npj ‘ digital medicine

ARTICLE

www.nature.com/npjdigitalmed

W) Check for updates

Identifying and characterising sources of variability in digital
outcome measures in Parkinson’s disease

George Roussos

'™ Teresa Ruiz Herrero?, Derek L. Hill @?, Ariel V. Dowling @, Martijn L. T. M. Maller®, Luc J. W. Evers®,

Jackson Burton’, Adrian Derungs®, Katherine Fisher’, Krishna Praneeth Kilambi Y, Nitin Mehrotra®, Roopal Bhatnagar®, Sakshi Sardar®,

Diane Stephenson’, Jamie L. Adams'?, E. Ray Dorsey ®'® and Josh Cosman

11

Smartphones and wearables are widely recognised as the foundation for novel Digital Health Technologies (DHTs) for the clinical
assessment of Parkinson’s disease. Yet, only limited progress has been made towards their regulatory acceptability as effective drug
development tools. A key barrier in achieving this goal relates to the influence of a wide range of sources of variability (SoVs)
introduced by measurement processes incorporating DHTSs, on their ability to detect relevant changes to PD. This paper introduces
a conceptual framework to assist clinical research teams investigating a specific Concept of Interest within a particular Context of
Use, to identify, characterise, and when possible, mitigate the influence of SoVs. We illustrate how this conceptual framework can
be applied in practice through specific examples, including two data-driven case studies.
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INTRODUCTION

Intensified by the implications of the COVID-19 era’, Digital Health
Technologies (DHT) are widely recognised as a promising
complementary element in the clinical assessment of Parkinson’s
disease (PD). A key enabler is the wider availability of smartphones
and wearables which offer the opportunity to enable monitoring
of disease progression in daily life?™. More frequent assessments
can provide better insight into episodic disease features such as
motor fluctuations, freezing of gait, and falls, while avoiding
observation bias®. Yet, to operationalize DHTs as drug develop-
ment tools, they must meet the key challenge of regulatory
acceptability, so that digital outcome measures can be established
as evidence for medical product development.

Yet, despite progress made toward regulatory maturity of DHTSs,
their use in clinical research is not yet fully accepted®. Common
challenges in the adoption of DHTs include small study samples,
samples that do not reflect accurately the characteristics of the
target population, lack of a normative data set, feature selection
bias, failure to replicate results due to differences in sensor
placement and calibration, and lack of transparency in the use of
analytical techniques’. When employed at home, DHTs enable
higher-frequency data collection compared to traditional clinical
assessments. However, this setting can also introduce significantly
greater variability between subjects, for example due to differ-
ences in apartment size, and within subjects, for example due to
differences in room temperature and the presence of family
members. Furthermore, studies incorporating machine learning
(ML) and artificial intelligence (Al) based approaches in particular,
are at high risk of providing overly optimistic results due to feature
selection bias when a large number of post hoc candidate features
are considered in a relatively limited sample®. This is especially
relevant when cross validation methods are used to assess
performance on a single modestly-sized dataset.

In this context, a key consideration is how to identify,
characterise, and when possible, mitigate the influence of key
sources of variability (SoVs) introduced by the measurement
process and to understand their influence against changes to
symptom severity and disease progression. This challenge is
further intensified by the heterogeneous nature of PD expression
leading to high intra- and inter-study variability.® For example, to
address a specific hypothesis, selection of study subjects is often
biased (e.g., early disease only) and therefore typical variability
associated with disease heterogeneity is reduced within a specific
study. Ideally, to address this issue multiple data sources would be
needed. However, the availability of data sets using DHTs is
limited and analyses on limited data can artificially increase the
degree of explained variability, leading to bias in insights and
predictions. Variability introduced by the measurement process,
such as differences in the placement of a wearable, lack of control
of the home environment, device software upgrades in the course
of a study, or the accuracy of the specific model of sensor used,
must be set into the context of normal variability in the subject
and how this is impacted by PD.

