Swan modules over Laurent polynomials

F.E.A. Johnson

Abstract

Let $\Omega = P_{n,m}(\mathbb{Z}[C_p])$ and $A = P_{n,m}(\mathbb{Z})$ where p is a positive integer and $P_{n,m}(R)$ is the R-algebra $P_{n,m}(R) = R[t_1, t_1^{-1}, \ldots, t_n, t_n^{-1}] \otimes_R R[x_1, \ldots, x_m]$. A Swan module is an extension module of the form $0 \to I^{(k)} \to X \to A^{(k)} \to 0$ where I is the kernel of the augmentation homomorphism $\epsilon : \Omega \to A$. We show that, when p is prime, every such projective Swan module is free; this is false if p is not prime and n + m > 0. The proof relies on the fact that when R is the ring of algebraic integers in $\mathbb{Q}(\zeta_p)$ and \mathbb{F}_p is the field with p elements then the canonical homomorphism $GL_k(P_{n,m}(R)) \twoheadrightarrow GL_k(P_{n,m}(\mathbb{F}_p))$ is surjective for all $k \geq 1$.

Keywords: Swan module, derived module category, Laurent polynomial ring.

Mathematics Subject Classification (AMS 2020): 19A13; 19B14; 18G80.

Let Ω be an algebra over a commutative ring A, augmented by an A-algebra homomorphism $\epsilon : \Omega \to A$. By a *Swan module of rank* k we shall mean an extension module X of the form $0 \to I^{(k)} \to X \to A^{(k)} \to 0$ where $I = \text{Ker}(\epsilon)$. The *augmentation exact sequence* $0 \to I \hookrightarrow \Omega \xrightarrow{\epsilon} A \to 0$ then shows that $\Omega^{(k)}$ is a Swan module of rank k. Given another such Swan module X' we write $X \cong_{\text{Id}} X'$ when there exists a commutative diagram of Ω homomorphisms.

in which α , and hence also $\hat{\alpha}$, is an isomorphism.

If \mathbb{A} is a commutative ring and n, m are non-negative integers we denote by $P_{n,m}(\mathbb{A})$ the \mathbb{A} -algebra $P_{n,m}(\mathbb{A}) = \mathbb{A}[t_1, t_1^{-1}, \ldots, t_n, t_n^{-1}] \otimes_{\mathbb{A}} \mathbb{A}[x_1, \ldots, x_m]$ where $\mathbb{A}[t_1, t_1^{-1}, \ldots, t_n, t_n^{-1}]$ is the algebra of Laurent polynomials in n commuting variables and $\mathbb{A}[x_1, \ldots, x_m]$ is the algebra of ordinary polynomials in m commuting variables. We allow the degenerate cases n = 0, m = 0 provided that n + m > 0. Now take $\Omega = P_{n,m}(\mathbb{Z}[C_p])$ where $C_p = \langle x | x^p = 1 \rangle$ is the finite cyclic group of order $p \geq 2$ and $A = P_{n,m}(\mathbb{Z})$. With the augmentation $\epsilon : \Omega \to A$ defined by the correspondence $x \mapsto 1$ we shall then prove:

(I) Let X be a projective Swan module of rank $k \ge 1$; if p is prime then $X \cong_{\mathrm{Id}} \Omega^{(k)}$. We point out that, by the theorem of Montgomery and Uchida (cf. [14], Chapter 11), for each prime $p \ge 23$ there are projective modules induced from $\mathbb{Z}[C_p]$ which are not Swan modules and which are not free. Our primary interest is in the cases $n \ge 1$ and m = 0 when we may identify Ω and A with the integral group rings $\Omega = \mathbb{Z}[T_n \times C_p], A = \mathbb{Z}[T_n]$. Statement (I) is then best possible and may be compared with the original theorem of Swan ([10], Corollary 6.1) which corresponds to the (degenerate) cases n = m = 0, k = 1 of the present paper. In that case projective Swan modules are free for all finite cyclic groups whereas the statement of (I) is already false for k = 1 whenever p fails to be prime, as can be seen from a result of Bass and Murthy ([1], Theorem 8.10).

To prove (I) we consider a statement of independent interest. We denote by $E_k(\mathbb{A})$ the subgroup of $GL_k(\mathbb{A})$ generated by elementary matrices. If the ring homomorphism $f : \mathbb{B} \to \mathbb{A}$ is surjective the induced homomorphism $f_* : E_k(\mathbb{B}) \to E_k(\mathbb{A})$ is also surjective. It is natural to ask under what conditions the homomorphism $f_* : GL_k(\mathbb{B}) \to GL_k(\mathbb{A})$ is also surjective. In this connection, it has long been apparent that particular difficulties surround the study of GL_2 and its subgroups (cf [3], [12]). As an example, consider the groups

$$SL_{k}^{\pm}(\mathbb{F}[x_{1},\ldots,x_{m}]) = \{X \in GL_{k}(\mathbb{F}[x_{1},\ldots,x_{m}]) \mid \det(X) = \pm 1 \}$$

where \mathbb{F} is a field. When m = 1, $SL_k^{\pm}(\mathbb{F}[x_1]) = E_k(\mathbb{F}[x_1])$. When $m \ge 2$, the following matrix (cf [3]) shows the corresponding statement is false for k = 2;

$$\left(\begin{array}{ccc} 1+x_1x_2 & x_2^2 \\ -x_1^2 & 1-x_1x_2 \end{array}\right).$$

