ, written as ‘∼=Ω’ and isomorphism in Der(Ω), written as ‘∼=Der’. For finitely
generated Ω-modules the relationship between the two notions is ([5] p. 120) :

D ∼=Der D
′ ⇐⇒ D ⊕ P ′ ∼=Ω D′ ⊕ P

for some finitely generated projective Ω-modules P , P ′. Given a Ω-lattice M we
consider exact sequences in ModΩ thus

0→ D
i→ P

p→M → 0

where P is finitely generated projective. As Ω is Noetherian then D is also finitely

generated. Given another such exact sequence 0 → D′
i′→ P ′

p′→ M → 0 it follows
from Schanuel’s Lemma that D⊕P ′ ∼=Ω D′⊕P so that D ∼=Der D

′. We denote by
D1(M) the isomorphism class in Der(Ω) of any module D which occurs in an exact
sequence of the above form. We may regard D1(M) as the first derivative of M .
The correspondence M 7→ D1(M) can be regarded as a functor as follows: given any
such exact sequence and a Ω-homomorphism f : M → M the universal property of
projective modules allows us to construct a commutative diagram

0 → D
i→ P

p→ M → 0
↓ f− ↓ f0 ↓ f

0 → D
i→ P

p→ M → 0.

Moreover if f ′ : M →M is another morphism in ModΩ then :

(1.2) f ≈ f ′ =⇒ f− ≈ f ′−.

Given f ∈ EndΩ(M) we denote by ρ(f) = [f−] the class of f− in Der(Ω). By
(1.2), the correspondence [f ] 7→ ρ(f) = [f−] determines a ring hommoorphism

ρ : EndDer(M)
'−→ EndDer(D1(M)). When Ext1(M,Ω) = 0 then (cf [5], p.133) the

conclusion of (1.2) is strengthed to:

(1.3) f ≈ f ′ ⇐⇒ f− ≈ f ′−.

With our underlying assumption that M is a Ω-lattice then

(1.4) ρ : EndDer(M)
'−→ EndDer(D1(M)) is a ring isomorphism.

Given an exact sequence E = (0 → D
i→ P

p→ M → 0) and a Ω-homomorphism
α : D → N we construct the pushout diagram

(1.5)

E

↓ \

α∗(E)

=


0 → D

i→ P
p→ M → 0

↓ α ↓ \ ↓ Id

0 → N
i→ lim

→
(α, i)

π→ M → 0

 .
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Then α∗(E) = (0 → N
i→ lim
→

(α, i)
π→ M → 0) defines an extension class in

Ext1
Ω(M,N). When P is projective the correspondence α 7→ [α∗(E)] defines a

mapping δ : HomDer(D,N)→ Ext1
Ω(M,N). It follows from (1.1) that :

(1.6) δ : HomDer(D1(M), N)
'−→ Ext1

Ω(M,N) is an isomorphism.

The isomorphism of (1.6) is a corepresentation formula (cf [5], pp.109-114). Taking
N = D ∈ D1(M) in (1.5), the resulting pushout extension has the following
property which generalizes the recognition criterion for projective modules originally
given by Swan ([10], Remark on p.279).

(1.7) lim
→

(α, i) is projective ⇐⇒ α ∈ AutDer(Ω)(D).

(For a proof of (1.7) see [5], Theorem 5.41, p.115).

Given the exact sequence E for any Ω-module N we have exact sequences for k ≥ 1.

ExtkΩ(P,N)
i∗→ ExtkΩ(D1(M), N)

δ→ Extk+1
Ω (M,N)

p∗→ Extk+1
Ω (P,N).

As P is projective then ExtkΩ(P,N) ∼= Extk+1
Ω (P,N) = 0 and we obtain the

usual dimension shifting isomorphisms

(1.8) Extk+1
Ω (M,N) ∼= ExtkΩ(D1(M), N).