This paper provides a conceptual framework to assist clinical
research teams to identify, characterise and mitigate the influence
of key SoVs introduced by the measurement process and contrast
their effect against changes due to PD severity and progression.
We illustrate how this conceptual framework can be applied in
practice through multiple examples including two case studies
developed using pilot data contributed by the co-authors.

RESULTS

The primary focus in the design of a clinical investigation is the
clinical event or measurable characteristic of PD that is to be
assessed and the proposed trial population'®. For example, the
clinical research team would typically identify appropriate
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outcome assessments, preferably a Performance Outcome (PerfO)
when DHTs are considered, or digital biomarkers that are
meaningful in the specific Context of Use. In this regard, Taylor,
et al.'® outlined the importance of distinguishing between data-
and patient-centric approaches: While either approach could
influence the assessment of motor experiences in PD due to a
variety of SoVs, appropriate mitigation strategies such as test-
retest studies are recommended. Next, alternative DHTs should be
assessed in terms of design and operation and their suitability
considering the education, language, age and technical aptitude
of the population targeted. The goal is to establish that the
particular device choice is fit-for-purpose for the specific clinical
investigation including its physical characteristics; to validate its
outputs including data format and accuracy; and to validate the
selected digital outcome measure and the method of its
calculation. Last but not least, the clinical research team must
provide objective evidence that the selected technology and
associated measurement process accurately assesses the clinical
event or characteristic in the proposed participant population. To
this end, investigation of SoVs should be considered a core
ingredient in developing comprehensive and convincing evidence
of validation, ideally through the quantitative assessment of their
influence against performance changes due to Parkinson'’s.

Identifying and characterising SoVs in the DHT measurement
processes

The design of the clinical protocol and of the measurement
process may affect SoVs differentially: for example, free-living vs.
clinical setting assessments or the choice between active or
passive tests. Each alternative may introduce different trade-offs
that need to be considered separately. While variability is likely to
be greater in a free-living environment, this setting may be
preferable to provide greater insight into activities of daily living,
therefore better represent the patient’s individual capacity, and be
less biased as a comparison against a clinical scale. Indeed, a key
distinction among DHTSs for the assessment of PD is between: (i)
active assessments, in which the subject is prompted to perform a
particular set of movements, activities, or tasks at a particular time
and for a specific duration; and, (ii) passive assessments, where
data is sampled continuously by a recording device worn on the
body without prompting or other types of direct interaction with
the subject. The most common approach in conducting active
assessments today involves the use of a smartphone app such as
mPower, HopkinsPD, OPDC, Roche, and cloudUPDRS®>*'!, These
apps typically guide the subject through a series of tasks that are
often associated with specific sub-items of Part Il motor
assessments of the MDS-UPDRS, a rating scale often used clinically
to assess for severity of PD features'? (for examples of typical
movements during active testing «cf. video at http://
www.updrs.net/help/). In any of these studies, the app uses one

or more of the smartphone sensors such as accelerometer,
gyroscope, microphone, magnetometer, and touch screen, to
record measurements associated with the specific task. Apps
typically also collect contextual information such as the time of
medication intake, self-assessments of well-being, or answers to
clinical questionnaires such as the PDQ-8, and may incorporate
cognitive assessment tasks such as the Stroop test'3. In contrast,
passive monitoring is used to assess patients based on activities of
daily living. Consequently, passive monitoring approaches induce
less patient burden compared to active monitoring tasks and
support continuous monitoring over days. Moreover, continuous
passive monitoring can be used to assess response fluctuations of
dopaminergic medication as well as the detection of episodic
features, e.g., freezing of gait and falls. Finally, passive monitoring
approaches typically fix the placement and orientation of the
wearable device, and thus multiple devices are required to assess
left and right and upper and lower body movements.

Precept 1: Establish SoVs in active vs passive measurement
processes. Measurement processes for active and passive
measurements introduce different SoVs. Active tests require
the subject to actively engage with a device following a specific
schedule. Measurements are influenced by clinical protocol-
dependent variations in the number, frequency, and the exact
timing of the active tasks performed by the study subjects. Due
to the prescribed nature of these measurements, missing data
may also occur, which is less likely in a passive measurement
process.