However a remarkable theorem of Suslin [9] shows that if $k \geq 3$ then for all n, m,

$$SL_k^{\pm}(P_{n,m}(\mathbb{F})) = E_k(P_{n,m}(\mathbb{F})).$$

Let p be an odd prime, let R denote the ring of algebraic integers in the field $\mathbb{Q}(\zeta)$ where $\zeta = \exp(\frac{2\pi i}{p})$, let R_0 denote its real subring and let \mathbb{F}_p be the field with pelements. If p is odd then $R_0 = \mathbb{Z}(\mu)$ where $\mu = \zeta + \zeta^{-1}$. The correspondence $\zeta \mapsto 1$ induces a surjective ring homomorphism $\nu : \mathbb{Z}(\zeta_p) \to \mathbb{F}_p$ under which μ maps to 2. As 2 generates the additive group of \mathbb{F}_p , ν restricts to a surjective ring homomorphism $\nu : R_0 \twoheadrightarrow \mathbb{F}_p$ and induces a surjective ring homomorphism $\nu : P_{n,m}(R_0) \twoheadrightarrow P_{n,m}(\mathbb{F}_p)$. If p = 2 then $R_0 = R = \mathbb{Z}$ and we still have a surjective ring homomorphism $\nu : P_{n,m}(R_0) \twoheadrightarrow P_{n,m}(\mathbb{F}_2)$. We shall prove

(II) The induced homomorphism $\nu_* : GL_k(P_{n,m}(R_0)) \twoheadrightarrow GL_k(P_{n,m}(\mathbb{F}_p))$ is surjective for all $k \geq 1$ and all n, m.

When $k \neq 2$, the statement **(II)** follows from the results of Higman [4] and Suslin [9]. In §6 we prove that $\nu_* : GL_2(P_{n,m}(R_0)) \twoheadrightarrow GL_2(P_{n,m}(\mathbb{F}_p))$ is also surjective for all n, m. As an immediate corollary we have:

(III)
$$\nu_* : GL_k(P_{n,m}(R)) \twoheadrightarrow GL_k(P_{n,m}(\mathbb{F}_p))$$
 is surjective for all $k \ge 1$ and all n, m .

As we shall see in $\S7$, statement (I) above follows directly from (III).

§1: The derived module category:

Let $\Omega = A[\Phi]$ be the group algebra of a finite group Φ over a commutative Noetherian integral domain A. We denote by $\mathcal{M}od_{\Omega}$, $\mathcal{M}od_{A}$ the categories of right Ω -modules and right A-modules respectively. The natural inclusion $i : A \to \Omega$ induces an *extension of scalars* functor

$$i_*: \mathcal{M}od_A \to \mathcal{M}od_\Omega \ ; \ i_*(M) = M \otimes_A \Omega.$$

There is a corresponding restriction of scalars functor $i^* : \mathcal{M}od_{\Omega} \to \mathcal{M}od_A$. By a *lattice* we shall mean a Ω -module M for which the A-module $i^*(M)$ is finitely generated and projective. For such lattices we have the following adjointness relations ([5], Chapters 4 and 5). The first of these is universal, namely:

$$\operatorname{Ext}_{\Omega}^{k}(i_{*}(N), M) \cong \operatorname{Ext}_{A}^{k}(N, i^{*}(M)).$$

As Φ is finite, we also have the Eckmann-Shapiro isomorphisms

$$\begin{cases} \operatorname{Hom}_{A}(i^{*}(M), N) \cong \operatorname{Hom}_{\Omega}(M, i_{*}(N)) \\ \operatorname{Ext}_{A}^{k}(i^{*}(M), N) \cong \operatorname{Ext}_{\Omega}^{k}(M, i_{*}(N)) \end{cases}$$

Observe that $i_*(A) = \Omega$. When M is a Ω -lattice then $\operatorname{Ext}^k_{\Omega}(M, \Omega) \cong \operatorname{Ext}^k_A(i^*(M), A)$. However, as $i^*(M)$ is projective over R then $\operatorname{Ext}^k_A(i^*(M), A) = 0$; hence:

(1.1) If M is a Ω -lattice then $\operatorname{Ext}_{\Omega}^{k}(M, \Omega) = 0$ for all $k \geq 1$.

If X is a Ω -lattice X we denote by $X^{\bullet} = \operatorname{Hom}_{\Omega}(X, \Omega)$ the conjugate dual of X on which Φ acts via $(\alpha \cdot g)(x) = \alpha(x \cdot g^{-1})$. Then X^{\bullet} is also a Ω -lattice. We note that Ω lattices are reflexive; that is: $X^{\bullet \bullet} \cong X$.

If $f, g: M \to N$ are morphisms in $\mathcal{M}od_{\Omega}$ we write ' $f \approx g$ ' when f - g can be written as a composition $f - g = \xi \circ \eta$ via a projective module P thus:

Then ' \approx ' is an equivalence relation compatible with composition; that is given Ω -homomorphisms $f, f': M_0 \to M_1, g, g': M_1 \to M_2$ we see that:

$$f \approx f' \text{ and } g \approx g' \implies g \circ f \approx g' \circ f'.$$

The derived module category $\mathcal{D}er(\Omega)$ is quotient category of $\mathcal{M}od_{\Omega}$ given by

$$\begin{cases} \operatorname{Hom}_{\mathcal{D}\mathrm{er}(\Omega)}(M,N) = \operatorname{Hom}_{\Omega}(M,N)/\langle M,N \rangle \\ \langle M,N \rangle = \{ f \in \operatorname{Hom}_{\Omega}(M,N) : f \approx 0 \} \end{cases}$$

As $\langle M, N \rangle$ is an A submodule of $\operatorname{Hom}_{\Omega}(M, N)$ then $\operatorname{Hom}_{\mathcal{D}er}(M, N)$ has the natural structure of an A-module. We distinguish notationally between isomorphism in