We may regard the corepresentation formula (1.6) as the degenerate case of (1.8)
corresponding to the case k = 0. In particular, taking N = D1(M) in (1.6)

we obtain a natural isomorphism δ : EndDer(D1(M))
'−→ Ext1

Ω(M,D1(M)) which,
combined with (1.4) gives

(1.9) \ = ρ−1 ◦ δ−1 : Ext1
Ω(M,D1(M)) −→ EndDer(M) is an isomorphism.

We conclude this section by computing EndDer(A). As projective modules are
direct summands of free modules it is enough to consider homomorphisms f : A→ A
which factor through Ω(n). Let ε : Ω → A be the augmentation homomorphism,
ε(xr) = 1. We note that HomΩ(Ω, A) ∼= A generated by the augmentation
homomorphism ε. Thus if ξ : Ω(n) → A is Ω linear then ξ = (ξ1ε, · · · , ξnε) for some

(ξ1, · · · , ξn) ∈ A(n). Let ε• : A → Ω denote the Ω-dual of ε; then ε•(1) =
∑
g∈Φ

g.

Then HomΩ(A,Ω) ∼= A generated by ε•. Hence if η : A → Ω(n) is Ω linear then
η = (η1, · · · , ηn)tε• for some (η1, · · · , ηn) ∈ A(n). If f : A→ A admits a factorization
f = ξ ◦η through the free module Ω(n) thus f(1) = (

∑n
r=1 ξrηr)ε◦ε•(1). However

ε ◦ ε•(1) = |Φ| so that

(1.10) EndDer(A) ∼= A/|Φ|.

From (1.10) and (1.4) it follows that

(1.11) EndDer(I
•) ∼= A/|Φ|.
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§2: Quasi-augmentations and generalized Swan modules:
Continuing with the notation of §1, the Eckmann-Shapiro Lemma implies that:

(2.1) If X is a Ω-lattice then ExtkΩ(X,Ω) = 0 for all k ≥ 1.

We have an augmentation homomorphism ε : Ω → A given by ε(g) = 1 for all
g ∈ Φ. We denote by E the augmentation exact sequence

E = (0→ I
i
↪→ Ω

ε→ A→ 0)

where I = Ker(ε) and i is the inclusion. We generalize this as follows; an exact

sequence S = (0→ S−
i→ Ω

p→ S+ → 0) of Ω-lattices is called a quasi-augmentation
sequence when S+ S− satisfy the condition HomΩ(S−, S+) = 0. In the above
sequence E one sees easily that HomΩ(A, I) = 0; hence:

(2.2) E is a quasi-augmentation sequence.

Now fix a quasi-augmentation S = (0 → S−
i→ Ω

p→ S+ → 0). If k is a positive
integer we denote by S(k) the class of extensions of the form

X = (0→ S
(k)
−

iX−→ X
pX−→ S

(k)
+ → 0)

The module X defined by such an extension is called a generalized Swan module of
rank k. There are a number of equivalence relations on S(k) to be considered:

Isomorphism : We write X ∼= Y when there is a commutative diagram

0→ S
(n)
− → X → S

(n)
+ → 0

↓ f− ↓ f0 ↓ f+

0→ S
(n)
− → Y → S

(n)
+ → 0

in ModΩ in which f− and f+ are isomorphisms. We note that generalized Swan
modules are rigid in the sense that the condition HomΩ(S−, S+) = 0 ensures that
the defining exact sequence X is essentially unique (cf [5]. p.231); thus if Y is also a
generalized Swan module defined by the exact sequence Y then

X ∼= Y ⇐⇒ X ∼= Y .

