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ABSTRACT

Understanding the behaviour of volunteers is an important
research area in social science and management. This paper
tackles the Volunteer Retention Prediction task of the IEEE
MLSP 2023 Data Challenge, utilizing a dataset from the
COVID-19 pandemic volunteer coordination in Shenzhen,
China in 2020 - 2021, with the objective of forecasting vol-
unteer retention in the next ten months. Our paper proposes
Hybrid Temporal-Graph Tabular Model (HTGTM), a deep
learning-based hybrid model designed to extract and analyze
temporal and graph information within complex tabular data.
In this data challenge, we compared our model, ensembled
with XGBoost, against traditional machine learning methods
and deep learning models that are specifically tailored for
tabular data. Our method exhibited robust performance, val-
idated by its 1st-ranking Root-Mean-Square-Error (RMSE)
score of 76.36 in MLSP 2023 Data Challenge Kaggle private
Leaderboard. This research sheds light on pertinent volunteer
retention prediction tasks and highlights the incorporation of
deep learning techniques in complex, multimodal tabular data
processing tasks.

Index Terms— Volunteer Retention, Deep Learning,
Multimodal Tabular Data, Ensemble Learning

1. INTRODUCTION

The rapid advancement of digital technologies and platforms
has brought about a revolutionary change in how people come
together to address community needs and challenges. In par-
ticular, the emergence of online crowdsourcing platforms has
transformed the landscape of volunteering activities, enabling
individuals to contribute to collective goals in a more orga-
nized and effective manner. A notable example of this trans-
formative power was observed during the COVID-19 pan-
demic, where volunteer self-organization played a crucial role
in the collective response [1].

Through the utilization of crowdsourcing platforms and
decentralized efforts, volunteers have been able to effectively
address the urgent needs of communities. This shift in vol-
unteering dynamics has highlighted the importance of under-

standing the behavior and collaboration patterns of these vol-
unteers [1]. This paper focuses on the Volunteer Retention
Prediction task of the IEEE MLSP 2023 Data Challenge on
Kaggle1. The dataset utilized in this challenge was collected
from the “Anti-Pandemic Pioneer”, a platform used for self-
organized volunteer coordination during the COVID-19 pan-
demic in Shenzhen, China [1].

The dataset spans self-organized volunteer coordination
histories from February 2020 to May 2021, encapsulating es-
sential data points of the volunteering activities such as par-
ticipant identity, task timing and task geo-locations. This
rich, complex tabular dataset intertwines temporal informa-
tion derived from the chronological order of the tasks, and
graph information extrapolated from user past co-operation
data, thereby representing a multi-faceted view of the volun-
teering activities.

Given the unique characteristics and complexities of the
dataset, building an effective predictive model is not straight-
forward. Notably, while the current state-of-the-art predictive
models, namely deep learning-based models, excel in various
domains, they often struggle when dealing with tabular data
directly [2]. On the other hand, integrating data from different
modalities could be a challenge for traditional machine learn-
ing methods [3]. Thus, this task calls for in-depth, focused
research.

This paper elucidates Hybrid Temporal-Graph Tabular
Model (HTGTM), an hybrid approach we have devised for
this data challenge that holds the record for the highest perfor-
mance (RMSE of 76.36) on the Kaggle private Leaderboard
of this task. The outcome from this research formulates
a robust predictive model for volunteer retention, and thus
provides insights for improving volunteer management on
crowdsourcing platforms. Furthermore, this research car-
ries broader implications by exploring the integration of
deep learning models into complex tabular datasets, where
multimodal information, such as temporal and graph data
structures, are encompassed.

1https://kaggle.com/competitions/MLSP2023-volunteers-01
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2. RELATED WORK

2.1. Volunteer Retention

Understanding what makes volunteering initiatives successful
is important due to its rising significance in promoting sus-
tainability and benefiting society [4]. Numerous studies have
indicated that volunteers’ perspectives on their experiences,
such as a sense of fulfillment, satisfaction, and contentment,
strongly predict their future retention [5, 6]. In addition to
these personal perception variables, volunteers’ commitment,
as indicated by their past volunteering records, and their in-
terpersonal relationships within the volunteering community
have also been found to be related to their continued engage-
ment [4, 5, 6]. Since this dataset does not include variables
related to personal perception, volunteers’ past participation
records and their engagement with the community, such as
records of collaboration with others, are important factors to
consider when modeling their future retention.