 $\mathcal{M}od_{\Omega}$, written as ' \cong_{Ω} ' and isomorphism in $\mathcal{D}er(\Omega)$, written as ' $\cong_{\mathcal{D}er}$ '. For finitely generated Ω -modules the relationship between the two notions is ([5] p. 120) :

$$D \cong_{\mathcal{D}\mathrm{er}} D' \iff D \oplus P' \cong_{\Omega} D' \oplus P$$

for some finitely generated projective Ω -modules P, P'. Given a Ω -lattice M we consider exact sequences in $\mathcal{M}od_{\Omega}$ thus

$$0 \to D \xrightarrow{i} P \xrightarrow{p} M \to 0$$

where P is finitely generated projective. As Ω is Noetherian then D is also finitely generated. Given another such exact sequence $0 \to D' \xrightarrow{i'} P' \xrightarrow{p'} M \to 0$ it follows from Schanuel's Lemma that $D \oplus P' \cong_{\Omega} D' \oplus P$ so that $D \cong_{\mathcal{D}\mathrm{er}} D'$. We denote by $D_1(M)$ the isomorphism class in $\mathcal{D}\mathrm{er}(\Omega)$ of any module D which occurs in an exact sequence of the above form. We may regard $D_1(M)$ as the *first derivative* of M. The correspondence $M \mapsto D_1(M)$ can be regarded as a functor as follows: given any such exact sequence and a Ω -homomorphism $f: M \to M$ the universal property of projective modules allows us to construct a commutative diagram

Moreover if $f': M \to M$ is another morphism in $\mathcal{M}od_{\Omega}$ then :

$$(1.2) f \approx f' \implies f_- \approx f'_-$$

Given $f \in \operatorname{End}_{\Omega}(M)$ we denote by $\rho(f) = [f_-]$ the class of f_- in $\mathcal{D}er(\Omega)$. By (1.2), the correspondence $[f] \mapsto \rho(f) = [f_-]$ determines a ring hommoorphism $\rho : \operatorname{End}_{\mathcal{D}er}(M) \xrightarrow{\simeq} \operatorname{End}_{\mathcal{D}er}(D_1(M))$. When $\operatorname{Ext}^1(M, \Omega) = 0$ then (cf [5], p.133) the conclusion of (1.2) is strengthed to:

$$(1.3) f \approx f' \iff f_- \approx f'_-.$$

With our underlying assumption that M is a Ω -lattice then

(1.4)
$$\rho : \operatorname{End}_{\mathcal{D}\mathrm{er}}(M) \xrightarrow{\simeq} \operatorname{End}_{\mathcal{D}\mathrm{er}}(D_1(M))$$
 is a ring isomorphism.

Given an exact sequence $\mathcal{E} = (0 \to D \xrightarrow{i} P \xrightarrow{p} M \to 0)$ and a Ω -homomorphism $\alpha : D \to N$ we construct the pushout diagram

(1.5)
$$\begin{array}{c} \mathcal{E} \\ \downarrow \natural \\ \alpha_{*}(\mathcal{E}) \end{array} = \left(\begin{array}{cccc} 0 \rightarrow & D & \stackrel{i}{\rightarrow} & P & \stackrel{p}{\rightarrow} & M \rightarrow 0 \\ & \downarrow \alpha & \downarrow \natural & \downarrow \mathrm{Id} \\ 0 \rightarrow & N & \stackrel{i}{\rightarrow} & \stackrel{\mathrm{lim}}{\rightarrow} (\alpha, i) \stackrel{\pi}{\rightarrow} & M \rightarrow 0 \end{array} \right).$$

Then $\alpha_*(\mathcal{E}) = (0 \to N \xrightarrow{i} \lim_{\to} (\alpha, i) \xrightarrow{\pi} M \to 0)$ defines an extension class in $\operatorname{Ext}^1_{\Omega}(M, N)$. When P is projective the correspondence $\alpha \mapsto [\alpha_*(\mathcal{E})]$ defines a mapping $\delta : \operatorname{Hom}_{\mathcal{D}\mathrm{er}}(D, N) \to \operatorname{Ext}^1_{\Omega}(M, N)$. It follows from (1.1) that :

(1.6) $\delta : \operatorname{Hom}_{\mathcal{D}\mathrm{er}}(D_1(M), N) \xrightarrow{\simeq} \operatorname{Ext}^1_{\Omega}(M, N)$ is an isomorphism.

The isomorphism of (1.6) is a corepresentation formula (cf [5], pp.109-114). Taking $N = D \in D_1(M)$ in (1.5), the resulting pushout extension has the following property which generalizes the recognition criterion for projective modules originally given by Swan ([10], Remark on p.279).

(1.7)
$$\lim_{\to} (\alpha, i) \text{ is projective } \iff \alpha \in \operatorname{Aut}_{\mathcal{D}er(\Omega)}(D).$$

(For a proof of (1.7) see [5], Theorem 5.41, p.115).

Given the exact sequence \mathcal{E} for any Ω -module N we have exact sequences for $k \geq 1$.

$$\operatorname{Ext}_{\Omega}^{k}(P,N) \xrightarrow{\imath^{*}} \operatorname{Ext}_{\Omega}^{k}(D_{1}(M),N) \xrightarrow{\flat} \operatorname{Ext}_{\Omega}^{k+1}(M,N) \xrightarrow{p^{*}} \operatorname{Ext}_{\Omega}^{k+1}(P,N).$$

As P is projective then $\operatorname{Ext}_{\Omega}^{k}(P,N) \cong \operatorname{Ext}_{\Omega}^{k+1}(P,N) = 0$ and we obtain the usual *dimension shifting* isomorphisms

(1.8)
$$\operatorname{Ext}_{\Omega}^{k+1}(M,N) \cong \operatorname{Ext}_{\Omega}^{k}(D_{1}(M),N).$$

We may regard the corepresentation formula (1.6) as the degenerate case of (1.8) corresponding to the case k = 0. In particular, taking $N = D_1(M)$ in (1.6) we obtain a natural isomorphism $\delta : \operatorname{End}_{\mathcal{D}er}(D_1(M)) \xrightarrow{\simeq} \operatorname{Ext}_{\Omega}^1(M, D_1(M))$ which, combined with (1.4) gives

(1.9)
$$\natural = \rho^{-1} \circ \delta^{-1} : \operatorname{Ext}_{\Omega}^{1}(M, D_{1}(M)) \longrightarrow \operatorname{End}_{\mathcal{D}er}(M)$$
 is an isomorphism.

