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Abstract

Let Q = P, (Z[Cy]) and A = P, ,,(Z) where p is a positive integer and
P,.;m(R) is the R-algebra P, ,,(R) = R[ti,t;, ... tn, ;' @r Rlz1,. .., 2m).
A Swan module is an extension module of the form 0 — I®) — X — A®) — 0
where I is the kernel of the augmentation homomorphism € : 2 — A. We show
that, when p is prime, every such projective Swan module is free; this is false
if p is not prime and n + m > 0. The proof relies on the fact that when R is
the ring of algebraic integers in Q((,) and I, is the field with p elements then
the canonical homomorphism GLg (P, m(R)) — GLk(Pym(Fp)) is surjective
for all kK > 1.
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Let Q be an algebra over a commutative ring A, augmented by an A-algebra
homomorphism € : Q — A. By a Swan module of rank k we shall mean an extension
module X of the foom 0 — I® — X — A® — 0 where I = Ker(e). The
augmentation exact sequence 0 — I < Q5 A — 0 then shows that Q®*) is a Swan
module of rank k. Given another such Swan module X’ we write X =4 X’ when
there exists a commutative diagram of {2 homomorphisms.

0 - I® 5 x B Ak 5 9
la la J1d
0 — I® Loxr Boaqm g
in which «, and hence also @, is an isomorphism.

If A is a commutative ring and n,m are non-negative integers we denote by
Pom(A) the A-algebra P,,,(A) = Aft;, 67", ...t t;] @4 Alzy,...,2,] where
Alty, 7Y, ... t,, t21] is the algebra of Laurent polynomials in n commuting variables
and Afzy,...,z,] is the algebra of ordinary polynomials in m commuting variables.
We allow the degenerate cases n = 0, m = 0 provided that n 4+ m > 0. Now take
Q = P,n(Z[C,)) where C, = (x|aP = 1) is the finite cyclic group of order p > 2
and A = P, ,,(Z). With the augmentation € : Q — A defined by the correspondence
x +— 1 we shall then prove:

(I) Let X be a projective Swan module of rank k > 1; if p is prime then X =4 Q®),

We point out that, by the theorem of Montgomery and Uchida (cf. [14], Chapter 11),
for each prime p > 23 there are projective modules induced from Z[C,] which are not
Swan modules and which are not free.



Our primary interest is in the cases n > 1 and m = 0 when we may identify 2
and A with the integral group rings Q = Z[T, x C,|, A = Z[T,]. Statement (I)
is then best possible and may be compared with the original theorem of Swan ([10],
Corollary 6.1) which corresponds to the (degenerate) cases n = m = 0, k = 1 of
the present paper. In that case projective Swan modules are free for all finite cyclic
groups whereas the statement of (I) is already false for £ = 1 whenever p fails to be
prime, as can be seen from a result of Bass and Murthy ([1], Theorem 8.10).

To prove (I) we consider a statement of independent interest. We denote by
Ei(A) the subgroup of GLi(A) generated by elementary matrices. If the ring homo-
morphism f : B — A is surjective the induced homomorphism f, : Ex(B) — Ei(A)
is also surjective. It is natural to ask under what conditions the homomorphism
fe : GLi(B) — GLi(A) is also surjective. In this connection, it has long been appar-
ent that particular difficulties surround the study of GL, and its subgroups (cf [3],
[12]). As an example, consider the groups

SLE(Flzy, .. am)) = {X € GLy(Flzy, ..., 7)) | det(X) = £1 }

where F is a field. When m = 1, SLE(F[r1]) = FEi(F[r1]). When m > 2, the
following matrix (cf [3]) shows the corresponding statement is false for k = 2;

1+ 2129 x%
—ax3 1 — 229 )
However a remarkable theorem of Suslin [9] shows that if & > 3 then for all n,m,

SLy (Pam(F)) = Ep(Pom(F)).

Let p be an odd prime, let R denote the ring of algebraic integers in the field Q(()
where ( = exp(%), let Ry denote its real subring and let I, be the field with p
elements. If pis odd then Ry = Z(u) where p = (+¢~'. The correspondence ¢ + 1
induces a surjective ring homomorphism v : Z((,) — F, under which p maps to 2. As
2 generates the additive group of IF,,, v restricts to a surjective ring homomorphism
v : Ry — FF, and induces a surjective ring homomorphism v : P, ,,(Ry) — P (F,).
If p=2then Ry = R = Z and we still have a surjective ring homomorphism
v:Pym(Ry) = P, m(Fy). We shall prove

(IT) The induced homomorphism v, : GLk(P,m(Ro)) — GLk(Pym(Fy)) is surjec-
tive for all £ > 1 and all n, m.

