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Mexico, 3Institute of Education and Child Studies, Leiden University, Leiden, The Netherlands, 4Department of Neuroimaging, Institute of Psychiatry, Psychology
& Neuroscience, King’s College London, London, UK, 5Public health and Primary Care, Cardiovascular Epidemiology Unit (CEU), University of Cambridge,
Cambridge, UK, 6Dpto. de Fisiología Médica y Biofísica. Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla, Sevilla, Spain, 7Wellcome
Trust Center for Neuroimaging, University College London, London, UK and 8Department of Clinical, Educational and Health Psychology, University College
London, London, UK

Abstract

Childhood adversity is one of the strongest predictors of adolescentmental illness. Therefore, it is critical that themechanisms that aid resilient
functioning in individuals exposed to childhood adversity are better understood. Here, we examined whether resilient functioning was related
to structural brain network topology. We quantified resilient functioning at the individual level as psychosocial functioning adjusted for the
severity of childhood adversity in a large sample of adolescents (N= 2406, aged 14–24). Next, we examined nodal degree (the number of
connections that brain regions have in a network) using brain-wide cortical thickness measures in a representative subset (N= 275) using a
sliding window approach.We found that higher resilient functioning was associated with lower nodal degree of multiple regions including the
dorsolateral prefrontal cortex, the medial prefrontal cortex, and the posterior superior temporal sulcus (z> 1.645). During adolescence,
decreases in nodal degree are thought to reflect a normative developmental process that is part of the extensive remodeling of structural brain
network topology. Prior findings in this sample showed that decreased nodal degree was associated with age, as such our findings of negative
associations between nodal degree and resilient functioning may therefore potentially resemble a more mature structural network
configuration in individuals with higher resilient functioning.
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Introduction

Childhood adversity (CA) refers to a range of negative experiences
throughout childhood and adolescence such as parental psycho-
pathology, peer victimization, and various forms of parental
maltreatment (e.g., neglect or overt maltreatment). CA experiences
are one of the strongest predictors of mental health problems
(Green et al., 2010), possibly through their impact on the
developing brain. According to the social transactional model of
psychiatric vulnerability (McCrory et al., 2022), CA experiences

shape fronto-limbic development and related socio-emotional
functioning to aid survival in high-threat environments. For
instance, in the context of an abusive home-environment, it may be
adaptive for a child to rapidly detect when a parent is angry, to
expect negative feedback, and to adjust their behavior and
emotions accordingly. However, in nonthreatening social envi-
ronments such socio-emotional functioning adaptations may
inadvertently evoke social problems and generate social stress, and
ultimately lead to mental health problems in later life (McCrory
et al., 2022).

Fortunately, not all individuals who have experienced CA
develop mental illness; rather, a substantial proportion of
individuals exposed to CA function resiliently later in life.
Resilience refers to the capacity of a system (e.g., a brain, a child,
a family, a community) to successfully adapt to challenges that
threaten the function, survival, or development of that system
(Masten et al., 2021; Masten & Monn, 2015). Resilience in the
context of CA, when the stressor has already taken place, refers to
an outcome of positive mental health functioning on a given
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trajectory or at a given point in time. Such resilient functioning
should be assessed across mental health domains, given the
nonspecific negative impact of CA (Masten & Monn, 2015), and
should be better than others with similar severity of CA
experiences (van Harmelen et al., 2017). Resilient functioning in
individuals exposed to CA is aided by an array of separate yet
interrelated protective social and cognitive influences such as
positive parenting, and social support, high self-esteem, low
rumination (Fritz et al., 2018; Kalisch et al., 2017, 2019; van
Harmelen et al., 2017, 2021). Furthermore, it is thought that these
socio-cognitive protective factors interact with brain structure and
functioning (Ioannidis et al., 2020). Recent reviews of the literature
suggest that resilient functioning may be facilitated by larger
hippocampal structure and increased functional connectivity
between limbic regions and the central executive network (CEN)
(Moreno-López et al., 2020). Although these studies provide
important insights about the neurobiology that may aid resilient
functioning, recent advances in neuroscience indicate that
cognitive and emotional processes are not merely facilitated by
specific regions but emerge through the interaction of brain
networks (Krendl & Betzel, 2022).