We conclude this section by computing $\operatorname{End}_{\mathcal{D}\mathrm{er}}(A)$. As projective modules are direct summands of free modules it is enough to consider homomorphisms $f: A \to A$ which factor through $\Omega^{(n)}$. Let $\epsilon: \Omega \to A$ be the augmentation homomorphism, $\epsilon(x^r) = 1$. We note that $\operatorname{Hom}_{\Omega}(\Omega, A) \cong A$ generated by the augmentation homomorphism ϵ . Thus if $\xi: \Omega^{(n)} \to A$ is Ω linear then $\xi = (\xi_1 \epsilon, \dots, \xi_n \epsilon)$ for some $(\xi_1, \dots, \xi_n) \in A^{(n)}$. Let $\epsilon^{\bullet}: A \to \Omega$ denote the Ω -dual of ϵ ; then $\epsilon^{\bullet}(1) = \sum_{g \in \Phi} g$. Then, Here, $(A, \Omega) \simeq A$, represented here ϵ^{\bullet} . Here, if $n \in A \to \Omega^{(n)}$ is Ω linear then

Then $\operatorname{Hom}_{\Omega}(A, \Omega) \cong A$ generated by ϵ^{\bullet} . Hence if $\eta : A \to \Omega^{(n)}$ is Ω linear then $\eta = (\eta_1, \dots, \eta_n)^t \epsilon^{\bullet}$ for some $(\eta_1, \dots, \eta_n) \in A^{(n)}$. If $f : A \to A$ admits a factorization $f = \xi \circ \eta$ through the free module $\Omega^{(n)}$ thus $f(1) = (\sum_{r=1}^n \xi_r \eta_r) \epsilon \circ \epsilon^{\bullet}(1)$. However $\epsilon \circ \epsilon^{\bullet}(1) = |\Phi|$ so that

(1.10)
$$\operatorname{End}_{\mathcal{D}\mathrm{er}}(A) \cong A/|\Phi|.$$

From (1.10) and (1.4) it follows that

(1.11)
$$\operatorname{End}_{\mathcal{D}\mathrm{er}}(I^{\bullet}) \cong A/|\Phi|$$

§2: Quasi-augmentations and generalized Swan modules:

Continuing with the notation of §1, the Eckmann-Shapiro Lemma implies that:

(2.1) If X is a Ω -lattice then $\operatorname{Ext}_{\Omega}^{k}(X, \Omega) = 0$ for all $k \geq 1$.

We have an augmentation homomorphism $\epsilon : \Omega \to A$ given by $\epsilon(g) = 1$ for all $g \in \Phi$. We denote by \mathcal{E} the augmentation exact sequence

$$\mathcal{E} = (0 \to I \stackrel{i}{\hookrightarrow} \Omega \stackrel{\epsilon}{\to} A \to 0)$$

where $I = \text{Ker}(\epsilon)$ and i is the inclusion. We generalize this as follows; an exact sequence $\mathcal{S} = (0 \to S_{-} \xrightarrow{i} \Omega \xrightarrow{p} S_{+} \to 0)$ of Ω -lattices is called a *quasi-augmentation* sequence when $S_{+} S_{-}$ satisfy the condition $\text{Hom}_{\Omega}(S_{-}, S_{+}) = 0$. In the above sequence \mathcal{E} one sees easily that $\text{Hom}_{\Omega}(A, I) = 0$; hence:

(2.2) \mathcal{E} is a quasi-augmentation sequence.

Now fix a quasi-augmentation $\mathcal{S} = (0 \to S_- \xrightarrow{i} \Omega \xrightarrow{p} S_+ \to 0)$. If k is a positive integer we denote by $\mathcal{S}(k)$ the class of extensions of the form

$$\mathcal{X} = (0 \to S_{-}^{(k)} \xrightarrow{i_{\mathcal{X}}} X \xrightarrow{p_{\mathcal{X}}} S_{+}^{(k)} \to 0)$$

The module X defined by such an extension is called a *generalized Swan module* of rank k. There are a number of equivalence relations on S(k) to be considered:

Isomorphism : We write $\mathcal{X} \cong \mathcal{Y}$ when there is a commutative diagram

in $\mathcal{M}od_{\Omega}$ in which f_{-} and f_{+} are isomorphisms. We note that generalized Swan modules are rigid in the sense that the condition $\operatorname{Hom}_{\Omega}(S_{-}, S_{+}) = 0$ ensures that the defining exact sequence \mathcal{X} is essentially unique (cf [5]. p.231); thus if Y is also a generalized Swan module defined by the exact sequence \mathcal{Y} then

 $X \cong Y \iff \mathcal{X} \cong \mathcal{Y}.$

There is a more refined relation on $\mathcal{S}(k)$, namely:

Congruence : We write $\mathcal{X} \equiv \mathcal{Y}$ when there is a commutative diagram of Ω -homomorphisms

 In both relations the middle mapping $X \to Y$ is an isomorphism via the Five Lemma. Up to congruence such exact sequences are classified by $\operatorname{Ext}^1(S^{(k)}_+, S^{(k)}_-)$. To allow for the coarser classification of isomorphism we consider the natural two-sided action of $\operatorname{Aut}_{\Omega}(S^{(k)}_-) \times \operatorname{Aut}_{\Omega}(S^{(k)}_+)$ on $\operatorname{Ext}^1(S^{(k)}_+, S^{(k)}_-)$:

$$\operatorname{Aut}_{\Omega}(S_{-}^{(k)}) \times \operatorname{Ext}^{1}(S_{+}^{(k)}, S_{-}^{(k)}) \times \operatorname{Aut}_{\Omega}(S_{+}^{(k)}) \to \operatorname{Ext}^{1}(S_{+}^{(k)}, S_{-}^{(k)})$$
$$(\alpha, \mathcal{X}, \beta) \mapsto \alpha_{*}\beta^{*}(\mathcal{X})$$