In contrast, due to the lack of environmental context in
passive testing, it is often challenging to accurately identify the
specific task or activity undertaken by the subject during data
recording. For example, a type of movement such as riding a
bicycle, may not always be adequately recognized. Because it is
not always possible to establish ground truth through
observation, the practical alternative is often to infer context
using machine learning techniques'*. A common approach is to
employ pre-trained models to classify sensor data into activities
such as sitting, walking, cooking and so forth. However, such
computational methodologies are still in relatively early stages
of development, especially at population level, and can
accurately account only for a small proportion of all daily
activity. Furthermore, manual annotation of activities is still
required for validation of algorithm performance. Al and ML
algorithms trained to detect the types of activity of clinical
interest may then perform poorly when passively collected data
contains many types of activities that were not in the original
training and validation data. The largest to date published
longitudinal study of daily activity achieved less than 30%
accuracy across subjects with the best individual accuracy of
less than 65%'>. The key characteristics of active and passive
approaches are summarized in Table 1.

Table 1. Comparison between active vs. passive digital assessments.

Active assessments

Passive assessments

Proactive interaction with associated patient burden

Specific duration of observation

Relatively small volume of data

Known context of data collection constrained to specific movements

Can be combined with clinical assessments
Effort-intensive to conduct longitudinally
Episodic assessment of specific tasks

SoVs can be more easily recognized and examined systematically.
Controlling of SoVs is feasible (see also precept 2).

Relatively unobtrusive operation with low patient burden
Continuous measurement
Relatively large volume of data

Unknown context of data collection affected by unknown external
factors

Predominately unsupervised operation in a non-clinical setting
Longitudinal observation by default
Real-life functioning of subjects

SoVs are more difficult to identify and typically are more difficult to
replicate. Controlling of SoVs is less feasible.
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Table 2. Mapping SoVs across different measurement process phases.

Data acquisition  Device/sensor configuration
Assessment tasks and duration
Sensor positioning and orientation
Environment

Schedule of assessment

Precision and frequency

Meta-data: device specification, data acquisition
setup, file naming, hardware, and software
versioning

Data Source data file transmission

management Data receipt notification

Data quality control (missing data, malfunctioning
device or sensor, erroneous sampling, erroneous
transmission, corrupted storage, timing errors)
Adverse events assessment

Notification of data quality concerns and
troubleshooting

Data analysis Signal processing method used for feature

extraction

Signal processing architecture: edge, cloud, or
hierarchical/hybrid

Documentation of algorithms and implementation

The detail of these phases is device and application-specific, for example in
some applications, significant data analysis is done on the wearable device
itself.

Precept 2: Identify SoVs associated with acquisition, management,
and analysis within the measurement process. The measurement
process for both active and passive approaches can be separated
into three distinct stages and key SoVs relevant to each stage can
be identified (cf. Table 2). Detailed descriptions of each factor
included in the three distinct phases, namely data acquisition,
management, and analysis, are included in a companion paper
derived by the work of the Critical Path for Parkinson’s Consortium
3DT17Working Group'® on metadata standards and reported in
ref. '/,

Precept 3: Characterise low-, medium- and high-impact SoVs. The
third element of the conceptual framework characterises SoVs as
low, medium, and high impact relative to the risk they present in
terms of their potential to cause harm on the ability of digital
outcomes to measure clinically relevant aspects of PD if they are
not dealt with appropriately. Low-impact SoVs are those that are
well-understood and mitigation strategies are readily available,
often already incorporated in devices or as a standard feature of
data processing software. Medium impact SoVs are well under-
stood and effective means for their control and mitigation are
widely available and in common use, for example, through the
application of appropriate algorithms or user experience design
approaches. Compared to low-impact SoVs, they require more
attention, and their mitigation should be specifically addressed in
study design but appropriate mitigation measures but do not
require extensive further investigation. Finally, high impact SoVs
are those that present a significant risk to influence the
performance of the digital outcome measure of interest, their
characteristics are not adequately documented and quantified,
thus mitigation approaches are not readily available or require
further validation. Note that the concept of impact in this context
incorporates the risk to reduce the fidelity of the measure as well
as the maturity and robustness of mitigation methods. However, it
excludes the degree of complexity of the mitigation technique
applied; for example, low-impact SoVs may still require the
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implementation of advanced computational methods. Moreover,
as discussed later in this paper, note that the precise risk of harm

