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Curriculum-Based Augmented Fourier Domain
Adaptation for Robust Medical

Image Segmentation
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Abstract— Accurate and robust medical image segmentation
is fundamental and crucial for enhancing the autonomy of
computer-aided diagnosis and intervention systems. Medical data
collection normally involves different scanners, protocols, and
populations, making domain adaptation (DA) a highly demanding
research field to alleviate model degradation in the deployment
site. To preserve the model performance across multiple testing
domains, this work proposes the Curriculum-based Augmented
Fourier Domain Adaptation (Curri-AFDA) for robust medical
image segmentation. In particular, our curriculum learning strat-
egy is based on the causal relationship of a model under different
levels of data shift in the deployment phase, where the higher
the shift is, the harder to recognize the variance. Considering
this, we progressively introduce more amplitude information
from the target domain to the source domain in the frequency
space during the curriculum-style training to smoothly schedule
the semantic knowledge transfer in an easier-to-harder manner.
Besides, we incorporate the training-time chained augmentation
mixing to help expand the data distributions while preserving the
domain-invariant semantics, which is beneficial for the acquired
model to be more robust and generalize better to unseen domains.
Extensive experiments on two segmentation tasks of Retina and
Nuclei collected from multiple sites and scanners suggest that our
proposed method yields superior adaptation and generalization
performance. Meanwhile, our approach proves to be more robust
under various corruption types and increasing severity levels.
In addition, we show our method is also beneficial in the domain-
adaptive classification task with skin lesion datasets. The code is
available at https://github.com/lofrienger/Curri-AFDA.
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Note to Practitioners—Medical image segmentation is key to
improving computer-assisted diagnosis and intervention auton-
omy. However, due to domain gaps between different medi-
cal sites, deep learning-based segmentation models frequently
encounter performance degradation when deployed in a novel
domain. Moreover, model robustness is also highly expected to
mitigate the effects of data corruption. Considering all these
demanding yet practical needs to automate medical applica-
tions and benefit healthcare, we propose the Curriculum-based
Fourier Domain Adaptation (Curri-AFDA) for medical image
segmentation. Extensive experiments on two segmentation tasks
with cross-domain datasets show the consistent superiority of
our method regarding adaptation and generalization on multiple
testing domains and robustness against synthetic corrupted data.
Besides, our approach is independent of image modalities because
its efficacy does not rely on modality-specific characteristics.
In addition, we demonstrate the benefit of our method for image
classification besides segmentation in the ablation study. There-
fore, our method can potentially be applied in many medical
applications and yield improved performance. Future works may
be extended by exploring the integration of curriculum learning
regime with Fourier domain amplitude fusion in the testing time
rather than in the training time like this work and most other
existing domain adaptation works.

Index Terms— Curriculum learning, Fourier transform, aug-
mentation mixing, robustness, domain adaptive medical image
segmentation.

I. INTRODUCTION

ALTHOUGH deep learning is showing impressive perfor-
mance in medical applications to boost the autonomy

of computer-aided diagnosis and intervention, recent stud-
ies observe significant degradation in the deployed target
dataset [1], [2], [3]. This is due to domain shifts such as
population shift, covariate shift, and acquisition shift [4], [5],
[6] in the deployment domain. In particular, the problem
is usually unavoidable in the medical imaging field because
medical data and annotations are usually limited and derived
from multiple working sites with different scanners, protocols,
and populations. This problem also leads to overfitting, under-
specification, poor generalization and weak robustness of the
model.

Many works have focused on domain adaptation (DA)
and domain generalization (DG) to tackle data shifts in the
target domain. Most of these works utilize supervised, semi-
supervised, and unsupervised techniques with the strategies
of transfer learning [7], [8], fine-tuning [9], [10], adversarial
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Fig. 1. Overview of the proposed Curriculum-based Augmented Fourier Domain Adaptation (Curri-AFDA). In the Amplitude Fusion (AF) module,
the amplitude scaling coefficient β adjusts the central region area of the amplitude spectrum to be mixed between the source domain (SD) and the target
domain (TD), and the weighting coefficient α controls the mixing strength. FFT and IFFT stand for the Fast Fourier Transform and the Inverse Fast Fourier
Transform. Then the composited images are adopted in the Curriculum Learning (CL) process to train the domain-adaptive model. Amplitude fusion of
images gradually gets enhanced when βc linearly grows with epochs, making the source domain data appear more similar to the target domain data. During
training, the Chained Augmentation Mixing (CAM) module helps create more variations of the training samples by mixing the outputs of up to three
augmentation chains (ACs) and then with the original input image. Hi and wi represent the sequential augmentations and the mixing weight of the i th chain,
respectively. m denotes the mixing weight with the original input.

training [11], [12], [13], and data augmentation [14], [15].
Depending on the availability of the target domain data during
training, there are typically two types of domain adaptation.
Testing-time DA, like domain generalization, tries to han-
dle unseen domain shifts from training. Training-time DA,
where target domain data is available with limited annotations
(weakly-supervised DA) or no annotations (unsupervised DA),
mainly emphasizes transferring target domain information to
the source domain during training. The transferring methods
can also be categorized as feature-level transferring [16],
[17], image-level transferring [18], [19], and label-level trans-
ferring [20]. Recently, Fourier Transform has been used to
transfer domain-specific information from target images to
source images by performing amplitude fusion in the fre-
quency domain [2], [21], [22], [23], [24]. These studies show
the effectiveness of the Fourier technique with the advantage
of simplicity and model-agnostic characteristics. However,
besides adaptation and generalization, the above works seldom
explore robustness under naturally-induced data alterations and
corruption, which is also crucial in the model deployment
phase.