Brain networks can be constructed from structural or func-
tional neuroimaging data (Krendl & Betzel, 2022). Structural
covariance networks are thought to overlap with functional
networks (Zielinski et al., 2010), and can be examined using graph
theoretical approaches, such as structural covariance (Bullmore &
Bassett, 2011; Kaiser, 2011; Rubinov & Sporns, 2010). Structural
covariance reflects the interindividual (Alexander-Bloch et al., 2013;
Vijayakumar et al., 2021) or intra-individual (Seidlitz et al., 2018;
Yun et al., 2016) covariation in brain morphology (for example
cortical thickness) between different regions (nodes). Importantly,
interindividual structural covariance may reflect coordinated brain
development (Alexander-Bloch et al., 2013; Khundrakpam et al.,
2013; Vijayakumar et al., 2021). During puberty and adolescence,
the cerebral cortex becomes thinner (Wierenga et al., 2014) and
white matter tracts become more densely myelinated (Miller et al.,
2012) suggesting a progressive refinement of neural connections
through ongoing neural regressive events such as pruning (Kaiser,
2011; Alexander-Bloch et al., 2013; Miller et al., 2012; Zielinski et al.,
2010). The transition from childhood to adolescence is characterized
by global increases in structural covariance of cortical thickness
followed by reductions into mid-adolescence (Vijayakumar et al.,
2018). Structural covariance continues to decrease through late
adolescence before plateauing in the early twenties, which
corresponds to the prolonged maturation of association cortices
(Váša et al., 2018). The associated developmental changes in
structural covariance during later adolescence, such as cortical
thinning, have been related to reductions in nodal degree, the
number of connections that brain regions have in a network (Váša
et al., 2018). Such development is thought to be shaped by genetic as
well as environmental influences (Whitaker et al., 2016).

Reviews on the neurobiology of resilience show an overall lack
of consistent findings which could be the result of different
conceptualizations of resilience (Eaton et al., 2022; Zhang et al.,
2023; Leal & Silvers, 2021). In general, reviews point to neural
circuits involved in emotion regulation and reward (Eaton et al.,
2022; Leal & Silvers, 2021), fronto-subcortical networks (Zhang
et al., 2023) and the emotional brain (Moreno-López et al., 2020).
To date, only a few studies have investigated the relationship
between resilience in individuals exposed to CA and structural
brain networks (reviewed in Moreno-López et al., 2020). Ohashi
et al. (2019) found reduced nodal efficiency in resilient individuals

in the amygdala and 8 other nodes compared to susceptible
individuals exposed to CA using diffusion tensor imaging and
tractography. Comparing groups of non-maltreated youth, mal-
treated youth with PTSD andmaltreated youth without PTSD, Sun
et al. (2019) found larger centrality (importance of a region within
a network) in the right frontal pole in maltreated youth without
PTSD symptomatology compared to non-maltreated youth and
maltreated youth with PTSD based on a structural covariance
derived from cortical thickness estimates. The frontal pole plays a
role in adapting and updating reward processing models in
response to the environment (Kovach et al., 2012). In a study with a
similar design, maltreated youth without PTSD (versus with
PTSD) showed larger centrality in right orbitofrontal cortex (Sun
et al., 2018), a region critical for evaluation, affect regulation and
reward-based decision-making (Fettes et al., 2017). Thus, resilient
functioning in individuals exposed to CA is likely related to altered
structural covariance patterns. However, these studies estimated
resilience at the group-level, and were not able to relate the findings
to individual level of resilient functioning, limiting the general-
izability of these findings.

