UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The effect of maternal position on placental blood flow and fetoplacental oxygenation in late gestation fetal growth restriction: a magnetic resonance imaging study

Jani, D; Clark, A; Couper, S; Thompson, JMD; David, AL; Melbourne, A; Mirjalili, A; ... Stone, PR; + view all (2023) The effect of maternal position on placental blood flow and fetoplacental oxygenation in late gestation fetal growth restriction: a magnetic resonance imaging study. Journal of Physiology 10.1113/JP284269. (In press). Green open access

[thumbnail of Jani DECIDE MRI placental O2 re position and FGR.pdf]
Preview
PDF
Jani DECIDE MRI placental O2 re position and FGR.pdf - Published Version

Download (1MB) | Preview

Abstract

Fetal growth restriction (FGR) and maternal supine going-to-sleep position are both risk factors for late stillbirth. This study aimed to use magnetic resonance imaging (MRI) to quantify the effect of maternal supine position on maternal-placental and fetoplacental blood flow, placental oxygen transfer and fetal oxygenation in FGR and healthy pregnancies. Twelve women with FGR and 27 women with healthy pregnancies at 34–38 weeks’ gestation underwent MRI in both left lateral and supine positions. Phase-contrast MRI and a functional MRI technique (DECIDE) were used to measure blood flow in the maternal internal iliac arteries (IIAs) and umbilical vein (UV), placental oxygen transfer (placental flux), fetal oxygen saturation (FO2), and fetal oxygen delivery (delivery flux). The presence of FGR, compared to healthy pregnancies, was associated with a 7.8% lower FO2 (P = 0.02), reduced placental flux, and reduced delivery flux. Maternal supine positioning caused a 3.8% reduction in FO2 (P = 0.001), and significant reductions in total IIA flow, placental flux, UV flow and delivery flux compared to maternal left lateral position. The effect of maternal supine position on fetal oxygen delivery was independent of FGR pregnancy, meaning that supine positioning has an additive effect of reducing fetal oxygenation further in women with FGR, compared to women with appropriately grown for age pregnancies. Meanwhile, the effect of maternal supine positioning on placental oxygen transfer was not independent of the effect of FGR. Therefore, growth-restricted fetuses, which are chronically hypoxaemic, experience a relatively greater decline in oxygen transfer when mothers lie supine in late gestation compared to appropriately growing fetuses. (Figure presented.). Key points: Fetal growth restriction (FGR) is the most common risk factor associated with stillbirth, and early recognition and timely delivery is vital to reduce this risk. Maternal supine going-to-sleep position is found to increase the risk of late stillbirth but when combined with having a FGR pregnancy, maternal supine position leads to 15 times greater odds of stillbirth compared to supine sleeping with appropriately grown for age (AGA) pregnancies. Using MRI, this study quantifies the chronic hypoxaemia experienced by growth-restricted fetuses due to 13.5% lower placental oxygen transfer and 26% lower fetal oxygen delivery compared to AGA fetuses. With maternal supine positioning, there is a 23% reduction in maternal-placental blood flow and a further 14% reduction in fetal oxygen delivery for both FGR and AGA pregnancies, but this effect is proportionally greater for growth-restricted fetuses. This knowledge emphasises the importance of avoiding supine positioning in late pregnancy, particularly for vulnerable FGR pregnancies.

Type: Article
Title: The effect of maternal position on placental blood flow and fetoplacental oxygenation in late gestation fetal growth restriction: a magnetic resonance imaging study
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1113/JP284269
Publisher version: https://doi.org/10.1113/JP284269
Language: English
Additional information: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. See: http://creativecommons.org/licenses/by-nc-nd/4.0/
Keywords: Fetal size, magnetic resonance imaging, placenta, pregnancy
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > UCL EGA Institute for Womens Health > Maternal and Fetal Medicine
URI: https://discovery.ucl.ac.uk/id/eprint/10174543
Downloads since deposit
47Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item