Recently, curriculum learning [25], a training scheme that
aims to let the model learn from easier to more complex
samples or tasks, has been captivating increasing attention in
the field of computer vision. One of the key benefits of curricu-
lum learning is that it can improve a model’s generalization
performance. The efficacy of replacing conventional training
with curriculum learning has been demonstrated in many

application fields, such as semantic segmentation [16], [26],
object detection [27], [28], neural machine translation [29],
image captioning [30], [31], and robotic learning [32]. The
efficacy of a curriculum-based model mainly depends on
the proper design of the difficulty measurement process for
training samples or tasks. Specifically for curriculum-based
Domain Adaptation, different approaches such as domain
discriminator [33], density-based clustering [34], superpixel
label transfer [16], and domain similarity grouping [35] have
been proposed to quantify difficulty in a weakly supervised or
unsupervised manner.

The generalization and robustness abilities of the deep
learning model are frequently observed to be improved by
augmenting training data. Multiple augmentation techniques
have been developed to boost model performance in a cutting-
based or mixing-based manner, e.g., CutOut [36], MixUp [37],
CutMix [38], and AugMix [39]. To assess the robustness of
the deep learning model, benchmark datasets for two types
of robustness (corruption and perturbation) are created [40].
The enhanced robustness is demonstrated and proven with
an altered test dataset that includes corrupted and perturbed
images [41], [42].

In this work, we design a Curriculum-based Augmented
Fourier Domain Adaptation (Curri-AFDA) method to tackle
domain shift by transferring target domain information to
the source domain in a curriculum manner and extensively
augmenting the data by training-time chained augmentation
mixing, as shown in Fig. 1. To build the curriculum strategy,
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we consider modeling the difficulty of domain adaptation as
recognizing target domains with different levels of distribution
shift. Specifically, we utilize Fourier Transform to extract
and fuse the source and target domain information over the
training period in an easier-to-harder curriculum order by
progressively increasing the amplitude transferred from the
target to the source domain in the frequency space. Then the
reconstituted training samples are passed through chains of
various augmentation operations in random orders to further
improve data diversity. We validate the proposed approach on
two medical image segmentation datasets of Retina and Nuclei
segmentation collected from multiple domains with obvious
domain shifts. We also evaluate the robustness of our method
by applying 15 different corruption and perturbation tech-
niques with five increasing severity levels on the test dataset.
Extensive cross-domain validation and robustness results sug-
gest that our approach not only improves the performance of
mitigating domain variance but is also highly robust against
heavy data corruptions.

Our main contributions and findings can be summarized as
follows:
• Demonstrate the progressively incremental amplitude

fusion in the Fourier space as an effective curriculum-
based approach to alleviate domain discrepancy.

• Incorporate the training-time chained augmentation mix-
ing to further boost the training data diversity and estab-
lish the Curriculum-based Augmented Fourier Domain
Adaptation (Curri-AFDA).

• Conduct extensive experiments on multiple Retina seg-
mentation and Nuclei segmentation datasets and various
types and levels of corrupted datasets to show the
superiority of our method with respect to adaptation,
generalization, and robustness.

• Explore the efficacy of Curri-AFDA for the image clas-
sification task besides segmentation with the skin lesion
datasets and show the potential of our method for broader
medical applications.

II. RELATED WORKS

A. Fourier Transform for Domain Adaptation

Due to its simplicity, effectiveness, and model-agnostic
characteristic, Fourier Transform is one of the recent tools
in Domain Adaptation. In the Fourier-based frequency space,
the low-frequency amplitude components, i.e., the central
region of the amplitude spectrum, carry more domain-specific
information. Fourier Domain Adaptation (FDA) [21] applies
Fourier Transform and its inverse to spatial images and
fuses the amplitude spectrum in the low-frequency region
of the source domain and target domain samples to tackle
domain shift. Similarly, amplitude fusion is performed by
preserving the phase information for unsupervised domain
adaptation [43]. Basically, the Fourier-based domain adapta-
tion method tries to mitigate the domain gap by image-to-
image translation (I2I) or style transfer - one of the major
strategies for domain adaptation. After style transfer, the
source domain data is expected to share a similar style as the
target domain. By amplitude mixing in the frequency space,

the training data appears to be in an intermediate style between
the SD and TD, depending on the fusion strength. At the
same time, the core domain-invariant semantics information
remains unchanged in the generated image. Instead of swap-
ping low-frequency amplitude components, Fourier augmented
co-teacher (FACT) [22] and AmpMix [44] proposes to mix
the whole amplitude spectrum with the MixUp [37] technique
and achieves better generalization ability. By assigning pixel-
wise significance with Gaussian distribution and introducing
pixel-wise disturbance in the amplitude spectrum, HCDG [23]
proposes to highlight the core information in the center
area of the image than the marginal area. Moreover, in the
federated learning scenario, Federated Domain Generalization
(FedDG) [2] constructs a continuous frequency space, where
low-frequency amplitude components from multiple remote
domains/sites are extracted, stored, and used for training.

Compared with GAN-based domain adaptation methods,
Fourier-based methods avoid additional efforts of complicated
adversarial training to accomplish the domain alignment.
Besides, in the case of limited training data, GAN-based
methods may fail to work since they are known to be heav-
ily data-hungry. Whereas, Fourier-based approaches are less
affected and thus have significant advantages in resolving
domain shift problems with insufficient data, which is mean-
ingful for practical medical applications.