Hence, little is known about the structural network topology
related to the level of resilient functioning in individuals exposed to
CA, particularly in young people when the brain is in development.
In doing so, appropriate quantification of resilient functioning
after CAmust keep in mind the following aspects. Firstly, given the
negative impact of CA on a range of mental health and well-being
outcomes, it is important that resilient functioning incorporates
functioning across these psychological and social ("psychosocial")
domains of functioning (Masten & Monn, 2015). Such resilient
functioning across domains should further take into account what
someone has experienced, as individuals with similar psychosocial
functioningmay differ in their degree of resilient functioning when
one has experienced more severe CA than the other. Finally, as CA
is a highly clustered experience, where different types of adversity
often co-occur, it is important to take all CA experiences into
account when examining CA. To do so, we build on previous work
(Ioannidis et al., 2020; van Harmelen et al., 2017, 2021) and use
data reduction techniques (principal component analyses) to
derive a single estimate for psychosocial functioning that
summarizes low to high functioning across multiple measure-
ments, and use the same approach to calculate a single estimate
that summarizes the severity of all experiences of childhood family
adversity (CFA) in a community cohort of healthy young people
with low to moderate CFA (N = 2406, aged 14–24). Next, we
regressed the estimate for CA onto the estimate for psychosocial
functioning. In doing so, individual-level resilient functioning can
then be inferred from the residuals of the relation between CA and
psychosocial functioning - the extent to which an individual is
functioning better than expected given their CA experiences
(implying resilient functioning, green lines) or worse than expected
(implying vulnerable functioning, red lines) (Figure 1b, see
Ioannidis et al., 2020; van Harmelen et al., 2017, 2021). The aim
of this study is to examine whether such resilient functioning in
young people exposed to CFA is associated with altered structural
network topology. To do so, we use a sliding window method (See
Figure 1c); a novel approach so far only used to estimate the
structural network topology of neurodevelopmental trajectories
(Alexander-Bloch et al., 2013; Ohashi et al., 2019). Here, we use the
sliding window method to be able to use resilient functioning as a
continuous measure and test for robustness of its association with
nodal degree by repeating the structural covariance analyses across
different subsamples. By altering the window width and step size
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with each iteration, our findings get independent of the
parameters used for the sliding window method. Given the
importance of socio-emotional functioning in mental health
vulnerability in adolescents and adults exposed to CA (McCrory
et al., 2022; Moreno-López et al., 2020), we hypothesized that
higher level of resilient functioning would be associated with
changes in nodal degree of cortical brain regions that help guide
socio-emotional functioning. Building on previous work in this
sample (Váša et al., 2018; Whitaker et al., 2016), we chose to

investigate nodal degree in structural covariance networks
derived from cortical thickness estimates since this measure
was shown to decrease with age in adolescence, and this decrease
was associated with corresponding myelination changes in the
association cortices (Váša et al., 2018). Furthermore, we focused
on CFA rather than the broader CA as our available data contains
questionnaires that focus on the family environment. Data on
other experiences of CA, such as bullying, racism, or poverty,
were not included here.

Figure 1. Study design A) A covariancematrix of the cortical thickness (CT)measures for 308 parcellations in 275 participants is created. Next, the datamatrix is substituted by the
residuals of the linear regression to remove variation related to age, gender, and intra-cranial volume. B) Next, resilient functioning scores are created based on the NSPN sample
(N = 2406). The figure shows the extent to which an individual functioned better than expected ("high, or resilient;" green lines), or worse than expected ("low or risk" red lines),
than others with similar childhood family adversity experiences. Note that higher residual scores reflect more resilient functioning, and that both X and Y axes represent factor
scores with Mean = 0 and SD = 1. C) Next, a sliding windowmethod was applied with varying window sizes (red box), to assess how resilient functioning was related to changes in
the nodal degree of the network overlapping structural networks of 275 participants. CT values of each region were cross correlated with windows containing the same numbers,
we used bootstrapping to threshold the network. D) Then, we evaluated linear regional changes in node degree as a function of themedian resilient functioning. E) We varied these
parameters to explore consistency in the results using a “Convergence Index,” considering all nine combinations of window widths (40, 60, 80) and step sizes (5, 10, 20), plus one
further combination ofww= 60 and ss= 30. Convergence indices were calculated for each of the brain parcellations, where the index represents the number of times the region is
associated with resilient functioning for each of the above combinations. Thus, a convergence index of 10 indicates that the region was associated with resilient functioning every
run and a convergence index of 0 indicates that it was never associated.
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Methods

Study design and participants

Participants were part of the Neuroscience in Psychiatry Network
(NSPN) study: a multi-center accelerated longitudinal community
cohort study focusing on normative adolescent to young adult
development between the ages 14–24. The NSPN cohort
(N= 2406) was recruited from schools, colleges, National Health
Service primary care services, and direct advertisement in north
London and Cambridgeshire. Maintaining the same gender and
ethnicity balance as in the main sample, 301 participants were
invited for an MRI scan (Whitaker et al., 2016). For this
manuscript, we excluded those individuals with a lifetime
history of brain damage, epilepsy, genetic syndromes, and
premature birth (N = 26), leaving a total sample of 275
individuals for the analyses of brain imaging data below.

The inclusion criteria for the MRI subset were that the
participants should be aged between 14 and 24 years; able to
understand written and spoken English; have normal or
corrected-to-normal vision; and able to give informed consent
for participation in the study. The exclusion criteria were current
treatment for psychiatric disorders, drug dependance, alcohol
dependance, current or previous neurological disorders, brain
trauma including epilepsy, head injury causing loss of conscious-
ness, learning disability requiring specialist educational support
and/or medical treatment, and standard MRI contraindications.
Individuals with previous or lifelong psychiatric disorders were
not excluded, except if they were in current treatment for these
disorders. The study was approved by the Cambridgeshire and
Peterborough Foundation Trust and the University of Cambridge
research ethics committees (REF 12/EE/0250). All participants
(and their caregivers) were briefed about the study aims and
protocols and signed an informed consent form.

