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Proietti et al. [1] present numerical studies to delineate nearly every aspect of action; namely, its 

execution, observation, planning, understanding and imitation. This tour de force showcases every 

aspect of active inference and learning—and how these aspects fit together to reproduce the finer details 

of our enacted and embodied exchanges with the world (and others). Indeed, it was so comprehensive, 

I had to remind myself that all the phenomena demonstrated in [1] emerged from two simple 

imperatives: every representation is updated to minimise variational free energy—and every action is 

chosen to minimise expected free energy. In other words, every representation is updated to maximise 

the marginal likelihood of observations—and every action maximises expected information gain. With 

such simple rules, one might ask how the authors were able to explain diverse phenomena; ranging 

from action observation to imitation; from perceptual inference to learning; from saccadic eye 

movements to motor planning. Perhaps the simplest answer is that the art of applying active inference 

lies in specifying—or learning—the structure of the generative model apt for the explanatory targets at 

hand.  

In short, if one gets the generative model right, everything else should follow for free. Everything else, 

in this instance, encompasses a number of fundamental cognitive and learning processes that are central 

to action observation and understanding. Getting the generative model right is just identifying the right 

functional architecture—and ensuring that this architecture can be plausibly mapped to functional brain 

anatomy. With this in mind, this commentary foregrounds a few key themes in [1]. 

 

“Action understanding and execution rest on shared (ideomotor) codes across perception and action” 

[1] 
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The notion of “shared ideomotor codes” is foundational here. It speaks to a view of motor control that 

active inference inherits from ideomotor theory [2, 3]. In short, we do not issue motor commands to 

produce desired movements; rather, we predict the sensory (e.g., proprioceptive) consequences of a 

movement we have committed to—and let our reflexes realise those predictions. This realisation is, 

literally, unremarkable (i.e., not sensed or perceived), unless our predictions are somehow thwarted, 

and we register our surprise that our intentions have not been realised.  

Formally, under active inference, this emerges from the minimisation of variational free energy (i.e., 

proprioceptive prediction errors) by our embodied reflex arcs. In short, movement is all about realising 

predictions and plans under a suitable generative model. The generative (a.k.a., forward) model 

generates predictions of the consequences of action, such that one can read corollary discharge [4] as 

predictions of exteroceptive (e.g., visual) consequences of movement—a corollary to the accompanying 

predictions of proprioception engendering that movement. This brings us to the kernel of the work 

reported in [1]; namely action observation and imitation. 

 

“Hence, the functional role associated with the mirror neuron system is predictive action monitoring.” 

[1] 

If we have generative (a.k.a. world) models that predict the consequences of action in multiple 

(exteroceptive, interoceptive and proprioceptive) domains, then exteroceptive (e.g., visual) predictions 

can explain observed actions, irrespective of whether they are generated by oneself or another. This 

means that mirror neuron phenomena are a necessary and emergent property of the generative models 

apt for explaining the kinds of actions executed by conspecifics [5-7]. The original active inference 

simulations of this [8] distinguished action execution from action observation by suspending 

proprioceptive sensations (by attenuating the precision of sensory prediction errors). Sensory 

attenuation subsequently proved a straightforward and fecund device to model communication; in 

which talking and listening (i.e., acting and observing) was implemented by switching between various 

states of (proprioceptive) sensory attenuation, under a shared generative model [9]. Initially, I was 

surprised that Pezzulo et al. did not pursue this approach. I then realised they were dealing with a more 

expressive generative model that entailed two kinds of action; namely, saccadic eye movements and 

limb movements, respectively. This was an ambitious move that enabled them to make a number of 

fundamental points about the structure of the requisite generative models and implicit functional 

anatomy. 

 

“Novelty entails a divergence from memory, while surprise entails a divergence from expectations.” [1] 

The first point rests upon their careful treatment of the imperatives for action. Under active inference, 

the only imperative is to select actions that minimise expected free energy. This can be read in many 

ways. A particular decomposition of expected free energy into risk and ambiguity is provided in [1]. By 

rearranging the terms, one can also express expected free energy in terms of expected information gain 

and expected value, where value is scored by the log probability of preferred outcomes [10].  