The methods mentioned above all have a fixed ampli-
tude fusion process. For example, the portion of amplitude
components to be transferred from the target domain image
to the source domain image remains the same throughout
the entire training. On the contrary, our proposed method
introduces more target domain information to the source
domain by progressively increasing the number of mixed
amplitude components following the training scheduling func-
tions. In this way, we implement a curriculum-style dynamic
training scheme for the frequency domain adaptation and
generate more variations of the training data in a “easier to
harder” order.

B. Curriculum-Based Domain Adaptation

The curriculum-style domain adaptation approach has
attracted the interest of the research community due to its
excellent generalization ability. The core idea of this strategy
is to learn “from easier to harder” either from the perspective
of tasks or samples. At the task level, the work [45] designs
the curriculum in a coarse-to-fine manner by decomposing
challenging tasks into sequences of easier intermediate goals
that are used to pre-train a model before tackling the target
task. The efficacy of a curriculum scheme mostly depends
on the appropriate difficulty measurement process. Various
techniques are utilized for this purpose in domain adaptation
tasks. For example, a domain discriminator to measure easier
domain for multi-source domain adaptation [33], a density-
based clustering algorithm to sort the samples from the target
domain based on distance [34], and semantically easier class
region can be considered as the easier label to train in
curriculum strategy [16].
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Unlike previous works, we apply curriculum-based domain
adaptation by gradually introducing domain-variant informa-
tion from the target domain (TD) to the source domain (SD)
to mitigate the domain shift. Specifically, we take advan-
tage of the property that the amplitude components of the
frequency-domain image contain essential and specific low-
level statistics. Then we design a progressive style alignment
method between the source domain and the target domain by
amplitude fusion of images. In such a manner, the training
samples will carry more target domain information and appear
more similar to the target domain images in the later training
phase. By building up understanding slowly and systematically
through our carefully designed curriculum, the model is able
to learn more robust, generalized representations of the data.
This can lead to improved performance on new, unseen data,
as the model has learned to recognize more complex patterns
and generalize them to new situations.

C. Data Augmentation by Mixing Images

To overcome the problem of overfitting, poor robustness,
and weak generalization of deep learning models, various
approaches have been proposed. Among them, data aug-
mentation techniques, which create novel variations of the
existing training images, have gained continuous attention
over the years. Apart from traditional techniques like color
mutation and geometric transformation, data augmentation
can also be done by simply removing part of the original
image [36] or further replacing it with a certain noise [38].
Except for cutting, another line of research also apply image
mixing to generate new images. A pioneer mixing method is
MixUp [37], followed by many other works in this area [39],
[46], [47]. Among them, AugMix [39] is different in that it
mixes more than two images from up to three augmentation
chains. In each augmentation chain, several base augmenta-
tion operations (e.g., translation, rotation, auto-contrast) are
arbitrarily applied to the original image. Then the augmented
images from all chains are linearly mixed with the original
image to form an overall training sample. The use of mixing
augmentation can enhance the diversity of training data, which
is crucial for improving robustness against unexpected shifts
and corruptions in data.

Considering this, we also design the chained augmentation
mixing strategy in our curriculum-based training process to
enhance the generalization and robustness performance. Com-
pared with sequentially conducting separate augmentations in
a normal training scheme, our one-step chained augmentation
mixing is more efficient in improving the training data diver-
sity, only with minimal cost of matrix-weighted addition and
no other computational complexity in neither the training nor
test stage.

III. METHODOLOGY

In this work, we design a curriculum-based cross-domain
information fusion strategy in the Fourier space and incorpo-
rate the training-time chained augmentation mixing module
to improve the model performance concerning adaptation,
generalization, and robustness against natural and synthetic

data shifts. As shown in Fig. 1, our method mainly consists
of three components: Amplitude Fusion, Curriculum Learning,
and Chained Augmentation Mixing.

A. Amplitude Fusion in the Fourier Space

For a spatial-domain digital image x , we can extract the
amplitude components A(x) and the phase components P(x)

in the frequency domain with the Fourier Transform of x , i.e.,
F(x). As the amplitude components of the Fourier Transform
carry the most domain-specific information [43], [48], [49],
[50], for Domain Adaptation (DA), most frequency-domain
image processing techniques manipulate only the amplitude
spectrum while preserving the phase spectrum as it is critical
for maintaining the overall visual look of an image [48]. The
pioneering work FDA [21] attempts to tackle the domain shift
problem by mutating the center region of A(x) from the source
domain (SD) with that from the target domain (TD) in the
frequency space. If AS and AT are denoted as the amplitude
components of two random images from SD and TD, the
reconstituted amplitude components in the frequency space
AF

S at the point (u, v) can be formulated as-

AF
S (u, v) =

{
(1− α)AS(u, v)+ αAT (u, v), if u, v ∈ [−β̂, β̂]

AS(u, v), otherwise
(1)

where β̂ = ||β H || or β̂ = ||βW || for u and v respectively
and || is the floor rounding operation. H and W are the
height and width of the image. The weighting coefficient
α ∈ [0, 1] controls the mixing ratio of amplitude components
from AS and AT . The amplitude scaling coefficient β ∈ [0, 1]
adjusts the area of the mutated center region and a larger
β means a larger center region of AS and AT will be used
for amplitude fusion. Eventually, with the inverse Fourier
Transform F−1, the reconstituted spatial-domain SD image x F

S
can be expressed as xS → x F

S = F−1(AF
S , PS). Both Fourier

Transform and its inverse can be efficiently implemented by
the FFT [51] algorithm.