When k # 2, the statement (II) follows from the results of Higman [4] and Suslin [9].
In §6 we prove that v, : GLy(P,m(Ro)) — GLo(P,m(F,)) is also surjective for all
n,m. As an immediate corollary we have:

(III) v, : GLE(Pym(R)) — GLk(Pym(F,)) is surjective for all £ > 1 and all n, m.
As we shall see in §7, statement (I) above follows directly from (III).



81: The derived module category:

Let Q@ = A[®] be the group algebra of a finite group ® over a commutative
Noetherian integral domain A. We denote by Modg, Mods the categories of
right {2-modules and right A-modules respectively. The natural inclusion ¢ : A —
induces an eztension of scalars functor

1 : Mody — Modg ; Z*(M) = M ®40.

There is a corresponding restriction of scalars functor * : Modg — Mody. By
a lattice we shall mean a 2-module M for which the A-module i*(M) is finitely
generated and projective. For such lattices we have the following adjointness relations
([5], Chapters 4 and 5). The first of these is universal, namely:

Extf (i, (N), M) = Extf(N,i*(M)).

As @ is finite, we also have the Eckmann-Shapiro isomorphisms

Hom(i* (M), N) = Homgq(M,i.(N))
Exth (i*(M),N) = Extb(M,i(N))

Observe that i,(A) = Q. When M is a Q-lattice then Exth (M, Q) = Ext® (i*(M), A).
However, as i*(M) is projective over R then Ext"(i*(M), A) = 0; hence:

(1.1) If M is a Q-lattice then Extf(M,Q) = 0 forall k> 1.

If X is a Q-lattice X we denote by X* = Homg(X,(2) the conjugate dual of X on
which @ acts via (a-g)(z) = a(x-g~!). Then X* is also a Q-lattice. We note that
Q) lattices are reflexive; that is: X°** = X.

If f,g: M — N are morphisms in Modg we write ‘f ~ ¢’ when f — g can be
written as a composition f —g¢g = £on via a projective module P thus:

=g

U\P/f

Then ‘~’ is an equivalence relation compatible with composition; that is given (2-
homomorphisms f, f': My — My, g,q9' : My — M, we see that:

f~[ and grg = gofrgof.
The derived module category Der(S2) is quotient category of Modg given by
Hompey o) (M,N) = Homg (M, N)/(M, N)

M N

(M, N) = { feHomog(M,N): f~0}

As (M, N) is an A submodule of Homg(M, N) then Hompe, (M, N) has the natu-
ral structure of an A-module. We distinguish notationally between isomorphism in
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Modgq, written as ‘=g’ and isomorphism in Der(£2), written as ‘ =p,,’. For finitely
generated Q-modules the relationship between the two notions is ([5] p. 120) :

DZ=py D <— DoP =g D&P

for some finitely generated projective 2-modules P, P’. Given a Q-lattice M we
consider exact sequences in Modg thus

0=DS5PEB M0

where P is finitely generated projective. As  is Noetherian then D is also finitely

generated. Given another such exact sequence 0 — D’ NP B M 0 it follows
from Schanuel’s Lemma that D& P' =Zq D’'@® P so that D Zp.. D’. We denote by
Dy (M) the isomorphism class in Der({2) of any module D which occurs in an exact
sequence of the above form. We may regard D;(M) as the first derivative of M.
The correspondence M +— D;(M) can be regarded as a functor as follows: given any
such exact sequence and a (2-homomorphism f : M — M the universal property of
projective modules allows us to construct a commutative diagram

0 - D &% P X M S 0
T Lf

)

0o - D % P 5 M = o

Moreover if f': M — M is another morphism in Modg then :

(1.2) frf = fo=f.
Given f € Endg(M) we denote by p(f) = [f-] the class of f_ in Der(2). By
(1.2), the correspondence [f] — p(f) = [f-] determines a ring hommoorphism

p : Endpe:(M) — Endpe:(Dy(M)). When Ext'(M,Q) = 0 then (cf [5], p.133) the
conclusion of (1.2) is strengthed to:

(1.3) frf = f[f.=f.
With our underlying assumption that M is a (2-lattice then
(1.4) p: Endpe:(M) — Endpe(Di(M)) is a ring isomorphism.