There is a more refined relation on S(k), namely:

Congruence : We write X ≡ Y when there is a commutative diagram of Ω-
homomorphisms

0→ S
(k)
− → X → S

(k)
+ → 0

↓ Id ↓ ν ↓ Id

0→ S
(k)
− → Y → S

(k)
+ → 0.
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In both relations the middle mapping X → Y is an isomorphism via the Five Lemma.
Up to congruence such exact sequences are classified by Ext1(S

(k)
+ , S

(k)
− ). To allow for

the coarser classification of isomorphism we consider the natural two-sided action of
AutΩ(S

(k)
− )× AutΩ(S

(k)
+ ) on Ext1(S

(k)
+ , S

(k)
− ):

AutΩ(S
(k)
− )× Ext1(S

(k)
+ , S

(k)
− )× AutΩ(S

(k)
+ ) → Ext1(S

(k)
+ , S

(k)
− )

(α,X , β) 7→ α∗β
∗(X )

As is well known (cf [6] p.67) α∗β
∗(X ) is congruent to β∗α∗(X ). We have the

following Classification Theorem:

Theorem 2.3 : There is a 1− 1 correspondence{
Isomorphism classes of generalized Swan

modules of rank k relative to S

}
←→ AutΩ(S

(k)
− )\Ext1(S

(k)
+ , S

(k)
− )/AutΩ(S

(k)
+ ).

Intermediate between isomorphism and congruence we have:

Isomorphism over S
(k)
− : We write X Id

∼= Y when there is a commutative
diagram of Ω-homomorphisms

0→ S
(k)
− → X → S

(k)
+ → 0

↓ Id ↓ f0 ↓ f+

0→ S
(k)
− → Y → S

(k)
+ → 0

in which f+ is an isomorphism. We note that

(2.4) The equivalence classes under ‘ Id
∼= ’ are in 1 - 1 correspondence

with Ext1(S
(k)
+ , S

(k)
− )/Aut(S

(k)
+ )

Isomorphism over S
(k)
+ : We write X ∼=Id Y when there is a commutative

diagram of Ω-homomorphisms

0→ S
(k)
− → X → S

(k)
+ → 0

↓ f− ↓ f0 ↓ Id

0→ S
(k)
− → Y → S

(k)
+ → 0

in which f− is an isomorphism. Likewise

(2.5) The equivalence classes under ‘ ∼=Id ’ are in 1 - 1 correspondence

with Aut(S
(k)
− )\Ext1(S

(k)
+ , S

(k)
− )
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On dualising the augmentation sequence E we obtain the exact sequence

0→ A•
ε•

↪→ Ω•
i•→ I• → Ext1

Ω(A,Ω).

As Ext1
Ω(A,Ω) = 0 then the exact sequence E• = (0→ A•

ε•

↪→ Ω•
i•→ I• → 0) is

exact. It is straightforward to see that A• ∼= A and Ω• ∼= Ω so we may write

(2.6) E• = (0→ A
ε•

↪→ Ω
i•→ I• → 0)

where ε• : A→ Ω is given by ε•(1) =
∑
g∈Φ

g. Again Ext1
Ω(I•,Ω) = 0 and by

duality HomΩ(I•, A) ∼= HomΩ(A, I) = 0. Hence we see also that:

(2.7) E• is a quasi-augmentation sequence.

Whilst it is possible to deal directly with E the fact that I• has a natural ring structure
usually makes it easier to work with the dual sequence E• as in the dual augmentation

sequence 0 → A
ε•→ Ω

i•→ I• → 0 we have I• ∼= Ω/(Σx). Hence I• has a natural ring
structure for which i• : Ω→ I• is a ring homomorphism.

§3: Surjectivity when k = 1:

For any commutative ring B there is an obvious inclusion B ⊂ P0,m(B) which in turn
induces an inclusion of unit groups B∗ ⊂ P0,m(B)∗. It is straightforward to see that:

(3.1) If B is a commutative integral domain then P0,m(B)∗ = B∗.

However, Pn,m(A) ∼= P0,m(Pn,0(A)). If A is an integral domain so is Pn,0(A); hence :

(3.2) If A is a commutative integral domain then Pn,m(A)∗ = Pn,0(A)∗.