B. Chained Augmentation Mixing

Data augmentation can significantly increase generalization
and robustness performance by introducing a higher diver-
sity in training data. Furthermore, by stochastically sampling
and mixing various augmentation methods with the original
image, we can generate more novel augmented images without
deviating too far from the original. Varieties of augmentation
operations are covered in the augmentation chains (ACs), such
as auto-contrast, equalization, posterization, rotation, solariza-
tion, shear, and translation in serial and parallel orientations.
For a spatial-domain image x , after the chained augmentation
mixing, the augmented image x Aug can be expressed as below,

x Aug
= m · x + (1− m) ·

AC∑
i=1

(wi · Hi (x)) (2)

where m is a random convex coefficient sampled from a Beta
distribution B(·), wi is another random convex coefficient
sampled from a Dirichlet distribution D(·) controlling the
mixing weights of the augmentation chains, and Hi denotes
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the sequential augmentation operations applied to the i th

augmentation chain. Each augmentation chain consists of up to
three base augmentation operations that are chosen at random.
Details are illustrated in the right part of Fig. 1.

C. Curri-AFDA: Curriculum-Based Augmented Fourier
Domain Adaptation

For a model trained on a single domain data, it is easier
to recognize images from the same domain and harder from
another domain with data shift. In our curriculum strategy, the
amplitude components from TD are progressively transferred
to SD in the frequency space over the training period. In this
way, the model learns comparatively easier information first
from a single domain and successively adopts harder features
like changes in the distribution of the input data from other
domains. More specifically, we control the effect of the
amplitude fusion by gradually increasing the amplitude scaling
coefficient β from 0 to the optimal value βopt . As β grows, the
reconstituted training samples will gradually carry more target
domain information, letting the model learn the distribution
changes for the target domain. Besides, because this fusion
process is slight in the early training phase, the model could
firstly focus on source domain samples to recognize domain-
invariant basic features without being affected by aggressive
target domain information.

To facilitate our strategy that transforming the training data
in each epoch following the curriculum order, i.e., “easier to
harder” or “cleaner to noisier”, we first employ a linearly
increasing scheduler function. Specifically, if βc is the scaling
coefficient in the curriculum stage, then the linear scheduling
function can be formulated as-

βc =


e

E · re
· βopt , if e ≤ E · re

βopt , otherwise
(3)

where E is the total number of training epochs, e is the
current epoch, re stands for epoch ratio which controls the
length of the curriculum stage in the complete training stage
and further controls the changing rate of βc with a fixed
optimal scaling coefficient βopt . As the epoch e grows, βc

also increases, resulting in incremental amplitude mixing as
indicated in (1). In this progress, the model is gradually
exposed to more target domain-specific information to improve
adaptive ability continuously. Besides the linear scheduler
function, there are several other candidates used in Curriculum
Learning to provide distinctive learning paths. We also try the
exponential scheduler function, as depicted in Fig. 2.

As a result, instead of using constant or random β in other
Fourier-based adaptation methods, we adopt the incremental
βc and reconstitute the new training sample xC F

S with the
inverse Fourier Transform which can be represented as-

xC F
S = F−1(AF

S(βc)
, PS). (4)

These generated images are then fed into the chained aug-
mentation mixing module to produce more variations of the
training data. Through this, we can improve the training
data diversity further and thus boost the generalization and

Fig. 2. Visualization of the linear and exponential increment of amplitude
scaling coefficient (β) with different epoch ratios. Different line colors
indicate different epoch ratios, and two line types differentiate two scheduling
functions.

robustness performance of the model. The final reconsti-
tuted training image, xC AF

S , can thus be expressed according
to (2) as-

xC AF
S = m · xC F

S + (1− m) ·

AC∑
i=1

(wi · Hi (xC F
S )). (5)

The perturbation in the low-frequency amplitude compo-
nents of an image in the Fourier space will not alter the core
semantics of the original image, such as the Nuclei shapes.
Therefore, the masks remain unchanged in the cross-domain
amplitude fusion process. Whereas in case of geometric
changes during the chained augmentation mixing, the same
transformations are applied to both the images and masks to
adjust with the shape deviation.

Until this, we have elaborated our Curriculum-based
Augmented Fourier Domain Adaptation (Curri-AFDA),
a novel approach to resolve model degradation in case of
domain shifts and data corruptions. Algorithm 1 outlines the
pseudo code to implement our proposed method efficiently.
In the training process, we employ Fourier Transform to
acquire the amplitude components of both SD and TD images.
The resultant scaling coefficient, generated by the scheduler
function, regulates the amplitude fusion process. Next, the
Inverse Fourier Transform is applied to produce a new image.
Subsequently, the application of chained augmentation mixing
facilitates the generation of additional image variants. It is
worth mentioning that only one image is generated from
each source-target image pair in every epoch, so there is no
additional training memory consumption. However, owing to
the curriculum-based cross-domain information fusion in the
Fourier space, the training data distribution gradually becomes
closer to the target domain. The diversity of the training data
also gets boosted by the chained augmentation mixing module,
which is beneficial to make the model more generalizable and
robust.

IV. EXPERIMENTS

A. Datasets

We perform extensive validation of our method on two
widely-used and well-established medical image segmentation
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Algorithm 1 Pseudo code of Curri-AFDA.

1 Input: Source/target domain image xS/xT , current/total
epoch e/E , epoch ratio re, current/optimal
amplitude scaling coefficient βc/βopt , amplitude
mixing coefficient α.