Given an exact sequence £ = (0 — D BN N Vg 0) and a ©-homomorphism
a: D — N we construct the pushout diagram

< 0o D &% P A M S0
(1.5) ly = la It 11d
(&) 0 - N & im(ai) 5 M — 0



Then o, () = (0 — N 5 tm(a,i) & M — 0) defines an extension class in
—

Exto,(M, N). When P is projective the correspondence a ++ [a.(£)] defines a
mapping § : Hompe (D, N) — Extg,(M, N). It follows from (1.1) that :

(1.6) § : Hompe: (D1 (M), N) — Ext},(M,N) 1is an isomorphism.

The isomorphism of (1.6) is a corepresentation formula (cf [5], pp.109-114). Taking
N = D € Dy(M) in (1.5), the resulting pushout extension has the following
property which generalizes the recognition criterion for projective modules originally
given by Swan ([10], Remark on p.279).

(1.7) li_f>n(oz7z') is projective <= a € Autpe(o)(D).

(For a proof of (1.7) see [5], Theorem 5.41, p.115).

Given the exact sequence &£ for any (2-module N we have exact sequences for k > 1.
Extk (P, N) 5 Extf (D, (M), N) = ExtiH (M, N) 2 Extit (P, N).

As P is projective then Extf (P, N) = Exttt'(P,N) = 0 and we obtain the
usual dimension shifting isomorphisms

(1.8) Extg™ (M, N) = Exts(Dy(M),N).

We may regard the corepresentation formula (1.6) as the degenerate case of (1.8)
corresponding to the case &k = 0. In particular, taking N = D;(M) in (1.6)
we obtain a natural isomorphism § : Endpe (D1 (M)) — Exty,(M, D;(M))  which,
combined with (1.4) gives

(1.9) = pltod ' :Exty(M,Di(M)) — Endpe(M) is an isomorphism.

We conclude this section by computing Endpe(A). As projective modules are
direct summands of free modules it is enough to consider homomorphisms f: A — A
which factor through Q™. Let € : Q — A be the augmentation homomorphism,
e(z") = 1. We note that Homg(Q, A) = A generated by the augmentation
homomorphism €. Thus if ¢ : Q™ — A is Q linear then & = (£1¢, - - -, &ue) for some

(€1,---,6,) € A, Let € : A — Q denote the Q-dual of ¢; then e*(1) = Zg.

ged
Then Homg(A,Q) = A generated by ¢*. Hence if 7 : A — Q™ is Q linear then
n = (i, -, m)te* for some (n1,---,n,) € A™. If f: A — A admits a factorization
f = &on through the free module Q™ thus f(1) = (3.1_, &m.)eoe®(1). However
coe*(l) = |®| so that

(1.10) Endpe(A) = A/|P|.
From (1.10) and (1.4) it follows that

(1.11) Endpe(I°) = A/|D).



§2: Quasi-augmentations and generalized Swan modules:
Continuing with the notation of §1, the Eckmann-Shapiro Lemma implies that:

(2.1) If X is a Q-lattice then Ext5(X,Q) = 0 forall k > 1.

We have an augmentation homomorphism € :  — A given by €(g) = 1 for all
g € ®. We denote by £ the augmentation exact sequence

E=0—=1505A4-0)

where I = Ker(e) and 7 is the inclusion. We generalize this as follows; an exact

sequence S = (0 — S_ BNYOREA S; — 0) of Q-lattices is called a quasi-augmentation
sequence when S, S_ satisfy the condition  Homg(S_,S;) = 0. In the above
sequence &£ one sees easily that Homgq(A,I) = 0; hence:

(2.2) £ is a quasi-augmentation sequence.