Let T = C∞ × . . .× C∞︸ ︷︷ ︸
n

denote the n-fold product of the infinite cyclic group C∞

and let A[T ] denote its group algebra over the commutative ring A. By taking
t1, . . . , tn to be the canonical generators of T we identify Pn,0(A) = A[T ]. If
α = (a1, . . . , an) ∈ Z(n) we define tα = ta11 . . . tann ∈ T. It follows from a theorem
of Higman [4] that :

(3.3) If A is an integral domain then A[T ]∗ = {u · tα | u ∈ A∗ , α ∈ Z(n)}.

Combining (3.2) and (3.3) with the identification Pn,0(A) = A[T ] we see that:

(3.4) If A is an integral domain then Pn,m(A)∗ = {u · tα | u ∈ A∗ , α ∈ Z(n)}.

As is well known (cf. [2], p.87), the induced map on units ν : R∗ � Fp is surjective.
When p = 2 then R0 = R. When p is odd, then (cf. [14], Lemma 8.1, p.144),
R∗ ∼= R∗0 × 〈ζ〉. As ν(ζ) = 1 then in either case:

(3.5) The induced homomorphism of unit groups ν : R∗0 → F∗p is surjective.
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Now let ω ∈ Pn,m(Fp)∗. As Fp is an integral domain we may write ω = u · tα
where u ∈ F∗p and α ∈ Z(n). By (3.5), choose û ∈ R∗0 such that ν(û) = u. Then
û · tα ∈ Pn,m(R0)∗ and ν(û · tα) = u · tα = ω. Hence ν induces a surjection of
unit groups ν : Pn,m(R0)∗ → Pn,m(Fp)∗. Otherwise expressed:

(3.6) ν∗ : GL1(Pn,m(R0))→ GL1(Pn,m(Fp)) is surjective.

§4 : Surjectivity when k ≥ 3:
In general, for any commutative ring A, GLk(A) is a semidirect product

(4.1) GLk(A) = SLk(A) oA∗

where A∗ is imbedded in GLk(A) via the diagonal matrices

u 7→


u

1
. . .

1


and SLk(A) = {X ∈ GLk(A) | det(X) = 1}. Let ε(i, j) ∈Mk(A) denote the basic
matrix ε(i, j)r,s = δi,rδj,s We denote by Ek(A) (cf. [7]) the subgroup of GLk(A)
generated by the elementary transvections E(i, j;λ) = Ik + λε(i, j) where i 6= j and
λ ∈ A, together with the diagonal matrices ∆(i,−1) = Ik − 2ε(i, i) If (i, j) denotes
the transposition which swaps i and j then the correponding permutation matrix
can be expressed as P (i, j) = ∆(j,−1)E(i, j; 1)E(j, i;−1)E(i, j; 1). It follows that
Ek(A) also contains the group of k × k permutation matrices. Moreover

(4.2) Ek(A) ⊂ SLk(A) o {±1}.

A theorem Suslin [9] shows that:

(4.3) For any field F, Ek(Pn,m(F)) = SLk(Pn,m(F)) o {±1} when k ≥ 3.

If ψ : B → A is a surjective ring homomorphism then the induced homomorphism
ψ : Ek(B) → Ek(A) is surjective for all k ≥ 2. As ν : Pn,m(R0)) → Pn,m(Fp) is
surjective and Fp is a field then, by (4.3):

(4.4) ν : Ek(Pn,m(R0))→ SLk(Pn,m(Fp)) o {±1} is surjective for k ≥ 3.

It now follows from (3.6) and (4.1) that:

(4.5) ; ν∗ : GLk(Pn,m(R0))→ GLk(Pn,m(Fp)) is surjective for k ≥ 3.