2.2. Deep Learning for Tabular Data

Deep learning models have proven to be highly effective in
various domains, including computer vision and natural lan-
guage processing, thanks to their powerful automatic feature
extraction capabilities. However, when it comes to model-
ing tabular data, traditional machine learning methods such
as gradient-boosted decision trees (GBDT) have continued
to dominate and consistently outperform deep learning ap-
proaches [2]. Recent advancements in neural network archi-
tecture research have led to the development of deep learning
methods specifically designed for tabular data, which claim to
offer superior performance compared to tree-based methods
[7, 8, 9, 10]. However, the question of whether deep learn-
ing models outperform traditional methods on tabular data
is still a topic of controversy due to the absence of standard
benchmark for holistically comparing different methods’ per-
formance on tabular data processing tasks [2].

Despite the ongoing debate, certain neural network archi-
tectures have proven their superior capabilities in handling
non-tabular data [11]. These data types, such as time-series
and graph data, frequently appear either explicitly or implic-
itly in or alongside tabular data, rendering traditional methods
less suitable for their analysis. Hence, it remains essential to
consider the incorporation of deep learning in such complex
multimodal tabular data processing.

3. METHODOLOGY

3.1. Data Exploration

The MLSP 2023 Volunteer Retention Prediction dataset
contains approximately 2.4 million entries of volunteering
records, with user ID, task ID, task locations (geo-coordinates
and location names), task timing (task start and end time) and

an indicator of whether the user of the entry being task or-
ganizer. There are 47,617 unique users in total among the
2.4 million entires which have been evenly split into the
training ant test set. The task ID column embeds user’s past
co-operation history and thus inherently signifies the under-
lying network structure among these 47,617 unique users.
Moreover, the temporal and spatial information derived from
the task time and locations respectively, combines to form
individual temporal-spatial trajectories for each user.

Figure 1 (a) visually illustrates the structure of the dataset,
taking into account both time-series and graph information.
The visualization reveals that the dataset incorporates data
modalities beyond the tabular form: From a temporal perspec-
tive, each unique user is associated with an unequal length
time-series spreadsheet that records his/her temporal-spatial
trajectory of past volunteering activities. This temporal di-
mension captures the sequence of events and locations for
each user’s volunteering engagements. From a graph perspec-
tive, the relationships between users are represented as a net-
work structure, where each user is represented as a node, and
the number of past co-operations between users is depicted
as edge links connecting the corresponding nodes. Addition-
ally, the frequency of co-operation between users in the past
indicates the strength of the edge link.

To address the task objective, a straightforward strategy
involves incorporating graph information into a tabular for-
mat and aggregating the temporal dimension of the dataset.
This creates user-level aggregated task statistics for each user
and this task becomes a regression task on a classical tabu-
lar dataset. By doing so, conventional techniques for work-
ing with tabular data can be applied. However, this approach
poses the risk of losing detailed information when aggregat-
ing high-frequency time-series data. Furthermore, seamlessly
integrating connections in graph data into useful features in
tabular data is challenging. To tackle these challenges, our pa-
per proposes a hybrid approach: (1) as previously mentioned,
we aggregate the temporal dimension and discard the graph
information to create a standard tabular dataset, on which we
perform feature engineering and build a tabular model; (2)
in parallel, we feed the time-series data and graph data into
separate models, namely a time-series model and a Graph-
ical Neural Network (GNN) model. The three models will
compose a hybrid model and be trained jointly. This will be
explained in greater detail in Section 3.3.

3.2. Data Preparation and Feature Engineering

This section describes the feature engineering we conducted
on the aggregated tabular dataset. Following the literature in
Section 2.1, volunteers’ commitment (as represented by past
volunteering activities in this task) is a crucial indicator for
their future retention. As a result, we artificially created sev-
eral features to extract useful information towards this direc-
tion.



Fig. 1. (a) Visualization of the dataset structure incorporating time-series and graph information. Each user has a corresponding
time-series volunteering activity recordings and the connections between users can be inferred from their past co-operations in
volunteering tasks. (b) Hybrid model architecture consisting of three sub-models with specialized architectures for distinct data
types. Each sub-model processes the input data into embeddings. The resulting embeddings are then gated using an attention
module and fused to produce the final output. More details regarding each component are introduced in Section 3.3

Specifically, we split 2020 - 2021 into 4 quarters and
counted the total number of past volunteering tasks and the
number of times each user served as an organizer for these
tasks in each quarter. To delve deeper into the data, we cal-
culated the total time span from February 2020 to May 2021
in hours and determined the percentage of each user’s par-
ticipation within this duration. Additionally, we categorized
each day within the time span as a working day, weekend,
or public holiday, and further divided each day into three
distinct time periods (20:00 - 04:00, 04:00 - 12:00, and 12:00
- 20:00). By doing so, we were able to quantify the num-
ber of volunteering tasks participated in by each user during
specific days and time periods. These newly created features
may offer insights into a volunteer’s willingness to engage in
both regular and atypical dates and times, thereby providing
a more comprehensive measure of their commitment.