Now fix a quasi-augmentation S = (0 — S_ Laoh S, — 0). If k is a positive
integer we denote by S(k) the class of extensions of the form

X = (0— 8% 2, x 2, gk, )

The module X defined by such an extension is called a generalized Swan module of
rank k. There are a number of equivalence relations on S(k) to be considered:

Isomorphism : We write X = ) when there is a commutative diagram

0—- S - x = s S0
LI L fo Ay

0—» s - v = S(ﬁ) -0

in Modg in which f_ and f, are isomorphisms. We note that generalized Swan
modules are rigid in the sense that the condition Homg(S_,S5;) = 0 ensures that
the defining exact sequence X is essentially unique (cf [5]. p.231); thus if Y is also a
generalized Swan module defined by the exact sequence ) then

X 2Y «— X = )

There is a more refined relation on S(k), namely:

Congruence : We write X = ) when there is a commutative diagram of )-
homomorphisms

0—» s 5 X = Sff) — 0
11d lv J1d
0—» s 5 v = Sff) — 0.
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In both relations the middle mapping X — Y is an 1somorphlsm via the Five Lemma.
Up to congruence such exact sequences are classified by Ext! (S} (k ), S(_k)). To allow for
the coarser classification of isomorphism we consider the natural two-sided action of

Auto(S™) x Autg(SH) on Ext!(s?, 5™

Autg(S™) x Ext' (5%, %)) x Autg(SP) = Ext'(s™, ™)

(o, &, ) = af(X)

As is well known (cf [6] p.67) «@.fB*(X) is congruent to [*a,(X). We have the
following Classification Theorem:

Theorem 2.3 : There is a 1 — 1 correspondence

Isomorphism classes of generalized Swan
modules of rank £ relative to S

} s Autg(SNExt' (5%, 50/ Autg (5.

Intermediate between isomorphism and congruence we have:

Isomorphism over S(,k): We write X g &£ Y when there is a commutative
diagram of (2-homomorphisms

0— S(_k) - X = S(f) — 0
11d 1 fo iy

0= S 5 v o S(f) — 0
in which f, is an isomorphism. We note that

4

(2.4) The equivalence classes under 14 =
with Ext'(S%, $%))/Aut(SP)

Y

are in 1-1 correspondence

Isomorphism over Ssrk): We write X =43 Y when there is a commutative
diagram of (2-homomorphisms

0— S(_k) - X = Sff) —0
1f- 1 fo 11d

0— S(_k) - Y = Sff) —0

in which f_ is an isomorphism. Likewise

e )

(2.5) The equivalence classes under ¢ =y’ are in 1-1 correspondence
with Aut(SW)\Ext' (5%, s™)

7



On dualising the augmentation sequence £ we obtain the exact sequence

0— A* S 00 51— Extl(4,Q).
As Extg,(A,Q) = 0 then the exact sequence £* = (0 — A* St 0) is
exact. It is straightforward to see that A®* = A and ® = ) so we may write

(2.6) = (05AS5 0 50

where €*: A — Q is given by €*(1) = Zg. Again Extg,(I°,9) = 0 and by
ged
duality Homg(/®, A) = Homg(A,I) = 0. Hence we see also that:

(2.7) &® is a quasi-augmentation sequence.

Whilst it is possible to deal directly with £ the fact that I® has a natural ring structure
usually makes it easier to work with the dual sequence £° as in the dual augmentation

sequence 0 — A 5 Q55 I* = 0 we have [* = Q/(X;). Hence I* has a natural ring
structure for which ¢* : @ — I* is a ring homomorphism.

83: Surjectivity when k = 1:
For any commutative ring B there is an obvious inclusion B C Py ,,,(B) which in turn
induces an inclusion of unit groups B* C Py ,,(B)*. It is straightforward to see that:

(3.1) If B isa commutative integral domain then B ,,(B)* = B*.
However, P, ,(A) = Pyn(Pno(A)). If Ais an integral domain so is P, o(A); hence :

(3.2) If Aisacommutative integral domain then P, ,,(A)* = P,o(A4)*.

Let T" = Uy X ... X Cy denote the n-fold product of the infinite cyclic group Cu

g

and let A[T] denote its group algebra over the commutative ring A. By taking
t1,...,t, to be the canonical generators of T we identify P,o(A) = A[T]. If
a = (ai,...,a,) € Z™ we define t* = ... t% € T. It follows from a theorem
of Higman [4] that :

(3.3) If A is an integral domain then A[T]* = {u-t*|u € A* ,a € ZM}.
Combining (3.2) and (3.3) with the identification P, o(A) = A[T] we see that:
(3.4) If A is an integral domain then P, ,,(A)* = {u-t*|u € A* ,a € ZM}.

As is well known (cf. [2], p.87), the induced map on units v : R* — F, is surjective.
When p = 2 then Ry = R. When p is odd, then (cf. [14], Lemma 8.1, p.144),
R* = R x(¢). As v({) = 1 then in either case:

(3.5) The induced homomorphism of unit groups v : Ry — I is surjective.