§5 : The rings Ω and Ω0:
Suppose given a fibre square of ring homomorphisms

F =


Λ

π−−→ Λ−

↓ π+ ↓ ϕ−

Λ+
ϕ+−→ Λ0 .
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which satisfies Milnor’s condition [8] that at least one of ϕ− , ϕ+ is surjective, and
let α ∈ GLk(Λ0). We denote by L(α) the Λ-module X obtained as a fibre product

L(α) −→ Λ
(k)
−

↓ ↓

Λ
(k)
+ −→ Λ

(k)
0 .

by glueing Λ
(k)
+ and Λ

(k)
− via α. Such a module is said to be locally free of rank k with

respect to F ; when F is clear from context we omit ‘with respect to F ’. Clearly any
such locally free module is projective over Λ. Moreover, we note that

(5.1) L(Idk) ∼= Λ(k)

Also, if α ∈ GLk(Λ0) then:

(5.2) L(α⊕ Idm) ∼= L(α)⊕ Λ(m)

Let \ : Z→ Fp be the canonical homomorphism and denote by Ω0 the fibre product

(5.3)


Ω0

π−−→ R0

↓π+ ↓ ν

Z \−→ Fp .

Noting that R0 ⊗Z R ∼= R× . . .× R︸ ︷︷ ︸
(p−1)

2

it follows that

(5.4) Ω0 ⊗Z R ∼= R× . . .× R︸ ︷︷ ︸
(p+1)

2

.

In particular, Ω0 satisfies the Eichler condition (cf. [11]) from which we see that:

(5.5) Every stably free Ω0-module is free.

If A is a commutative ring we denote its Krull dimension by Kdim(A); then :

Proposition 5.6 : Kdim(Ω0) = 1.

Proof : For a direct product we have Kdim(A1×A2) = max{Kdim(A1),Kdim(A2)}.
If A is a Dedekind domain then Kdim(A) = 1. Consequently Kdim(Z×R0) = 1.
As Ω0 is a subring of Z × R0 then Kdim(Ω0) ≤ 1. However, Ω0 has a subring
isomorphic to Z so that 1 ≤ Kdim(Ω0), whence the conclusion. 2

Define Ω = Pn,m(Ω0). Applying Pn,m(−) to (5.3) we obtain another fibre square

10



(5.7)


Ω

π−−→ Pn,m(R0)

↓π+ ↓ ν

Pn,m(Z)
\−→ Pn,m(Fp) .

Note that (5.7) is a Milnor square as both \ and ν are surjective. Let α ∈ GLk(Pn,m(Fp))
and denote by L(α) the locally free module of rank k:

(5.8)

L(α)
π−−→ Pn,m(R0)(k)

↓π+ ↓ ν

Pn,m(Z)(k) \−→ Pn,m(Fp)(k) .

We showed in (4.5) that ν∗ : GLk(Pn,m(R0)) → GLk(Pn,m(Fp)) is surjective for
k ≥ 3. It now follows from Milnor’s classification that:

(5.9) L(α) ∼= Ω(k) for k ≥ 3.

Now consider the case k = 2; if α ∈ GL2(Pn,m(Fp)) and Id ∈ GL1(Pn,m(Fp)) then
α⊕ Id ∈ GL3(Pn,m(Fp)) and so, by (5.1), (5.2) and (5.9):

(5.10) L(α)⊕ Ω ∼= Ω(3) if α ∈ GL2(Pn,m(Fp)).

§6 : Surjectivity when k = 2 :

We first improve on (5.10) as follows:

Theorem 6.1 : If α ∈ GL2(Pn,m(Fp)) then L(α) ∼= Ω(2).

Proof : L(α) is a projective module of rank 2 over Ω = Pn,m(Ω0). In particular,

rk(L(α)) > Kdim(Ω0). Moreover, by (5.10), [L(α)] = 0 ∈ K̃0(Ω). It now follows
from a theorem of Swan [13] that L(α) is induced from Ω0; that is, there exists a
projective module Q over Ω0 such that L(α) ∼= i∗(Q) where i : Ω0 ↪→ Ω is the
canonical inclusion. Let r : Ω → Ω0 be the ring homomorphism uniquely specified
by the assignments r(ti) = 1 and r(xj) = 0. Then r ◦ i = IdΩ0 . In particular,
r∗(Ω) = Ω0 and r∗(L(α)) ∼= Q. Thus applying r∗ to (5.10) we see that

Q ⊕ Ω0
∼= Ω

(3)
0 .