As is well known (cf [6] p.67) $\alpha_*\beta^*(\mathcal{X})$ is congruent to $\beta^*\alpha_*(\mathcal{X})$. We have the following Classification Theorem:

Theorem 2.3 : There is a 1 - 1 correspondence

 $\left\{\begin{array}{l} \text{Isomorphism classes of generalized Swan}\\ \text{modules of rank } k \text{ relative to } \mathcal{S} \end{array}\right\} \longleftrightarrow \text{Aut}_{\Omega}(S_{-}^{(k)}) \setminus \text{Ext}^{1}(S_{+}^{(k)}, S_{-}^{(k)}) / \text{Aut}_{\Omega}(S_{+}^{(k)}).$

Intermediate between isomorphism and congruence we have:

Isomorphism over $S_{-}^{(k)}$: We write $\mathcal{X}_{\mathrm{Id}} \cong \mathcal{Y}$ when there is a commutative diagram of Ω -homomorphisms

$$0 \to S_{-}^{(k)} \to X \to S_{+}^{(k)} \to 0$$
$$\downarrow \text{Id} \qquad \downarrow f_0 \qquad \downarrow f_+$$
$$0 \to S_{-}^{(k)} \to Y \rightarrow S_{+}^{(k)} \to 0$$

in which f_+ is an isomorphism. We note that

(2.4) The equivalence classes under ' $_{Id} \cong$ ' are in 1-1 correspondence with $Ext^1(S^{(k)}_+, S^{(k)}_-)/Aut(S^{(k)}_+)$

Isomorphism over $S^{(k)}_+$: We write $\mathcal{X} \cong_{\mathrm{Id}} \mathcal{Y}$ when there is a commutative diagram of Ω -homomorphisms

in which f_{-} is an isomorphism. Likewise

(2.5) The equivalence classes under '
$$\cong_{\text{Id}}$$
' are in 1-1 correspondence with $\text{Aut}(S_{-}^{(k)}) \setminus \text{Ext}^{1}(S_{+}^{(k)}, S_{-}^{(k)})$

On dualising the augmentation sequence \mathcal{E} we obtain the exact sequence

$$0 \to A^{\bullet} \stackrel{\epsilon^{\bullet}}{\hookrightarrow} \Omega^{\bullet} \stackrel{i^{\bullet}}{\to} I^{\bullet} \to \operatorname{Ext}^{1}_{\Omega}(A, \Omega).$$

As $\operatorname{Ext}^{1}_{\Omega}(A, \Omega) = 0$ then the exact sequence $\mathcal{E}^{\bullet} = (0 \to A^{\bullet} \stackrel{\epsilon^{\bullet}}{\hookrightarrow} \Omega^{\bullet} \stackrel{i^{\bullet}}{\to} I^{\bullet} \to 0)$ is exact. It is straightforward to see that $A^{\bullet} \cong A$ and $\Omega^{\bullet} \cong \Omega$ so we may write

(2.6)
$$\mathcal{E}^{\bullet} = (0 \to A \stackrel{\epsilon^{\bullet}}{\hookrightarrow} \Omega \stackrel{i^{\bullet}}{\to} I^{\bullet} \to 0)$$

where $\epsilon^{\bullet}: A \to \Omega$ is given by $\epsilon^{\bullet}(1) = \sum_{g \in \Phi} g$. Again $\operatorname{Ext}^{1}_{\Omega}(I^{\bullet}, \Omega) = 0$ and by

duality $\operatorname{Hom}_{\Omega}(I^{\bullet}, A) \cong \operatorname{Hom}_{\Omega}(A, I) = 0$. Hence we see also that:

(2.7)
$$\mathcal{E}^{\bullet}$$
 is a quasi-augmentation sequence.

Whilst it is possible to deal directly with \mathcal{E} the fact that I^{\bullet} has a natural ring structure usually makes it easier to work with the dual sequence \mathcal{E}^{\bullet} as in the dual augmentation sequence $0 \to A \xrightarrow{\epsilon^{\bullet}} \Omega \xrightarrow{i^{\bullet}} I^{\bullet} \to 0$ we have $I^{\bullet} \cong \Omega/(\Sigma_x)$. Hence I^{\bullet} has a natural ring structure for which $i^{\bullet} : \Omega \to I^{\bullet}$ is a ring homomorphism.

§3: Surjectivity when k = 1:

For any commutative ring B there is an obvious inclusion $B \subset P_{0,m}(B)$ which in turn induces an inclusion of unit groups $B^* \subset P_{0,m}(B)^*$. It is straightforward to see that:

(3.1) If B is a commutative integral domain then $P_{0,m}(B)^* = B^*$.

However, $P_{n,m}(A) \cong P_{0,m}(P_{n,0}(A))$. If A is an integral domain so is $P_{n,0}(A)$; hence:

(3.2) If A is a commutative integral domain then $P_{n,m}(A)^* = P_{n,0}(A)^*$.

Let $T = \underbrace{C_{\infty} \times \ldots \times C_{\infty}}_{n}$ denote the *n*-fold product of the infinite cyclic group C_{∞}

and let A[T] denote its group algebra over the commutative ring A. By taking t_1, \ldots, t_n to be the canonical generators of T we identify $P_{n,0}(A) = A[T]$. If $\alpha = (a_1, \ldots, a_n) \in \mathbb{Z}^{(n)}$ we define $\mathbf{t}^{\alpha} = t_1^{a_1} \ldots t_n^{a_n} \in T$. It follows from a theorem of Higman [4] that :

(3.3) If A is an integral domain then $A[T]^* = \{ u \cdot \mathbf{t}^{\alpha} \mid u \in A^*, \alpha \in \mathbb{Z}^{(n)} \}.$

Combining (3.2) and (3.3) with the identification $P_{n,0}(A) = A[T]$ we see that:

(3.4) If A is an integral domain then $P_{n,m}(A)^* = \{ u \cdot \mathbf{t}^{\alpha} \mid u \in A^*, \alpha \in \mathbb{Z}^{(n)} \}.$

As is well known (cf. [2], p.87), the induced map on units $\nu : R^* \to \mathbb{F}_p$ is surjective. When p = 2 then $R_0 = R$. When p is odd, then (cf. [14], Lemma 8.1, p.144), $R^* \cong R_0^* \times \langle \zeta \rangle$. As $\nu(\zeta) = 1$ then in either case:

(3.5) The induced homomorphism of unit groups $\nu : R_0^* \to \mathbb{F}_p^*$ is surjective.