by a particular SoV is only possible to fully quantify within a
specific Context of Use.

Low-impact SoVs

Following the above categorisation, thermal effects introducing
variability in accelerometer measurements would be classified as a
low-impact SoV due to the fact that their effect is well-
understood'® and, indeed, the vast majority of good quality
commercial devices incorporate a temperature sensor which is
used to adjust the data output accordingly. Gravity is also
considered a low-impact SoV for acceleration measurements
when the sensor orientation can change. In this case, the effect of
gravitation on magnitude estimation can be removed by the
application of a standard high-pass filter on the 3-axis signal.
When movement directionality along each axis is required, an
algorithm such as an L;-trend filter can be used'®.

A further example of low-impact SoV is the audio capture
quality of current smartphones: Grillo et al.?® tested a variety of
devices and found negligible variability in the calculation of
common acoustic voice measures using a commercial software
tool including many of those widely used in PD?'. However, they
discovered considerable overall differences when alternative
algorithms were used to calculate the same measure, suggesting
that software artifacts present a higher impact SoV. In this case,
algorithm implementation would be considered a medium-impact
SoV as it was still possible to mitigate software variability by
adjusting for the observed trend across calculated measures,
which followed similar patterns.

Medium impact SoVs

Any location of sensor placement, for example at the wrist, foot,
ankle, lower back, and chest, offers a distinct trade-off between
comfort and variability. For example, if the measurement process
requires the estimation of a walking parameter such as speed and
stride length, a cumbersome foot-mounted sensor will produce
the highest accuracy measurement with the least amount of
variability; a lower back or chest-mounted strap would result in
high to moderate accuracy and variability; and, a widely available
wrist sensor would produce the least accurate and most variable
information?223, Overall, variability increases as the distance
between sensor and body location of interest increases, which
implies that mitigation strategies should aim to minimise
separation between the two locations. For example, using a foot
rather than wrist sensor when a subject walks while holding a
phone, will clearly offer significantly greater accuracy in gait
parameter estimation. Nevertheless, practical sensor placement
may be influenced by accessibility, subject comfort, and even
cultural norms. When the preferred location is not available,
careful algorithm selection can help reduce the influence of this
SoV24,

Arguably, next to location the second most influential SoV is the
orientation of the sensor on the body. Accelerometers in particular
are extremely sensitive to changes in orientation: For example, a
typical accelerometer with a range of +/— 8g and a 10-bit
analog-to-digital converter (ADC) will have a resolution of
approximately 1.4 degrees. A 10-degree body position change
will produce a bias of 0.06g change in acceleration. Large
orientation variations can be expected in practice, sensors are not
always precisely placed by the subject, or sensors can erroneously
be placed upside down, backward, or at an odd angle, resulting in
a large constant bias. While a constant bias can be estimated and
removed by a high-pass filter set at a very low frequency, for
example, 0.25 Hz, non-constant bias is much more challenging to
remove. Non-constant bias due to frequent orientation changes is
especially likely to occur when a sensor is attached over clothing

npj Digital Medicine (2022) 93
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Fig. 1

Angular Velocity Comparison. Top: Comparison of angular velocity calculations using APDM Opal (blue) and iPhone (orange) samples

with both devices placed at lumbar region. Bottom: Comparison of angular velocity calculated using Opal (blue) and Apple Watch (orange)

samples with both devices placed on the same wrist of the subject.

on a body part with high mobility such as the wrist, or a large
muscle group such as the quadriceps femoris, or when a sensor is
loosely affixed to the body. This can result in significant localized
movement and rotation of the sensor relative to the body during
data collection resulting in significant fluctuations in the signal
which can significantly lower the signal fidelity. Remediation of
this SoV is to ensure that the measurement process provides
specific guidance such as all sensors be fixed tightly on the body
underneath articles of clothing to minimize relative movement,
especially when placed on a hyper-mobile body part, such as
the wrist.