Now let w € P,,.(F,)*. As F, is an integral domain we may write w = u - t®

where w € F and a € Z™. By (3.5), choose U € R} such that v(@) = u. Then
u-t* € Pym(Ro)* and v(u-t*) = u-t* = w. Hence v induces a surjection of
unit groups v : P, ,,,(Ro)* — Pom(F,)*. Otherwise expressed:

(3.6) Vi : GL1(Pym(Ro)) = GL1 (P, (Fp)) s surjective.

84 : Surjectivity when k£ > 3:
In general, for any commutative ring A, GLx(A) is a semidirect product

(4.1) GLL(A) = SLi(A) x A*
where A* is imbedded in GLj(A) via the diagonal matrices

u
U —r

1

and SLi(A) = {X € GLi(A) | det(X) = 1}. Let €(i,7) € Mj(A) denote the basic
matrix €(i,5),s = 0;,0;s We denote by Ey(A) (cf. [7]) the subgroup of GLj(A)
generated by the elementary transvections E(i, j; \) = Ir + Ae(i,j) where i # j and
A € A, together with the diagonal matrices A(i, —1) = I, — 2¢(i,4) If (4, 5) denotes
the transposition which swaps ¢ and j then the correponding permutation matrix
can be expressed as P(i,j) = A(j,—1)E(i,j;1)E(j,4; —1)E(i, j; 1). It follows that
Ei(A) also contains the group of k x k& permutation matrices. Moreover

(4.2) Ep(A) C SLip(A) x {£1}.
A theorem Suslin [9] shows that:
(4.3) For any field F, Ey(P,n(F)) = SLi(P,nm(F)) x {£1} when k> 3.

If ¢ :B — A is a surjective ring homomorphism then the induced homomorphism
Y Ex(B) — ER(A) is surjective for all k > 2. As v : P, (Ro)) = Pom(F,) is
surjective and F), is a field then, by (4.3):

(4.4) v Ey(Pym(Ro)) = SLi(Pym(Fy)) x {£1} is surjective for £ > 3.
It now follows from (3.6) and (4.1) that:
(4.5) ;  ve: GLE(Pym(Ro)) = GLg(Pym(F,)) is surjective for k > 3.
85 : The rings (2 and (2:
Suppose given a fibre square of ring homomorphisms

T™T—

A — A_



which satisfies Milnor’s condition [8] that at least one of ¢_ , ¢, is surjective, and
let aw € GLi(Ap). We denote by L(«) the A-module X obtained as a fibre product

AP — Al

by glueing A(f) and A" via a. Such a module is said to be locally free of rank k with
respect to JF; when F is clear from context we omit ‘with respect to F’. Clearly any
such locally free module is projective over A. Moreover, we note that

(5.1) L£(Id;) = A®
Also, if & € GL(Ag) then:
(5.2) La®ld,) = Lla)d A

Let f : Z — F,, be the canonical homomorphism and denote by €2y the fibre product

QO — R(]
(5.3) 1™ lv
:
| Z — F,

Noting that Ry®zR = R x...x R it follows that
————

(54) QQ@ZR 2 Rx...xR.

In particular, 2y satisfies the Eichler condition (cf. [11]) from which we see that:

(5.5) Every stably free Qg-module is free.

If Ais a commutative ring we denote its Krull dimension by Kdim(A); then :

Proposition 5.6 : Kdim(€y) = 1.

Proof: For adirect product we have Kdim(A4;xAy) = max{Kdim(A4,), Kdim(A4,)}.
If A is a Dedekind domain then Kdim(A) = 1. Consequently Kdim(Z x Ry) = 1.
As Q is a subring of Z x Ry then Kdim(€y) < 1. However, )y has a subring
isomorphic to Z so that 1 < Kdim(£2y), whence the conclusion. O

Define Q = P, (). Applying P, ,,(—) to (5.3) we obtain another fibre square
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( T

Q — P,.m(Ro)

(5.7) o m Ly

| Pon(Z) 5 Pon(F,).

Note that (5.7) is a Milnor square as both fj and v are surjective. Let o € G Ly (P (Fp))
and denote by L(«) the locally free module of rank k:

m—

L(a) —  Pym(Ro)®

(5.8) g Lv

Pom(Z)® L P (F)®)

We showed in (4.5) that v, : GLy(P,m(Ro)) = GLi(P,m(F,)) is surjective for
k > 3. It now follows from Milnor’s classification that:

(5.9) L) = QW for k> 3.