Now let $\omega \in P_{n,m}(\mathbb{F}_p)^*$. As \mathbb{F}_p is an integral domain we may write $\omega = u \cdot \mathbf{t}^{\alpha}$ where $u \in \mathbb{F}_p^*$ and $\alpha \in \mathbb{Z}^{(n)}$. By (3.5), choose $\hat{u} \in R_0^*$ such that $\nu(\hat{u}) = u$. Then $\hat{u} \cdot \mathbf{t}^{\alpha} \in P_{n,m}(R_0)^*$ and $\nu(\hat{u} \cdot \mathbf{t}^{\alpha}) = u \cdot \mathbf{t}^{\alpha} = \omega$. Hence ν induces a surjection of unit groups $\nu : P_{n,m}(R_0)^* \to P_{n,m}(\mathbb{F}_p)^*$. Otherwise expressed:

(3.6)
$$\nu_* : GL_1(P_{n,m}(R_0)) \to GL_1(P_{n,m}(\mathbb{F}_p))$$
 is surjective.

§4 : Surjectivity when $k \ge 3$:

In general, for any commutative ring \mathbb{A} , $GL_k(\mathbb{A})$ is a semidirect product

$$(4.1) GL_k(\mathbb{A}) = SL_k(\mathbb{A}) \rtimes \mathbb{A}^*$$

where \mathbb{A}^* is imbedded in $GL_k(\mathbb{A})$ via the diagonal matrices

$$u \mapsto \left(\begin{array}{ccc} u & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{array} \right)$$

and $SL_k(\mathbb{A}) = \{X \in GL_k(\mathbb{A}) \mid \det(X) = 1\}$. Let $\epsilon(i, j) \in M_k(\mathbb{A})$ denote the basic matrix $\epsilon(i, j)_{r,s} = \delta_{i,r}\delta_{j,s}$ We denote by $E_k(\mathbb{A})$ (cf. [7]) the subgroup of $GL_k(\mathbb{A})$ generated by the elementary transvections $E(i, j; \lambda) = I_k + \lambda \epsilon(i, j)$ where $i \neq j$ and $\lambda \in \mathbb{A}$, together with the diagonal matrices $\Delta(i, -1) = I_k - 2\epsilon(i, i)$ If (i, j) denotes the transposition which swaps i and j then the corresponding permutation matrix can be expressed as $P(i, j) = \Delta(j, -1)E(i, j; 1)E(j, i; -1)E(i, j; 1)$. It follows that $E_k(\mathbb{A})$ also contains the group of $k \times k$ permutation matrices. Moreover

$$(4.2) E_k(\mathbb{A}) \subset SL_k(\mathbb{A}) \rtimes \{\pm 1\}.$$

A theorem Suslin [9] shows that:

(4.3) For any field
$$\mathbb{F}$$
, $E_k(P_{n,m}(\mathbb{F})) = SL_k(P_{n,m}(\mathbb{F})) \rtimes \{\pm 1\}$ when $k \geq 3$.

If $\psi : \mathbb{B} \to \mathbb{A}$ is a surjective ring homomorphism then the induced homomorphism $\psi : E_k(\mathbb{B}) \to E_k(\mathbb{A})$ is surjective for all $k \geq 2$. As $\nu : P_{n,m}(R_0) \to P_{n,m}(\mathbb{F}_p)$ is surjective and \mathbb{F}_p is a field then, by (4.3):

(4.4)
$$\nu: E_k(P_{n,m}(R_0)) \to SL_k(P_{n,m}(\mathbb{F}_p)) \rtimes \{\pm 1\}$$
 is surjective for $k \ge 3$.

It now follows from (3.6) and (4.1) that:

(4.5) ;
$$\nu_* : GL_k(P_{n,m}(R_0)) \to GL_k(P_{n,m}(\mathbb{F}_p))$$
 is surjective for $k \ge 3$.

§5 : The rings Ω and Ω_0 :

Suppose given a fibre square of ring homomorphisms

which satisfies Milnor's condition [8] that at least one of φ_{-} , φ_{+} is surjective, and let $\alpha \in GL_k(\Lambda_0)$. We denote by $\mathcal{L}(\alpha)$ the Λ -module X obtained as a fibre product

by glueing $\Lambda_{+}^{(k)}$ and $\Lambda_{-}^{(k)}$ via α . Such a module is said to be *locally free of rank k with* respect to \mathcal{F} ; when \mathcal{F} is clear from context we omit 'with respect to \mathcal{F} '. Clearly any such locally free module is projective over Λ . Moreover, we note that

(5.1)
$$\mathcal{L}(\mathrm{Id}_k) \cong \Lambda^{(k)}$$

Also, if $\alpha \in GL_k(\Lambda_0)$ then:

$$\mathcal{L}(\alpha \oplus \mathrm{Id}_m) \cong \mathcal{L}(\alpha) \oplus \Lambda^{(m)}$$

Let $\natural : \mathbb{Z} \to \mathbb{F}_p$ be the canonical homomorphism and denote by Ω_0 the fibre product

(5.3)
$$\begin{cases} \Omega_0 & \xrightarrow{\pi_-} & R_0 \\ \downarrow^{\pi_+} & \downarrow^{\nu} \\ \mathbb{Z} & \xrightarrow{\natural} & \mathbb{F}_p. \end{cases}$$

Noting that $R_0 \otimes_{\mathbb{Z}} \mathbb{R} \cong \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{\frac{(p-1)}{2}}$ it follows that

(5.4)
$$\Omega_0 \otimes_{\mathbb{Z}} \mathbb{R} \cong \underbrace{\mathbb{R} \times \ldots \times \mathbb{R}}_{\frac{(p+1)}{2}}$$

In particular, Ω_0 satisfies the Eichler condition (cf. [11]) from which we see that:

(5.5) Every stably free Ω_0 -module is free.