Afterward, we computed the centroid of each user’s geo-
coordinates to serve as a representation of their previous
volunteering locations. Additionally, we derived new fea-
tures by calculating the variation and distance traveled based
on these geo-coordinates. These features may offer insights
into whether a volunteer is inclined to engage solely in tasks
within their local vicinity or if they demonstrate a willingness
to participate in activities that are farther away from their
usual areas. As a result, these features provide an indication
of the volunteer’s commitment level and their readiness to
venture beyond their routine regions.

Lastly, since the platform is closely tied to the COVID-19
pandemic in Shenzhen, we incorporated external data on the
daily COVID-19 cases in Guangdong province, China (where
Shenzhen is located). We then analyzed the correlation be-

tween the 7-day moving-averaged COVID-19 cases (local and
imported) and the user’s participation throughout the entire
time span. This analysis aimed to shed light on whether vol-
unteers predominantly concentrated their efforts on COVID-
19 related tasks or demonstrated a willingness to engage in
activities unrelated to the pandemic. This information may
provide insights into the volunteers’ intentions and potential
for future retention.

In addition to the preceding feature engineering, we also
implemented a reweighting scheme based on the future reten-
tion distribution of volunteers. Specifically, we have observed
that this distribution displays characteristics of a power-law,
suggesting that outliers in the right-tail should receive more
attention [12]. As a result, we tailored our approach to give
these outliers greater consideration by employing a reweight-
ing technique: We fitted the target variable (future retention),
denoted by y, to a Pareto distribution and obtained the prob-
ability density function fθ̂(y) of the distribution, where θ̂ de-
notes the estimated parameters. Based on fθ̂(y), we com-
puted a weight w for each user in the training set according to
the equation:

wut =
ln(C+ 1

f
θ̂
(y)

)

1
Nt

∑
y∈Dt ln(C+ 1

f
θ̂
(y)

)

In the equation, ut denotes the user ID in the training
set, Dt the training set, and Nt is the total count of users
in the training set. C is used as a smoothing constant (we set
C = 100 heuristically). These weights assign greater values
to data points that are less likely according to the fitted Pareto
distribution, thus enabling the model to focus more on the
volunteers who are likely to have high retention in the future.



3.3. Proposed Model Architecture

This section presents the proposed model architecture for the
joint processing of time-series, graph, and aggregated tabu-
lar data extracted from the dataset. As shown in Figure 1
(b), our approach is a hybrid model incorporating three sub-
models with different architectures: a time-series model, a
Graph Neural Network (GNN) model and a tabular model.
Each model receives a distinct type of inputs and generates
corresponding embeddings. These embeddings are then con-
catenated togater (denoted as Ecat).

Subsequently, as the three forms of the input data are orig-
inated from the same dataset, there is a potential redundancy
of overlapped information from each model’s output embed-
ding. To reduce this redundancy, we employed an attention
module: The attention module takes the concatenated em-
beddings Ecat as input and produces gating scores G, rang-
ing from 0 to 1, for each dimension of the embeddings. The
gating scores determine the relevance or importance of each
dimension in Ecat. Next, we calculate the dot product be-
tween the gating scores and the concatenated embeddings as
gated embeddings Egated = Ecat · G, which is then fused
and projected by a linear layer. Finally, an output layer is
employed as the final layer to generate predictions.

By combining the strengths of the time-series, GNN, and
tabular models, our proposed architecture leverages temporal
information, graph structure, and aggregated statistics to im-
prove the overall predictive performance. The attention mod-
ule enables the model to dynamically attend to the most in-
formative dimensions in the concatenated embeddings, facil-
itating effective feature fusion and enhancing prediction ac-
curacy. We hereby refer to our hybrid model as the Hybrid
Temporal-Graph Tabular Model (HTGTM). We then intro-
duce the time-series model, GNN model and tabular model
in HTGTM respectively as follows:

Time-series Model: Since the time-series data for each
user has unevenly spaced intervals between volunteering
tasks, traditional recurrent neural network architectures like
GRU [13] and LSTM [14] are not suitable in this case as
they sequentially process each timestamp which implicitly
assumes evenly spaced time-series data. To address this
issue, we adopted a decoder-only transformer architecture.
Specifically, we chose the day as the granularity for pro-
cessing the time-series sequence, and initialized trainable
embeddings for each day from February 2020 to May 2021
serving as positional embedding for each token in the se-
quence. Each participation entry for a given date, including
geo-coordinates, the number of tasks on the date, and task
length, was treated as a token embedding in the sequence.
Following the standard practice in transformer models, the
positional embedding and token embedding were mixed by
addition before self-attention operation. During self-attention
operation, we masked out future days to ensure the model op-
erates in a unidirectional manner. By adopting this approach,

we effectively handle uneven intervals between volunteer-
ing activities in the time-series data while preserving the
time-series nature of the information.

Graph Neural Network Model: Our GNN model uti-
lizes a graph convolutional network architecture, comprising
three graph convolutional layers. To capture the connections
in the graph that is represented by the inter-relations among
the community’s 47,617 unique users, we construct an affin-
ity matrix based on past instances of co-operations between
pairs of users. The weight assigned to each edge corresponds
to the number of co-operations observed. In order to initial-
ize node features in the model, we leverage the tabular data
features available for each user.

Tabular Model: We applied TabNet [8] as the tabu-
lar model which receives aggregated tabular data. TabNet
is a transformed-based model for tabular data that uses an
encoder-decoder architecture with sparse feature selection
mechanisms to learn feature interactions. We took its su-
pervised learning version and followed default settings and
hyper-parameters given in the original paper [8]. We only
modified its final layer to produce embeddings instead of
predictions.

Lastly, we acknowledge the inherent limitations of neu-
ral networks, such as their tendency to produce over-smooth
solutions and their susceptibility to the negative impact of un-
informative features [11]. These drawbacks can potentially
result in degraded performance for this regression task. Thus,
as recommended by [2], we took an ensemble approach to
make the final predictions. To be more specific, we concate-
nate the features in tabular data with the prediction from HT-
GTM, and fed them into an XGBoost regressor [15] for fur-
ther training, and the output will be the final predictions from
our method. This ensemble approach allows us to leverage the
feature extraction capabilities of deep learning models while
incorporating the robustness of tree-based methods. We refer
to this ensemble as XGBoost+HTGTM.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Experimental Setup

Our HTGTM model was trained using the Adam optimizer
[16] with a learning rate of 10−3, a batch size of 32, and for 10
epochs. The mean squared error loss was used, and the pro-
posed reweighting scheme was introduced after the initial 5
epochs. For the XGBoost+HTGTM ensemble, we optimized
the hyperparameters of the XGBoost regressor using random
grid search based on the results of 3-fold cross-validation. To
ensure speed, we utilized a sub-sample of 10,000 randomly
selected from the training set during the random grid search.

In this study, we evaluated our proposed model utilizing
the Root-Mean-Square-Error (RMSE) metric. We provide
the evaluation results from three sources: the score obtained
from a holdout validation set, consisting of 33% of randomly



selected data from the training set (carefully partitioned to
maintain comparable data distribution in both the training and
validation sets); the Kaggle public Leaderboard score (com-
puted on 33% of the test set, which is visible to all participants
throughout the competition); and the Kaggle private Leader-
board score (calculated on the remaining 66% of the test set,
which was kept hidden during the competition and disclosed
only at the end to determine the final standings).

Given the restriction of two submissions per day for the
competition, exhaustive model comparisons were impractica-
ble. However, leveraging our expertise, we chose the follow-
ing models as benchmarks:

XGBoost [15]: A GBDT algorithm known for its speed
and performance, especially on tabular data processing.

LightGBM [17]: Another GBDT algorithm that grows
trees leaf-wise, resulting in smaller and faster models while
maintaining similar level of performance to XGBoost.

CatBoost [18]: Another GBDT method with a special
emphasis on categorical features.

FT-Transformer [9]: A simple adaptation of the Trans-
former architecture for the tabular domain that transforms fea-
tures (categorical and numerical) to tokens and runs a stack of
layers on the tokens.

TabTransformer [7]: Another transformer-based model
for tabular data that provides both supervised and unsuper-
vised learning functions. Here we only use its supervised
learning version.

Tree-based methods were fitted to tabular data exclu-
sively with the same hyperparameter searching strategy used
for XGBoost+HTGTM (as described above). Additionally,
to ensure a fair comparison, we also report the performance
of an ensemble version of each deep learning-based method,
following the same procedure as used in XGBoost+HTGTM.