2 Output: Final reconstituted image xC AF
S .

3 Initialize α, βopt , re, E ;
4 while e < E do

// Get Amplitude (A) and Phase (P)
by Fourier Transform (F)

5 AS, PS ← F(xS); AT , PT ← F(xT );
// Scheduling scaling coefficient

6 if e ≤ E · re then
7 βc ← scheduler(βopt );
8 else
9 βc ← βopt ;

10 end
// Amplitude fusion

11 AF
S ← AF(AS, AT ) s.t. α, βc;

// Inverse Fourier Transform
12 xC F

S ← F−1(AF
S , PS);

// Chained augmentation mixing
13 xC AF

S ← C AM(xC F
S ) s.t. m ∼ B(·), wi ∼ D(·);

14 Take xC AF
S as input for training.

15 end

benchmark tasks, i.e., Retina optic cup and disc segmentation
on fundus images [1], [2], [52], [53] and Nuclei segmenta-
tion [11], [54], [55]. The Retina and Nuclei databases are
collected from different imaging modalities, where Retina and
Nuclei images are collected from color fundus photography
(CFP) and pathological scanning, respectively. Besides, they
comprise four and three data sources, featuring typical domain
shifts such as imaging resolution, data quality, and patient pop-
ulations. Therefore, they can facilitate the model assessment
regarding adaptation, generalization, and robustness. For every
segmentation task, we assign one domain as the source domain
(SD) and select another domain as the target domain (TD)
for training-time amplitude fusion. The remaining domains
are considered external domains (EDs), which are unseen
during training and only used to evaluate generalization and
robustness performance.

Retina segmentation datasets are collected from four
different scanners and sources, i.e., Drishti-GS [56], RIM-
ONE-r3 [57], REFUGE-train [58], and REFUGE-valid [58].
There are two annotation labels of the optic disc and optic
cup for all the datasets. These datasets are collected and
pre-processed by DoFE [1] in their domain generalization
task. Here we employ the database in a single-source setup
containing one fixed source domain (SD), one fixed target
domain (TD), and two external domains (EDs). REFUGE-
train [58], RIM-ONE-r3 [57], Drishti-GS [56], and REFUGE-
valid [58] have 400, 159, 101, and 400 samples, respectively.
To learn more general features and mitigate potential model
bias resulting from a small training data size, we designate
the REFUGE-train dataset as the source domain (SD) and the

Fig. 3. Example images of source and testing domains in (a) Retina
segmentation and (b) Nuclei segmentation tasks. The t-SNE visualization of
image features (extracted by a ResNet-101 network pre-trained on ImageNet)
indicates a significant domain shift.

remaining datasets as the target domain (TD) and two external
domains (ED-1 and ED-2). Additionally, while the REFUGE-
train and REFUGE-valid datasets have an identical size of
400, we maintain their original train-valid split [58] for the
purposes of training and testing without any modifications.
Fig. 3(a) presents some random samples from each domain and
the corresponding embedded feature representation. A clear
domain shift can be observed from both the appearance and
the embedding space.

Nuclei segmentation datasets are collected from three
sources where CryoNuSeg [59] is treated as the source domain
while TNBC [60] and CoNSeP [61] are the target domain
(TD) and external domain (ED). CryoNuSeg [59] dataset is
extracted from the Cancer Genome Atlas (TCGA). It contains
30 images collected from 10 different human organs (three
images per organ), namely the adrenal gland, larynx, lymph
node, mediastinum, pancreas, pleura, skin, testis, thymus, and
thyroid gland. TNBC (Triple Negative Breast Cancer) [60]
dataset is acquired at Curie Institute, containing 50 images
from 11 patients. The CoNSeP [61] dataset consists of
41 images, including stroma, glandular, muscular, collagen,
fat and tumour regions. The data from TNBC [60] is used
for cross-domain information fusion. It is randomly split for
training and testing with a ratio of 8:2, similar to the dataset
split strategy introduced in [62] and [63]. The testing split
of TNBC [60] and the entire CoNSeP [61] dataset are not
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accessed during training. The domain shift between these
datasets arises from organ differences, institutional differences,
and different imaging tools and protocols. Obvious domain
gaps are visualized in Fig. 3(b) with the t-SNE embedding
feature representations.

B. Implementation Details
We implement our method on top of a state-of-the-

art segmentation backbone, UNet [64] and a recent Swin-
Transformer-based model Swin-UNet [65]. A vanilla UNet
architecture1 and the official Swin-UNet implementation2 with
the pretrained Swin-Transformer [66] weight3 are adopted.
The images are resized to 384 × 384 and 224 × 224 for
UNet [64] and Swin-UNet [65] models, respectively. In addi-
tion to the aforementioned Fourier-based FDA [21] and
FACT [22], we also take the adversarial-based segmentation
method ADVENT [13] as another baseline. We refer to the
official repository4 for implementation, such as the discrim-
inator model and its hyper-parameters. The Fourier parts in
our proposal are realized with the official implementation of
FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier
Transform) from the Python Numpy library.

In the curriculum stage, the optimal amplitude scaling
coefficient βopt is firstly determined from the vanilla FDA [21]
by empirically tuning and deriving the best constant scaling
coefficient. Eventually, the value of βopt is 0.006 and 1.0 in
the Retina and Nuclei segmentation. Then according to (3),
we schedule βc by various epoch ratios re and the fixed βopt .
For a fair comparison, we keep the weighting coefficient α

constant for all experiments. Specifically, for the UNet [64]
backbone, α is set as 1.0 and 0.7 in the Retina and Nuclei
Segmentation, while for the Swin-UNet [65] backbone, α is
0.5 and 0.7 in the two tasks. Further details of parameter tuning
are presented and discussed in the ablation study section VI.

For the augmentation mixing, we modify the official imple-
mentation5 of AugMix [39] to adapt it to our curriculum-based
amplitude fusion training process. The augmentation level,
which controls the transformation strength globally, is set as
3 and 2 in the UNet-based and Swin-UNet-based backbones.
The number of augmentation chains (ACs) is 3 and each chain
includes up to 3 stochastically sampled transformations. The
hyperparameters in the Beta and Dirichlet distribution are all
set as 1. In addition, we use a learning rate of 0.001 and the
Adam optimizer for training.