Now consider the case k = 2; if @« € GLy(P,,,(F,)) and Id € GLy(P,,,(F,)) then
a®ld € GL3(P,,(F,)) and so, by (5.1), (5.2) and (5.9):

(5.10) L@)® Q =2 QB  if a € GLy(P,n(F,)).

86 : Surjectivity when £ =2 :
We first improve on (5.10) as follows:
Theorem 6.1 : If & € GLy(P,,,(F,)) then L(a) = QO

Proof : £(a) is a projective module of rank 2 over Q = P, ,,(€). In particular,
rk(L()) > Kdim(€). Moreover, by (5.10), [£(a)] = 0 € K(€). It now follows
from a theorem of Swan [13] that £(«) is induced from Qp; that is, there exists a
projective module @ over €y such that L(a) = i.(Q) where i: Qy — Q is the
canonical inclusion. Let 7 : 2 — €y be the ring homomorphism uniquely specified
by the assignments r(¢;) = 1 and r(z;) = 0. Then roi = Idg,. In particular,
r«() = Qp and r.(L(a)) = Q. Thus applying r. to (5.10) we see that

Q@9 =~ o
It follows from (5.5) that @ = QéQ) and hence L(a) = i*(Q((]Q)) = Q@) O
We arrive at statement (II) of the Introduction:

Theorem 6.2 : v, : GLy(P,m(Ry)) = GLo( Py m(F,)) is surjective.

Proof : Let o € GLy(P,n(F,)). We claim that o € Im(v,). Thus let L(«) be the
locally free A-module obtained by glueing via «

11



Pom(2)® L5 P (F)®.

By (6.1), £(a) = Q® . However, Q® is the locally free module of rank 2 obtained
by glueing via Iy € GLy( P, 1, (F,)) thus:

Qe —  Pym(Ro)®
L(L) = 1 lv

Pom(Z)® 5 P (F)®

By Milnor’s classification [8] there exist 5 € GLy(P, (7)) and v € GLay( Py m(Ro))
such that o = 8.(8) - L - vi(y) = 0.(0) - vi(y). However, if j : Z — Ry is the
canonical inclusion then the following diagram commutes

J

7 - Ry
ﬂ\ /”
IFP

and induces a commutative diagram of group homomorphisms

G La(Pyn(Z))———— GLa(Pom(Ro))

N
GLQ(Pn,m(Fp))
In particular, 0,.(8) = v.(J«(8)), so a = v(4.(8) - v) € Im(v,) as claimed. O

Moreover, as the following diagram commutes

GLQ(Pn,m(RO)) = g GLQ(Pn,m(R))




we obtain statement (III) of the Introduction, namely:

(6.3) vi:GLE(Pym(R)) — GLi(P,m(F,)) is surjective for all £ > 1 and all n,m.

87 : Locally free modules and stably free modules :

For the remainder of this paper, fixing a prime p, we apply the above considerations
when ® = C, = (v | 2P = 1) is the cyclic group of prime order p. As in (5.7) we
have a Milnor fibre square

4

Pn,m(Z[Cp]) . Pmm(Z(Cp))
(S) € v
Pmm(Z) . Pmm(Fp)

where Q = P, ,,(Z[C,]). We say the Q-module X is locally free of rank k with respect
to & when X is obtained as a fibre product

X Pu@G)®
X(a) = 1 Lo

Pom(Z)® 5 Py(F,)®

by glueing via an element o« € GLy (P, (F,))). Clearly any such locally free module
is projective over €). Moreover, with respect to the fibre square &, a locally free
module X can equally be described as a dual projective Swan module; that is there
is a bijective correspondence of isomorphism classes :

(7.1) locally free projective modules . dual projective Swan
) of rank k with respect to & modules of rank k

However, we showed in (6.3) above that:

(7.2)  @u: GLE(Pyn(Z((p))) = GL(Pym(F,)) is surjective for all k£ > 1.
Consequently, by Milnor’s classification,

(7.3) If X is a locally free projective module with respect to & then X is free.
Hence from (7.1) we see that:

(7.4) If X is a dual projective Swan module then X is free.

The statement (I) of the Introduction now follows from (7.4) on dualization.
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