In this example, there were no explicit preferences, which meant that all behaviour was driven by the 

epistemic affordances implicit in the expected information gain (a.k.a., intrinsic value or motivation). 

This underwrites curiosity and intrinsic motivation in neurorobotics [11-14], and can itself be read from 

a number of perspectives. This follows from the fact that the expected information gain pertains to any 

random variable in the generative model; including states and parameters. The epistemic affordance 

due to expected information gain about latent states is generally referred to as salience. Similarly, the 

expected information gain associated with model parameters is referred to as novelty [15]. Interestingly, 

the expected information gain associated with parameters is the mutual information between latent 
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causes and observable consequences. This is closely related to many objective functions in 

computational neuroscience and machine learning [16-18].  

In the present setting, there is interesting dissociation between the two kinds of epistemic affordances 

(relating to states and parameters). This follows from considering eye and limb movements within the 

same generative model. The epistemic affordances for eye movements can be understood in terms of 

responding to salient cues that resolve uncertainty about states of affairs generating observations. 

Conversely, limb movements are driven by novelty to reduce uncertainty about the contingencies 

encoded by model parameters (here Dirichlet counts in various likelihood mappings within the model). 

This computational distinction is carefully unpacked in [1] in relation to the putative functional 

anatomy; asking where the requisite salience and novelty computations could be implemented in the 

brain. I thought that their treatment was a masterclass in trying to map the computational anatomy 

implied by a first principles account of inference and learning to the functional anatomy of the brain.  

On my reading, the computation of salience is much easier to speculate about than the computation of 

novelty. For example, it is straightforward to imagine that the deep layers of the superior colliculus 

encode the expected information gain (a.k.a., expected Bayesian surprise) associated with the targets of 

putative saccades [19]. One wonders, given the review [1], whether a more anterior subcortical anatomy 

involving the cortico–basal ganglia–thalamic system might play a similar role in computing novelty. 

One knows—from the functional form of the requisite belief updates—that novelty is a function of 

particular likelihood mappings, which are often read in terms of extrinsic (between region) connections 

in the brain [20]. It would be interesting to pursue the analysis in [1] to work out the anatomical 

constraints on the computational of novelty that underwrites action selection. 

 

“While pursuing salience is useful to reduce the uncertainty about hidden states (or ambiguity), 

pursuing novelty is useful to reduce uncertainty about model parameters (or ignorance).” [1] 

There are many other issues it would be interesting to discuss. These include the separation of temporal 

scales that defines the hierarchical level in these kinds of generative models. One interesting twist—

that the current model brings to the table—is the break from a linear hierarchy to produce a heterarchy 

that can integrate observation (with active vision) and motor execution; where both are informed by—

and inform—a slower level of understanding, in terms of motor narratives and implicit intentions. 

It may be useful to close with a generic point implicit in the above quote; namely, that reducing 

uncertainty about hidden states is necessary to reduce uncertainty about model parameters. This speaks 

to a general principle in active inference: active inference commits to a variational inversion of 

generative models that is operationally defined in terms of a mean field approximation or factorisation 

[21]. Intuitively, the generative model ‘carves nature at its joints’ to produce factors or modules that are 

independent, when conditioned upon higher levels of the model. In a similar way, there is an adiabatic 

factorisation, in which random variables are factorised into states and parameters; depending upon 

whether they change quickly or slowly. The point here is that updating Bayesian beliefs about states 

depends upon beliefs about parameters and updating beliefs about parameters depends on beliefs about 

states. In short, everything is contextualised by everything else.  

Practically, this implies that the right kind of computational architecture has to include probabilistic 

representations of model parameters (i.e., connection strengths) for optimal learning. This begs the 

question of how this is done in the brain; in other words, how is the uncertainty about a particular 

synaptic connection encoded in the slow processes that underwrite experience-dependent plasticity? 
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