Finally, to further investigate whether our hybrid model
is dominated by a single sub-model within its architecture,
we performed an ablation study by comparing HTGTM to
each sub-model within HTGTM, both individually and as an
ensemble with XGBoost. Each sub-model is trained with the
same training and ensemble procedure as introduced above.
We only modified their output layer to produce predictions
instead of embeddings.

4.2. Results

Table 1 presents the results of our proposed method with
other competitive models listed in Section 4.1. It is observed
that our proposed ensemble method, XGBoost+HTGTM,
achieved lowest RMSE score. Also, when compared with
other deep learning-based models, HTGTM has the best per-
formance, suggesting that incorporating temporal and graph
information from the dataset enhances predictive power. It
is also observed that tree-based models consistently outper-
form deep learning-based models on this task, echoing the
advantage of tree-based models on tabular data tasks.

Kaggle
Val Set Public Private

TabTransformer 103.22 110.25 104.50
FT-Transformer 104.59 111.47 105.44
GNN Model-only (GNN†) 88.24 97.73 91.85
Time-series Model-only (TS†) 86.49 93.66 89.34
Tabular Model-only (TAB†) 111.04 100.60 94.14
HTGTM 77.38 90.12 81.26

LightGBM 71.93 84.91 78.80
CatBoost 70.41 82.91 77.98
XGBoost 69.47 83.61 78.76

XGBoost+TabTransformer 81.61 83.84 80.65
XGBoost+FT-Transformer 87.51 86.34 80.75
XGBoost+GNN† 69.04 83.88 78.52
XGBoost+TS† 68.96 85.19 79.15
XGBoost+TAB† 70.12 85.48 79.17
XGBoost+GNN†+TS†+TAB† 69.02 84.35 77.53
XGBoost+HTGTM 66.27 79.09 76.36

Table 1. Model comparisons with baseline models and ab-
lated versions, i.e. with individual sub-model only, super-
scribed by †, on holdout validation (Val) set, Kaggle public
and private Leaderboard. Results are reported in RMSE.

Additionally, it is worth noting that not all ensembles
lead to a reduction in prediction error based on Table 1. The
ensembles of XGBoost+TabTransformer and XGBoost+FT-
Transformer showed decreased performance compared to
XGBoost alone. This suggests that the output produced by
TabTransformer and FT-Transformer did not contribute use-
ful additional information to improve XGBoost’s learning
from the existing features and highlights the improtance of
incorporating graph and time-series information.

The results of the ablation study are also presented in Ta-
ble 1, where models superscribed by † are ablated versions,
i.e. sub-models within HTGTM. It is observed from the table
that HTGTM outperforms each individual sub-model within
its hybrid architecture. Similarly, our ensembled version, XG-
Boost+HTGTM, surpasses each ensembled version of sub-
models. This outcome suggests the benefit of multi-modality,
joint training and the attention module’s gating and fusing
mechanism within the hybrid model. Overall, the ablation
study confirms that no single sub-model is dominating the
performance of the hybrid model and thus shows the robust-
ness of HTGTM and the efficacy of its integrated approach.

Finally, due to the inherent randomness in our proposed
XGBoost+HTGTM, such as model parameters initialization,
dropout layers and batch training, we re-ran it five times on
these datasets after the competition ends to quantify the vari-
ability of our model’s predictions. We obtained the following
results (reported as mean ± standard errors): 67.03±0.59 on
the heldout validation set, 80.74±0.76 on the Public Leader-
board and 75.20±0.98 on the Private Leaderboard.



5. CONCLUSION

In this paper, we introduced HTGTM, a deep learning hybrid
model designed to address the Volunteer Retention Prediction
task in the IEEE MLSP 2023 Data Challenge. The proposed
method can effectively integrate various types of data embed-
ded in a complex multimodal tabular dataset. Our method,
when ensembled with XGBoost, showed state-of-the-art per-
formance as measured by RMSE, which is demonstrated by
its first place in the Kaggle private Leaderboard against other
strong baselines and competitors in the data challenge. This
research not only provides a promising approach for volun-
teer retention prediction but also makes a broader contribu-
tion to the field by showcasing the effective integration of
deep learning techniques into complex tabular data process-
ing. Finally, in our current work, interactions between the
sub-models occur solely after the concatenation of their pro-
duced embeddings, making it a loose hybrid model. Going
forward, we aim to explore directions that foster more inter-
actions between the sub-models in early stages to further en-
hance the model’s multimodal ability.
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