If A is a commutative ring we denote its Krull dimension by Kdim(A); then :

Proposition 5.6 : $\operatorname{Kdim}(\Omega_0) = 1.$

Proof: For a direct product we have $\operatorname{Kdim}(A_1 \times A_2) = \max{\operatorname{Kdim}(A_1), \operatorname{Kdim}(A_2)}$. If A is a Dedekind domain then $\operatorname{Kdim}(A) = 1$. Consequently $\operatorname{Kdim}(\mathbb{Z} \times R_0) = 1$. As Ω_0 is a subring of $\mathbb{Z} \times R_0$ then $\operatorname{Kdim}(\Omega_0) \leq 1$. However, Ω_0 has a subring isomorphic to \mathbb{Z} so that $1 \leq \operatorname{Kdim}(\Omega_0)$, whence the conclusion. \Box

Define $\Omega = P_{n,m}(\Omega_0)$. Applying $P_{n,m}(-)$ to (5.3) we obtain another fibre square

(5.7)
$$\begin{cases} \Omega & \xrightarrow{\pi_{-}} & P_{n,m}(R_0) \\ \downarrow^{\pi_{+}} & \downarrow \nu \\ P_{n,m}(\mathbb{Z}) & \xrightarrow{\natural} & P_{n,m}(\mathbb{F}_p) . \end{cases}$$

Note that (5.7) is a Milnor square as both \natural and ν are surjective. Let $\alpha \in GL_k(P_{n,m}(\mathbb{F}_p))$ and denote by $\mathcal{L}(\alpha)$ the locally free module of rank k:

(5.8) $\mathcal{L}(\alpha) \xrightarrow{\pi_{-}} P_{n,m}(R_{0})^{(k)}$ $\downarrow^{\pi_{+}} \qquad \downarrow \nu$

$$P_{n,m}(\mathbb{Z})^{(k)} \longrightarrow P_{n,m}(\mathbb{F}_p)^{(k)}.$$

We showed in (4.5) that $\nu_* : GL_k(P_{n,m}(R_0)) \to GL_k(P_{n,m}(\mathbb{F}_p))$ is surjective for $k \geq 3$. It now follows from Milnor's classification that:

(5.9)
$$\mathcal{L}(\alpha) \cong \Omega^{(k)} \text{ for } k \ge 3.$$

Now consider the case k = 2; if $\alpha \in GL_2(P_{n,m}(\mathbb{F}_p))$ and $\mathrm{Id} \in GL_1(P_{n,m}(\mathbb{F}_p))$ then $\alpha \oplus \mathrm{Id} \in GL_3(P_{n,m}(\mathbb{F}_p))$ and so, by (5.1), (5.2) and (5.9):

(5.10) $\mathcal{L}(\alpha) \oplus \Omega \cong \Omega^{(3)} \text{ if } \alpha \in GL_2(P_{n,m}(\mathbb{F}_p)).$

§6 : Surjectivity when k = 2 :

We first improve on (5.10) as follows:

Theorem 6.1 : If $\alpha \in GL_2(P_{n,m}(\mathbb{F}_p))$ then $\mathcal{L}(\alpha) \cong \Omega^{(2)}$.

Proof : $\mathcal{L}(\alpha)$ is a projective module of rank 2 over $\Omega = P_{n,m}(\Omega_0)$. In particular, rk($\mathcal{L}(\alpha)$) > Kdim(Ω_0). Moreover, by (5.10), [$\mathcal{L}(\alpha)$] = $0 \in \widetilde{K}_0(\Omega)$. It now follows from a theorem of Swan [13] that $\mathcal{L}(\alpha)$ is induced from Ω_0 ; that is, there exists a projective module Q over Ω_0 such that $\mathcal{L}(\alpha) \cong i_*(Q)$ where $i : \Omega_0 \hookrightarrow \Omega$ is the canonical inclusion. Let $r : \Omega \to \Omega_0$ be the ring homomorphism uniquely specified by the assignments $r(t_i) = 1$ and $r(x_j) = 0$. Then $r \circ i = \mathrm{Id}_{\Omega_0}$. In particular, $r_*(\Omega) = \Omega_0$ and $r_*(\mathcal{L}(\alpha)) \cong Q$. Thus applying r_* to (5.10) we see that

$$Q \oplus \Omega_0 \cong \Omega_0^{(3)}$$

It follows from (5.5) that $Q \cong \Omega_0^{(2)}$ and hence $\mathcal{L}(\alpha) \cong i_*(\Omega_0^{(2)}) = \Omega^{(2)}$. \Box

We arrive at statement (II) of the Introduction:

Theorem 6.2: $\nu_* : GL_2(P_{n,m}(R_0)) \to GL_2(P_{n,m}(\mathbb{F}_p))$ is surjective.