To evaluate the robustness of other methods and our Curri-
AFDA, we adopt various corruption techniques to construct a
series of synthetic Retina datasets. Specifically, four groups of
corruptions, i.e., noise, blur, weather, and digital, including
15 corruption operations, i.e., “Gaussian, Shot, Impulse”,
“Defocus, Glass, Motion, Zoom”, “Snow, Frost, Fog, Bright”,
and “Contrast, Elastic, Pixel, JPEG Compression” are uti-
lized to generate the test datasets. Furthermore, each type of
corruption has five levels of severity. In this way, we can

1https://github.com/ternaus/robot-surgery-segmentation
2https://github.com/HuCaoFighting/Swin-Unet
3https://github.com/microsoft/Swin-Transformer
4https://github.com/valeoai/ADVENT
5https://github.com/google-research/augmix

thoroughly assess the robustness under various corruption
types and levels.

V. EVALUATION AND RESULTS

A. Evaluation Description

To evaluate the segmentation performance, we use a
commonly-used metric, Dice Similarity Coefficient (DSC).
We also compute the mean and standard deviations of the
results for all testing datasets to present the overall model
performance. The performance of our method is compared
with two closely related works, i.e., FDA [21] and FACT [22],
on top of the vanilla CNN-based UNet [64] and Transformer-
based Swin-UNet [65]. Besides, the GAN-based method
ADVENT [13] is also adopted as another reference baseline.
We have conducted extensive assessments of our method
across 1) domain-adaptive performance on the target domain,
2) generalization ability on previously unseen domains, and 3)
robustness to both natural and synthetic data shifts and corrup-
tions. Our evaluation settings follow the standard unsupervised
domain adaptation (UDA) [21], the generic specification of
model generalization [67] and external validity [68], and the
benchmark assessment of robustness [40].

In real medical applications, due to data scarcity, deep
learning models are often required to handle different unseen
data shifts to achieve testing-time adaptation. Considering this,
we not only evaluate the training-time DA performance with
TD, which is available for amplitude fusion during training,
but also perform the testing-time evaluation of the general-
ization and robustness ability with unseen external domains
(ED-1, ED-2). Data leakage is carefully considered to be
avoided during training and testing. All the results reported
for the testing domains are derived from testing on unseen
data. Specifically, for the Retina segmentation experiments, the
model is saved by considering its performance on the test-split
of SD. Besides, only the train-split of TD is used for amplitude
fusion during the curriculum-style training. The test split of
TD and the external domains (ED-1, ED-2) are used for model
evaluation. For the Nuclei segmentation task, to avoid the
training and evaluation bias due to the typically small dataset
size, we perform the 5-fold (folds are split based on human
organs) cross-validation for training and report the average
result on the left-out fold of the source domain. Similarly, the
test-split of TD and the entire ED are used in performance
assessment.

Regarding robustness evaluation, we test the best model
derived from each method with different corruption types
and levels of synthetic Retina datasets. The performance is
compared in two aspects, i.e., robustness under 15 corruption
types on average of 5 corruption levels and robustness under
5 corruption levels on average of 15 corruption types.

B. Results Analysis

The overall quantitative and qualitative results are shown
in Table. I and Fig. 4. The results suggest the superior
performance of our method Curri-AFDA in both domain-
adaptive segmentation tasks compared with other methods, i.e.,
vanilla UNet [64], vanilla Swin-UNet [65], ADVENT [13],
FDA [21] and FACT [22].
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TABLE I
QUANTITATIVE RESULTS ON RETINA SEGMENTATION AND NUCLEI SEGMENTATION. FOR BOTH TASKS, ONLY THE TARGET DOMAIN (TD) IS

ADOPTED FOR THE AMPLITUDE FUSION WITH THE SOURCE DOMAIN (SD) DURING TRAINING. THE EXTERNAL DOMAINS ARE USED DURING

TESTING TO EVALUATE THE GENERALIZATION ROBUSTNESS. DSC (%) IS ADOPTED AS THE PERFORMANCE METRIC. AVERAGE RESULTS ACROSS ALL

TESTING DOMAINS AND THE CORRESPONDING STANDARD DEVIATIONS (STD) ARE PRESENTED FOR BOTH TASKS. THE VANILLA METHOD MEANS

NO DOMAIN ADAPTATION APPROACH IS APPLIED. THE BEST RESULTS ARE SHOWN IN BOLD AND THE RUNNER-UP RESULTS ARE UNDERLINED

Fig. 4. Qualitative comparison on the results of different methods with UNet [64] backbone for (a) Retina segmentation and (b) Nuclei segmentation.
Each row demonstrates the segmentation results of different methods compared with the ground truth for the testing images. In (a), the blue and green contours
indicate the boundaries of the optic cups and optic discs, respectively, while the red contours are the ground truths. The boundaries of both classes obtained
by our Curri-AFDA are closer to the ground truths. In (b), more nuclei can be segmented out by our method for both testing images.