Further mitigation of orientation SoVs is possible through the use
of orientation-invariant algorithms?>. A common approach is to first
estimate the true sensor orientation on the body, and subsequently
calculate the rotational offset between the actual and the “ideal”
sensor orientation using standard mathematical transformations®®
and subsequently to employ orientation-invariant correction algo-
rithms. Alternatively, selecting orientation-agnostic features where
possible, such as those derived in the frequency domain, would
effectively eliminate variability from orientation. Further, it is
conceivable to investigate the influence of sensor placement and
orientation on sensor data, sensor data features, and digital
biomarkers using a novel biomechanical simulations method
introduced by Derungs and Amft?’.

High-impact SoVs

While low- and medium-impact SoVs have established mitigation
strategies, high-impact SoVs require careful consideration and
may require auxiliary exploratory studies to investigate and
quantify their influence and hence may require considerable
additional effort for the development of appropriate mitigation
measures.

Data-driven investigation of SoV impact: case studies

Although it is often possible to use published literature to assess
the impact of SoVs, certain settings require the clinical research
team to explore specific SoVs within a particular Context of Use
and with reference to specific outcome measures. In this Section,
we present two case studies that follow a data-driven approach to
investigate the potential impact of particular choices in the
measurement process. The work presented below is not intended
as a comprehensive investigation of the specific SoVs considered,
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but rather, as a way to illustrate a practical approach to assess
their impact at the pilot stage of clinical research. Our analysis is
focused on practical ways to identify relevant SoVs of concern
before committing to a clinical study protocol design. When
specific SoVs are identified as potentially high-impact a full follow-
up investigation would be required for example by modelling
their impact in terms of erroneous diagnosis.

Case study 1: Device type, number of sensors, and sampling
rate

Using data collected during exploratory in-clinic piloting of
WATCH-PD (cf. Methods section below and Adams et al.%, we
investigate variability across device types including a popular
consumer platform, and differences due to their placement,
sampling rate and sampling locations. To compare consumer-
(Apple Watch and iPhone) against research-grade (APMD Opal)
devices, we analysed data recorded during a one-minute-walk
task, where both devices were simultaneously employed (APMD
Opal sensors were placed under the Apple device). Figure 1 shows
angular velocity calculations obtained from gyroscope data from
several subjects, comparing Opal against Apple Watch and iPhone.
Opal data were recorded at 128 Hz, down-sampled and time-
shifted to align with Apple Watch measurements (bottom) and
separately with iPhone (top). Figure 1 suggests that both
consumer-grade devices reproduce high, low, and intermediate
frequencies at comparable quality to the Opal reference (with
correlation of 0.984 and 0.976 correspondingly).

Further, we compared gait features obtained from Opal
measurements using the Mobility Lab software provided by
APDM (cf. https://apdm.com/mobility/) now part of Clario,
against iPhone data processed using software developed in-
house (by co-author TRH). The latter, employs the El-Gohary
et al?° algorithm to identify gait bouts after turns, and
subsequently extract gait features using GaitPy*° following the
approach suggested by ref. 3", In-house developed software (also
by TRH) was used to compute rotational velocity at the wrist
during arm swings per gait cycle. Figure 2 suggests very strong
agreement between the two approaches across all features (with
correlation of cadence, gait arm range and turns exceeding 0.9).
Figure 3 further suggests that both approaches result into
comparable levels of variation in all features. However, gait
speed and stride length appear to produce significant (but
consistent) differences in absolute terms. This is caused by the