Proof: Let $\alpha \in GL_2(P_{n,m}(\mathbb{F}_p))$. We claim that $\alpha \in \operatorname{Im}(\nu_*)$. Thus let $\mathcal{L}(\alpha)$ be the locally free Λ -module obtained by glueing via α

By (6.1), $\mathcal{L}(\alpha) \cong \Omega^{(2)}$. However, $\Omega^{(2)}$ is the locally free module of rank 2 obtained by glueing via $I_2 \in GL_2(P_{n,m}(\mathbb{F}_p))$ thus:

$$\mathcal{L}(I_2) = \begin{cases} \Omega^{(2)} \longrightarrow P_{n,m}(R_0)^{(2)} \\ \downarrow & \downarrow \nu \\ P_{n,m}(\mathbb{Z})^{(2)} \longrightarrow P_{n,m}(\mathbb{F}_p)^{(2)} \end{cases}$$

By Milnor's classification [8] there exist $\beta \in GL_2(P_{n,m}(\mathbb{Z}))$ and $\gamma \in GL_2(P_{n,m}(R_0))$ such that $\alpha = \natural_*(\beta) \cdot I_2 \cdot \nu_*(\gamma) = \natural_*(\beta) \cdot \nu_*(\gamma)$. However, if $j : \mathbb{Z} \hookrightarrow R_0$ is the canonical inclusion then the following diagram commutes

and induces a commutative diagram of group homomorphisms

In particular, $\natural_*(\beta) = \nu_*(j_*(\beta))$, so $\alpha = \nu_*(j_*(\beta) \cdot \gamma) \in \text{Im}(\nu_*)$ as claimed. \Box

Moreover, as the following diagram commutes

we obtain statement (III) of the Introduction, namely:

(6.3)
$$\nu_* : GL_k(P_{n,m}(R)) \twoheadrightarrow GL_k(P_{n,m}(\mathbb{F}_p))$$
 is surjective for all $k \ge 1$ and all n, m .

§7 : Locally free modules and stably free modules :

For the remainder of this paper, fixing a prime p, we apply the above considerations when $\Phi = C_p = \langle x | x^p = 1 \rangle$ is the cyclic group of prime order p. As in (5.7) we have a Milnor fibre square

$$(\mathfrak{S}) \qquad P_{n,m}(\mathbb{Z}[C_p]) \xrightarrow{i^*} P_{n,m}(\mathbb{Z}(\zeta_p)) \\ \downarrow \epsilon \qquad \qquad \downarrow \nu \\ P_{n,m}(\mathbb{Z}) \xrightarrow{\natural} P_{n,m}(\mathbb{F}_p) \end{cases}$$

where $\Omega = P_{n,m}(\mathbb{Z}[C_p])$. We say the Ω -module X is *locally free of rank k with respect* to \mathfrak{S} when X is obtained as a fibre product

$$\mathfrak{X}(\alpha) = \begin{cases} X \longrightarrow P_{n,m}(\mathbb{Z}(\zeta_p))^{(k)} \\ \downarrow & \downarrow \varphi \\ P_{n,m}(\mathbb{Z})^{(k)} \xrightarrow{\natural} P_{n,m}(\mathbb{F}_p)^{(k)} \end{cases}$$

by glueing via an element $\alpha \in GL_k(P_{n,m}(\mathbb{F}_p)))$. Clearly any such locally free module is projective over Ω . Moreover, with respect to the fibre square \mathfrak{S} , a locally free module X can equally be described as a dual projective Swan module; that is there is a bijective correspondence of isomorphism classes :

(7.1)
$$\left\{\begin{array}{l} \text{locally free projective modules} \\ \text{of rank } k \text{ with respect to } \mathfrak{S}\end{array}\right\} \quad \longleftrightarrow \quad \left\{\begin{array}{l} \text{dual projective Swan} \\ \text{modules of rank } k\end{array}\right\}$$

However, we showed in (6.3) above that:

(7.2)
$$\varphi_* : GL_k(P_{n,m}(\mathbb{Z}(\zeta_p))) \to GL_k(P_{n,m}(\mathbb{F}_p))$$
 is surjective for all $k \ge 1$.

Consequently, by Milnor's classification,

(7.3) If X is a locally free projective module with respect to \mathfrak{S} then X is free. Hence from (7.1) we see that:

(7.4) If X is a dual projective Swan module then X is free.

The statement (I) of the Introduction now follows from (7.4) on dualization.

References

- [1] : H. Bass and M.P. Murthy ; Grothendieck groups and Picard groups of abelian group rings : Ann. of Math 86 (1967) 16-73.
- [2]: B.J. Birch; Cyclotomic fields and Kummer extensions: 'Algebraic Number Theory' (J.W.S. Cassells and A. Fröhlich eds), Academic Press (1967).
- [3] : P.M. Cohn ; On the structure of the GL_2 of a ring: Publications Mathematiques IHES 30 (1966) 5-53.
- [4] : D.G. Higman ; The units of group rings : Proc. London. Math. Soc. (2) 46 (1940) 231-248.
- [5] : F.E.A. Johnson; Syzygies and homotopy theory. Springer Verlag, 2011.
- [6] : S. MacLane ; Homology : Springer-Verlag, (1963).
- [7]: J. Milnor; Whitehead torsion:
 Bull. Amer. Math. Soc. 72 (1966), 358-426.
- [8] : J. Milnor ; Introduction to Algebraic K-Theory : Ann. of Math. Studies vol 72 , Princeton University Press 1971
- [9] : A.A. Suslin; On the structure of special linear groups over polynomial rings: Math USSR Izvestija 11 (1977) 221-238.
- [10] : R.G. Swan ; Periodic resolutions for finite groups : Ann. of Math. 72 (1960) 267-291.
- [11] : R.G. Swan ; K-Theory of finite groups and orders. (notes by E.G. Evans). Lecture Notes in Mathematics 149. Springer-Verlag 1970.
- [12] : R.G. Swan ; Generators and relations for certain special linear groups. Advances in Math. 6 (1971) 1-77.
- [13]: R.G. Swan; Projective modules over Laurent polynomial rings. Trans. Amer. Math. Soc. 237 (1978) 111-120.
- [14] : L.C. Washington; Introduction to cyclotomic fields. Graduate Texts in Mathematics vol 83, 2nd edition. Springer-Verlag, 1997.

F.E.A. Johnson

Department of Mathematics, University College London, Gower Street, London WC1E 6BT, U.K. f.johnson@ucl.ac.uk