1) Retina Segmentation: For the Retina Segmentation task,
on the target domain (TD), our Curri-AFDA achieves the
DSC improvement of 0.96% and 5.30% against the best result
from the other methods with UNet [64] and Swin-UNet [65]
as backbones, respectively. This shows the outstanding adap-
tation performance of our approach. When comparing the

generalization and robustness performance on the unseen
external domains, i.e., ED-1 and ED-2, our method also
achieves the best result in most cases. Note that with the Swin-
UNet [65] backbone, our method yields a bit lower result
than the best one from other methods. We attribute this to
the relatively small dataset size. However, on average of all
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TABLE II
ROBUSTNESS PERFORMANCE OF OUR CURRI-AFDA AND OTHER METHODS ON CORRUPTED RETINA DATA UNDER VARIOUS TYPES OF

CORRUPTION. RESULTS ARE OBTAINED BY AVERAGING THE PERFORMANCE UNDER FIVE SEVERITY LEVELS FOR EACH CORRUPTION

TYPE. OUR CURRI-AFDA OUTPERFORMS OTHER METHODS BY A LARGE MARGIN FOR MOST OF THE CORRUPTION

TYPES. THE BEST DSC (%) RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 5. Robustness comparison of different methods on the synthetic
retina data under growing severity levels of corruption on average of
different corruption types. Our Curri-AFDA is more robust to preserve
higher and stabler performance.

three testing datasets, our Curri-AFDA can improve the DSC
performance by 1.78% and 2.68% for the two backbones,
showing the superior generalization and robustness ability.
As demonstrated in Fig. 4(a), more accurate segmentation
masks and boundaries can be obtained with our method.

2) Nuclei Segmentation: For the Nuclei Segmentation task
which is much harder due to multiple tiny instances with
uncertain positions, similar conclusions can also be drawn
that our curriculum-based approach outperforms other meth-
ods regarding adaptation, generalization, and robustness, with
much more significant gains. Although the performance on ED
with Swin-UNet [65] is a bit lower than some other methods
due to the smaller dataset size, the overall DSC gains are
8.50% and 4.29% on the testing data with UNet [64] and
Swin-UNet [65] backbones. Fig. 4(b) shows the qualitative
comparison of different methods for Nuclei segmentation.
Our method performs better in such a segmentation task to
recognize more nuclei.

3) Robustness Analysis: A more robust model is reflected
in the fact that it can still maintain higher performance
when exposed to corrupted images under different corruption
types and increased corruption severity levels [40]. On the
one hand, as shown in Table. II, our Curri-AFDA yields
higher performance against most of the corruption types
compared with other methods. The overall average DSC of
our Curri-AFDA surpasses the best result of other methods
by 3.39%. On the other hand, Fig. 5 illustrates that our
Curri-AFDA maintains superior performance under increasing

Fig. 6. Ablation comparison of our method Curri-AFDA with the
Swin-UNet [65] backbone on two target domains of Retina and Nuclei
segmentation. Consistently improved results demonstrate the efficacy of each
module in our proposal.

severity levels while the performance of other approaches
degrades dramatically, especially in comparison to the other
two Fourier-based approaches.

In summary, the proposed framework of curriculum-based
amplitude fusion and chained augmentation mixing allows the
model to explore and learn a broader feature representation
space. The results of extensive experiments and evaluation on
multiple domains indicate that our Curri-AFDA is generic and
capable of achieving superior adaptation, generalization, and
robustness performance compared with other methods.

VI. ABLATION STUDY

A. Decomposition Analysis of Each Module

As shown in Fig. 1, our proposal mainly consists of three
modules, i.e., Amplitude Fusion, Curriculum Learning and
Augmentation Mixing. Here we decouple these modules and
compare the performance with Vanilla Swin-UNet [65] (with-
out adaptation method), FDA [21], AFDA (FDA [21] with
Augmentation Mixing) and Curri-FDA (FDA [21] with our
curriculum strategy). As shown in Fig. 6, the three modules
can consistently improve the performance and the integration
of them, i.e., our Curri-AFDA, yields the best results on both
target domains of Retina and Nuclei segmentation.

B. Curriculum Vs. Anti-Curriculum Vs. Random

Depending on a comprehensive understanding of the train-
ing data and task, the design of the curriculum is of vital
significance in the utilization of Curriculum Learning. For
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Fig. 7. Results of different curriculum designs on testing domains of
Retina segmentation and Nuclei segmentation with UNet [64] backbone.
Our curriculum can always yield better performance, especially on the nuclei
datasets.

the domain adaption and generalization task, amplitude fusion
of images in the frequency space can help mitigate the
variance between different domains. We take advantage of this
property and establish an effective curriculum-based training
framework. Specifically, in our hypothesis, the amplitude
scaling coefficient β controls the amount of target domain
information to be transferred to the source domain. The
scheduled increment of β, i.e., the βc in (3), is the core
idea in our proposed curriculum for the domain-adaptive
segmentation task. By gradually increasing the amount of the
mutated low-frequency amplitude components in the source
and target domain data, the generated training samples carry
more domain-invariant information and thus enable the model
to be more generalizable.

Apart from our curriculum, we notice that in some
works [69], [70], the best curriculum is reported as the
opposite of conventional curriculum learning, i.e., “harder to
easier”. Therefore, we also conduct experiments with another
two curriculum designs, i.e., the anti-curriculum in which βc

gradually decreases and the random-curriculum in which βc

is randomly sampled in the range [0, βopt ]. For a comprehen-
sive comparison, both the linear and exponential scheduling
functions of βc are evaluated and reported. As illustrated in
Fig. 7, our curriculum design yields better results on all testing
domains for both tasks, especially for the Nuclei segmentation
task.

C. Sensitivity to Epoch Ratio

Epoch ratio (re in (3)) controls the duration of applying our
curriculum strategy in the whole training process and affects
the changing rate of the amplitude scaling coefficient βc. This
further characterizes different learning speeds of cross-domain
information. We present the ablation study on the Retina
segmentation task to compare the performance of our method
Curri-AFDA with FDA [21] under different epoch ratios.
The exponential function is adopted to update the amplitude
scaling coefficient. We take the constant FDA [21] results as
a reference for its irrelevance to the epoch ratio.