It follows from (5.5) that Q ∼= Ω
(2)
0 and hence L(α) ∼= i∗(Ω

(2)
0 ) = Ω(2). 2

We arrive at statement (II) of the Introduction:

Theorem 6.2 : ν∗ : GL2(Pn,m(R0))→ GL2(Pn,m(Fp)) is surjective.

Proof : Let α ∈ GL2(Pn,m(Fp)). We claim that α ∈ Im(ν∗). Thus let L(α) be the
locally free Λ-module obtained by glueing via α

11



L(α) −→ Pn,m(R0)(2)

↓ ↓ ν

Pn,m(Z)(2) \−→ Pn,m(Fp)(2) .

By (6.1), L(α) ∼= Ω(2) . However, Ω(2) is the locally free module of rank 2 obtained
by glueing via I2 ∈ GL2(Pn,m(Fp)) thus:

L(I2) =


Ω(2) −→ Pn,m(R0)(2)

↓ ↓ ν

Pn,m(Z)(2) \−→ Pn,m(Fp)(2) .

By Milnor’s classification [8] there exist β ∈ GL2(Pn,m(Z)) and γ ∈ GL2(Pn,m(R0))
such that α = \∗(β) · I2 · ν∗(γ) = \∗(β) · ν∗(γ). However, if j : Z ↪→ R0 is the
canonical inclusion then the following diagram commutes

-

@
@
@R

�
�
�	

Z R0

Fp

j

\ ν

and induces a commutative diagram of group homomorphisms

-

@
@
@@R

�
�

��	

GL2(Pn,m(Z)) GL2(Pn,m(R0))

GL2(Pn,m(Fp))

j∗

\∗ ν∗

In particular, \∗(β) = ν∗(j∗(β)), so α = ν∗(j∗(β) · γ) ∈ Im(ν∗) as claimed. 2

Moreover, as the following diagram commutes

⊂ -

@
@
@
@R

�
�
�
�	

GL2(Pn,m(R0)) GL2(Pn,m(R))

GL2(Pn,m(Fp))

ν∗ ν∗
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we obtain statement (III) of the Introduction, namely:

(6.3) ν∗ : GLk(Pn,m(R)) � GLk(Pn,m(Fp)) is surjective for all k ≥ 1 and all n,m.

§7 : Locally free modules and stably free modules :
For the remainder of this paper, fixing a prime p, we apply the above considerations

when Φ = Cp = 〈x | xp = 1〉 is the cyclic group of prime order p. As in (5.7) we
have a Milnor fibre square

(S)

-

-

? ?

Pn,m(Z[Cp]) Pn,m(Z(ζp))

Pn,m(Z) Pn,m(Fp)

i•

ε

\

ν

where Ω = Pn,m(Z[Cp]). We say the Ω-module X is locally free of rank k with respect
to S when X is obtained as a fibre product

X(α) =


X −→ Pn,m(Z(ζp))

(k)

↓ ↓ ϕ

Pn,m(Z)(k) \−→ Pn,m(Fp)(k)

by glueing via an element α ∈ GLk(Pn,m(Fp))). Clearly any such locally free module
is projective over Ω. Moreover, with respect to the fibre square S, a locally free
module X can equally be described as a dual projective Swan module; that is there
is a bijective correspondence of isomorphism classes :

(7.1)

{
locally free projective modules

of rank k with respect to S

}
←→

{
dual projective Swan

modules of rank k

}
However, we showed in (6.3) above that:

(7.2) ϕ∗ : GLk(Pn,m(Z(ζp)))→ GLk(Pn,m(Fp)) is surjective for all k ≥ 1.

Consequently, by Milnor’s classification,

(7.3) If X is a locally free projective module with respect to S then X is free.

Hence from (7.1) we see that:

(7.4) If X is a dual projective Swan module then X is free.

The statement (I) of the Introduction now follows from (7.4) on dualization.
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