Published in partnership with Seoul National University Bundang Hospital
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GaitPy and Mobility Lab correspondingly.
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Fig. 3 Gait Feature Variability. Variability of selected gait features calculated on the same measurements performed using Opal and using
GaitPy and Mobility Lab correspondingly. The solid line represents the median value; the box limits show the interquartile range (IQR) from
the first (Q1) to third (Q3) quartiles; the whiskers extend to the furthest data point within Q1-1.5*IQR (bottom) and Q3 + 1.5*IQR (top).

use of per-subject height and leg-length measurements obtained Finally, in Fig. 4 gait features estimated using Opal measure-
at enrolment in Mobility Lab calculations, while in GaitPy a fixed ments are compared against measurements from consumer-
height-to-leg-length factor is employed across all subjects. The devices using the software developed in-house (signals were
latter clearly limits the accuracy of the pendular model employed aligned as described above). While there is still strong agreement
by in the calculation of these features. overall, there are also noticeable differences. One cause for this
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Fig.5 Variability of Gait Features. Distribution of the relative mean error across 50, 100 and 128 Hz sampling rates per calculated feature. The
solid line represents the median value; the box limits show the interquartile range (IQR) from the first (Q1) to third (Q3) quartiles; the whiskers
extend to the furthest data point within Q1-1.5*IQR (bottom) and Q3 + 1.5*IQR (top).

mismatch is likely to be due to the small angular misalignment
introduced by the specific placement of the devices on top of
each other as described above.

To explore sampling frequency as a SoV, Opal measurements
were down-sampled to obtain data at 50 and 100 Hz. Figure 5
demonstrates the limited impact of lower sampling rates on
feature estimation in terms of error. Features involving double
support and asymmetry are most affected because they are more
sensitive to error propagation caused by small inaccuracies in the
calculation of underlying metrics. This interpretation is supported
by the findings of ref. 32, which conducted an extensive evaluation
of seven different IMUs: Accelerometer and gyroscope data from
each device were processed using the same algorithm and
compared against ground truth obtained using OptoGait (cf.
http://optogait.com). Similar to our analysis, temporal parameters
demonstrated less variability to spatial parameters for which more
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complex calculations are needed for, example, double integration
and an error-state Kalman filter, and are thus sensitive to even
small measurement inaccuracies. Zhou et al.>? traced the latter to
device issues such as insufficient ADC range or inadequate sensor
calibration. Overall, our investigation suggests that features less
sensitive to low-frequency sampling can be identified using the
above observations as appropriate for the specific Concept of
Interest and Context of Use.

Case study 2: Environmental Factors

Variability due to environmental factors, that is, factors relating
to the setting within which the measurement process is
performed, rather than the process per se, can also affect
outcome measures. For example, Perraudin et al.>* identified
the height of the chair used to perform sit-to-stand transition
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time tests as a key environmental SoV in this context. Using
data provided by the DOMVar project obtained from an
actigraphy bracelet incorporating gyroscope and accelerometer
(cf. Methods Section below), Fig. 6 illustrates the effect of three
chairs of different heights (39.5cm, 51.5cm, and 59.5cm) on
average across 12 transitions for each of three subjects. Note
the significantly higher variability when data are aggregated
across chair heights. Hence, passive monitoring at a patient’s
home, where typically different chair types would be present, is
likely to result into less consistent outcome measure estimation.

Sit-time

180 o o
160 o

£
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E J

£
120 o °
100 o

39,5cm 51,5cm 59,5cm All cases
Chair height
Fig. 6 Variability due to Chair Selection. Chair height as a SoV for
sit-to-stand transition time tests. Variability is considerably larger
when considered across chairs. The error bars of boxplot are
generated by matplotlib using the matplotlib.pyplot.boxplot func-
tion with default parameters. The boxplot extends from the first to
the third quartile of the data with a line at the median. The whiskers
extend from the box by 1.5 times the inter-quartile range.
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Further, walking speed can be strongly influenced by room size
and the arrangement of furniture within in. Figure 7 illustrates
stride time variability for two healthy subjects. Data is collected
passively using the actigraphy bracelet in four different settings,
namely: (i) large empty room, (ii) large room containing furniture
obstacles, (iii) small empty room, and (iv) small room containing
furniture obstacles.