In our curriculum-based domain-adaptive segmentation task,
smaller or larger epoch ratios result in quicker or more

Fig. 8. Results of tuning epoch ratios. Faster and slower learning speeds
characterized by smaller and larger epoch ratios are more likely to enhance
performance.

TABLE III
COMPARISON OF LINEAR AND EXPONENTIAL SCHEDULING

FUNCTIONS UNDER VARIOUS EPOCH RATIOS. THE EXPONENTIAL

FUNCTION PROVIDES A HIGHER AVERAGE DSC WHILE THE LINEAR

FUNCTION GIVES STABLER PERFORMANCE UNDER DIFFERENT

EPOCH RATIOS WITH A LOWER STANDARD DEVIATION

gradual exposure of TD information. This can let the model
learn cross-domain information faster within earlier epochs
or slower until later epochs. As shown in Fig. 8, these
two learning speeds are more likely to enhance the model
performance than a moderate one. Such behavior aligns with
the generic Curriculum Leaning theory [71], which suggests
that models exhibit improved performance by either learning
the challenging task faster within earlier epochs or slower
until later epochs, rather than adopting a moderate learning
pace. The findings in this ablation study prioritize initializing
the epoch ratio with a smaller or larger value to achieve
optimal results.

D. Linear and Exponential Scheduling Functions

We further explore the scheduling functions of the ampli-
tude scaling coefficient β in our curriculum. The way to
update β is one of the major considerations in designing our
approaches. Specifically, we implement the predefined linear
and exponential functions to update β in each training epoch.
As shown in Fig. 2, the key difference between them is that for
a fixed epoch ratio, the exponential function yields a variable
changing rate of β. In contrast, the linear function provides a
constant one throughout the curriculum. Here we investigate
the effect of these two scheduling functions with experiments
on the Nuclei segmentation task with UNet [64] backbone.

As outlined in Section. VI-C, smaller or larger epoch ratios
are more likely to yield improved results than intermediate
ones. The results in Table. III further substantiate this conclu-
sion by showing that the optimal performance of the linear
and exponential schedulers are achieved with epoch ratios
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TABLE IV
STATISTICS OF SKIN LESION CLASSIFICATION DATASETS. OVER 10
THOUSAND SAMPLES ARE INCLUDED IN FOUR MEDICAL DOMAINS

TABLE V
QUANTITATIVE RESULTS OF SKIN LESION CLASSIFICATION WITH

SWIN-TRANSFORMER [66]. THE F1 SCORE (%) RESULTS AND THE

OVERALL PERFORMANCE ON THE TESTING DOMAINS ARE REPORTED.
THE BEST RESULTS ARE IN BOLD AND THE RUNNER-UP

RESULTS ARE UNDERLINED

of 0.2 and 0.8, respectively. These values fall within the
suggested feasible range of epoch ratios. Upon examining the
results presented in Table. III within the suggested ranges of
epoch ratios, we can observe that the exponential scheduler
outperforms the linear scheduler in more cases. Furthermore,
we note that the exponential scheduler achieves a higher
average performance across all epoch ratios. These findings
indicate that the exponential scheduler is more reliable in
providing favorable outcomes than the linear scheduler with
our method.

E. Efficacy for Medical Image Classification

Besides segmentation, image classification is also funda-
mentally demanding in medical applications. To evaluate the
efficacy of our Curri-AFDA for medical image classification,
we utilize a collection of skin lesion datasets with thousands
of samples released by PRR-FL [72]. The datasets have four
medical domains and are annotated with three skin lesion
types, i.e., Nevus, Benign Keratosis, and Melanoma. Following
their dataset splits as shown in Table. IV, we conduct the
classification experiments with the Swin-Transformer [66] as
the backbone. The f1 score is adopted as the evaluation metric
to reveal a more comprehensive comparison of the unbalanced
datasets. The optimal amplitude scaling coefficient βopt and the
weighting coefficient α are 0.06 and 0.7, respectively.

As shown in Table. V, our method yields the best overall
result of f1 score on the skin lesion datasets. This demonstrates
that our methods are also supportive of the domain-adaptive
medical image classification task in addition to segmentation.

VII. CONCLUSION AND DISCUSSION

This work proposes the Curriculum-based Augmented
Fourier Domain Adaptation (Curri-AFDA) and proves to
achieve superior adaptation, generalization, and robustness
performance for medical image segmentation. Specifically, we

design a novel curriculum strategy to progressively transfer
amplitude information in the Fourier space from the tar-
get domain to the source domain to mitigate domain gaps
and incorporate the chained augmentation mixing to further
improve the generalization and robustness ability. Our method
is naturally modality-independent due to its independence
on any particular properties of the imaging modality. With-
out additional trainable parameters, extensive experiments on
two segmentation tasks with multiple-domain datasets of two
image modalities demonstrate the efficacy of our method on
top of both the classical CNN (UNet [64]) and recent trans-
former (Swin-UNet [65]) architectures. Specially, we consider
the crucial yet rarely explored topic in medical image analysis,
i.e., the robustness performance with the synthetic dataset
generated by different types and levels of corruptions, and
also observe the superior results of our method. Additionally,
our method can also contribute to medical image classifica-
tion besides segmentation, indicating its potential for broader
medical applications.

Future research may focus on designing more flexible and
automatic scheduling functions to update the amplitude scaling
coefficient which adjusts the amplitude fusion area. In addi-
tion, the weighting coefficient which controls the merging
ratio between images can also be involved when designing the
curriculum strategy. Besides the training-time Domain Adap-
tation, test-time Domain Adaptation [73], [74] is also worth
to be explored by integrating the Fourier-based cross-domain
information fusion and the chained augmentation mixing.
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