Both examples above suggest that passive monitoring, in
particular, is especially sensitive to environmental factors. When
the passive monitoring is preferable for clinical reasons, averaging
the relatively larger number of measurements can reduce
variability when no systematic changes in the SoVs are expected,
for example, when the layout of the patient’s home changes to
accommodate further restrictions in their movements their
symptoms progress.

DISCUSSION

In this paper, we introduced a conceptual framework for the
identification and characterisation of SoVs related to the use of
DHTs in clinical trials for PD. We distinguish SoVs related to
experimental design and choice of technology against variability
introduced by the subject, either inherently or due to the disease.
This framework aims to provide practical guidance on how to
investigate, assess, and where possible, mitigate their influence on
the measurement process targeting a particular Concept of
Interest in a specific Context of Use.

To this end, the choices between active or passive monitoring
and the duration of the study are especially influential. In our
experience, investigators often incorporate elements of both
active and passive assessments despite the lack of due justifica-
tion. Active approaches are often sufficient to provide conclusive
evidence and achieve higher specificity of the derived outcomes
measures. For example, an active approach to quantify movement
quality would be less likely to be affected by environmental
factors (Case Study #2). However, passive monitoring would be
preferable when the relevant Concept of Interest is associated
with the subject’s overall patterns of movement, such as general
long-term activity levels or the quantification of relatively rare
events such as falls and freezing. Indeed, in the case of falls and
freezing, active assessment would likely be ineffective despite its

& Big room & Big room with 3 obstacles & Small room Small room with 2 obstacles & All rooms
o
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8 8 80 & 80 o
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Fig. 7 Stride Time Variability. Stride time variability arising from the home environment. The panels from left to right show box plots of
passively recorded stride time for two subjects in four different settings and in aggregate. The error bars of boxplot are generated by
matplotlib using the matplotlib.pyplot.boxplot function with default parameters. The boxplot extends from the first to the third quartile of the
data with a line at the median. The whiskers extend from the box by 1.5 times the inter-quartile range.
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lower variability, due to the lack of sufficient motor performance
variability during measurement periods®*. A pragmatic approach
is to view active assessment as more suitable to the measurement
of subject capacity and passive assessment as a mechanism to
capture real-life ability®®. The above observation does not
preclude adopting a hybrid approach if necessary. In this case,
the presented framework and case studies still offers a useful
guide to determine the potential influence of SoVs on study-
specific Concepts of Interest.

Further, a key motivation in initiating this work was the need to
clearly contrast variability due to the measurement process
against variability caused by the disease. To this end, we believe
that a core requirement towards the further development of
mitigation techniques for a wider range of SoVs is to place greater
emphasis on normative data sets reflecting performance by
healthy subjects. This information is critical to establish ground
truths of expected variability.

Finally, an inherent characteristic of DHTs is the rapid rate of
advance in sensor technologies and the ability of modern
software tools, such as machine learning and artificial intelligence,
to improve their quantitative performance. Such rapid innovation
can exacerbate the impact of SoVs, for example hardware used in
a prospective clinical study might become outdated by the time
the study is finished; or, algorithm performance might be
enhanced by updating the software mid-study based on
additional training data. Clearly, SoVs introduced by the avail-
ability of improved tools must also be managed in adopting a
similar approach to the suggested SOV framework presented here.
Alternatively, requiring new prospective studies for every major
hardware, firmware, or model upgrade would represent a major
barrier to innovation.

METHODS
3DT working group on SoVs

Created in partnership with Parkinson’s UK, the Critical Path for
Parkinson’s Consortium (CPP) is a global initiative supporting collabora-
tion among scientists from the biopharmaceutical industry, academia,
government agencies, and patient-advocacy associations. The value of
such collaborations is recognized by global regulatory agencies,
including the US Food and Drug Administration and the European
Medicines Agency, which have actively encouraged data-driven
engagement through multi-stakeholder consortia®®. A foundational
tenet of CPP is the precompetitive collaborative nature of the
consortium that forms the core principle for advancing the regulatory
maturity of DHTs, and thus, facilitate their use in future clinical trials. To
this end, CPP established the Digital Drug Development Tool (3DT)
project, a precompetitive collaboration, aiming to align knowledge,
expertise, and data sharing of DHTs across its consortium. Its main goal
is to complement standard clinical assessments with a set of candidate
objective digital measures, which can provide high precision measure-
ments of disease progression and response to treatment.

This paper reports on the findings of the CPP 3DT: Sources of Variability
(SoVs) Working Group. To develop the conceptual framework for the
identification and characterisation of SoVs presented here, the WG
adopted a triangulation methodology incorporating findings reported in
the current research literature, direct experience with proprietary or
unpublished work contributed by individual WG members, and data-
driven analysis of key cases studies identified.

Data sets

Data used in Case Study 1 were pilot data obtained from Wearable
Assessments in the Clinic and Home in PD (WATCH-PD), a 12-month
multicentre, longitudinal, digital assessment study of PD progression in
subjects with early untreated PD (clinicaltrials.gov#: NCT03681015). Its
primary goal is to generate and optimize a set of candidate objective
digital measures to complement standard clinical assessments in measur-
ing the progression of disease and the response to treatment. A secondary
goal is to understand the relationship between standard clinical
assessments, research- grade digital tools used in a clinical setting, and
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more user-friendly consumer digital platforms to develop a scalable
approach for objective, sensitive, and frequent collection of motor and
nonmotor data in early PD. The clinical protocol®® includes: (a) in-clinic
assessments using six APDM Opal inertial measurement unit (IMU)
sensors>’ that are placed in the lumbar region, sternum, wrists, and feet
of the subject, which record accelerometer and gyroscope signals during a
series of mobility-related tasks; and (b) a walking task performed at-home,
where patients are instructed to place an iPhone in a pouch provided, and
attach it to the lower back, and then initiate sensor data recording using an
Apple Watch. The WATCH-PD trial has been approved by the WIRB
Copernicus Group (protocol code WPD-01 and date of approval 12/21/
2018). Informed consent was obtained from all subjects involved in the
study. Written consent will not be obtained from participating participants
since they are not identifiable by the study team. Participants are only
identifiable at the study site level.

The data set used in Case Study 2 was obtained during software testing
(quality improvement and usability) by the Digital Outcome Measure
Variability due to Environmental Context Differences using Wearables project
(DOMVar), conducted collaboratively between Birkbeck College, University of
London, University College London and Panoramic Digital Health (who
provided the study device cf. https://www.panoramicdigitalhealth.com/). The
project was conducted according to The European Code of Conduct for
Research Integrity (2017) and the guidelines of the Code of Practice on
Research Integrity of Birkbeck College, University of London, and approved
by the Ethics Committee of Birkbeck College, University of London. Informed
consent was obtained from all subjects involved in the study.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

Software quality testing data used in Case Study 2 are available to qualified
researchers from co-author DH. Data presented in in Case Study 1 is from the
ongoing WATCH-PD study and cannot be shared until completion and dissemination
of results and approval by study sponsor. This is expected to become possible within
24 months from the acceptance date of this paper. Qualified researchers will be able
to contact co-author RD at the University of Rochester, to request access to the data.

CODE AVAILABILITY

Python source code of the custom software used to conduct the calculations
presented in Case Studies 1 and 2 is available upon reasonable request from co-
authors KPK and DH correspondingly. In Case Studies 1, the APDM Mobility Lab
software (cf. https://apdm.com/mobility/) now part of Clario, was used with default
parameters. Co-author TRH developed the custom software employed using python
and incorporating the GaitPy module. GaitPy was implemented following the
parameters suggested by ref.3',
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