Acquired data

To assess resilient functioning, we relied on data from question-
naires on psychological functioning, CFA, socio-demographic
status, family and educational or occupational environments, and
subclinical psychopathology in the NSPN sample (N = 2406).
Assessments for the MRI sub study (N= 275) further included a
day of clinical, cognitive, and MRI assessments at the University of
Cambridge or University College London sites.

Measures of psychosocial functioning
Psychosocial functioning was based on allmeasures included in the
NSPN home questionnaire pack that assessed any aspect of
psychological and social functioning. This included measures of
psychiatric symptomatology, personality traits, and mental well-
being. Below we provide an overview of the specific measures used,
please refer to van Harmelen et al. (2017) and Supplementary
material for a description of the measures. Psychosocial function-
ing was assessed with sum scores from the Mood and Feelings
Questionnaire (MFQ; [Angold et al., 1996]), Revised Children’s
Manifest Anxiety Scale (RCMAS; [Reynolds & Richmond, 1997]),
Short Leyton Obsessional Inventory (S-LOI; [Bamber et al., 2002]),
Child Behavior Checklist (CBCL; [Achenbach, 1991]) and Kessler
Psychological Distress Scale (K10; [Kessler et al., 2002]), the
Adolescent Psychopathy Screening Device (APSD; [Frick et al.,
2000]), Child and Adolescent Dispositions Scale (CADS; [Lahey
et al., 2008]), the Inventory of Callous-Unemotional Traits (ICU;
[Roose et al., 2010]), Schizotypal Personality Questionnaire (SPQ;

[Raine, 1991]), and the Barratt Impulsiveness Scale (BIS-11;
[Stanford et al., 2009]), and the Warwick-Edinburgh Mental Well-
being Scale (WEMWBS; [Tennant et al., 2007]).

Measures of childhood family adversity
Childhood Family Adversity (CFA) scores included allmeasures in
the NSPN home questionnaire pack that assessed any aspect of the
home environment whilst growing up. As such, CFA within the
family environment was assessed with the Alabama Parenting
Questionnaire (APQ; [Elgar et al., 2007]) and the Measure of
Parental Style (MOPS; [Parker et al., 1997]). The types of
experiences assessed with the APQ and MOPS include parental
abuse and neglect, and more general parenting behaviors (i.e.,
positive parenting, inconsistence, indifference, and control). Please
refer to van Harmelen et al. (2017) and Supplementary material for
a description of the measures.

MRI acquisition
Participants underwent structural MRI (3T) using the multi-
parameter mapping (MPM) sequence (Weiskopf et al., 2013) in
Cambridge (two sites) or London. All sites used identical scanners
(Siemens Magnetom Tim Trio), sequences, and protocols. The
setup, acquisition, and post-processing have been previously
described (Weiskopf et al., 2013). Briefly, the MPM protocol
includes three multi-echo 3D FLASH (fast low-angle shot) scans,
one radiofrequency (RF) transmit field map, and one static
magnetic (B0) field map scan. Multiple gradient echoes were
acquired with alternating readout polarity at six equidistant echo
times between 2.2 and 14.7 ms for both acquisitions. Other
acquisition parameters were: 1 mm isotropic resolution, 176
sagittal partitions, field of view = 256 × 240 mm, matrix= 256 ×
240 × 176, parallel imaging using GRAPPA factor 2 in phase-
encoding direction (AP), 6/8 partial Fourier in partition direction,
nonselective RF excitation, readout bandwidth BW= 425 Hz/
pixel, RF spoiling phase increment= 50 Å. The total acquisition
time was ∼25 min. Participants were instructed to lie still and rest
during the scan.

MRI processing
MR images were processed using the Freesurfer pipeline (v5.3.0),
including skull-stripping, and segmentation of cortical gray and
white matter (Fischl et al., 2002). After quality control, three
participants were excluded from further analysis because of
movement artifacts, which prevented accurate surface reconstruc-
tions and reconstruction of the cortical surface and gray-white
matter boundary (for more detail see Whitaker et al., [2016]).
Parcellation of cortical gray matter regions was based on the
anatomical borders of 308 equally sized regions (159 in each
hemisphere) of 500 mm2 that were constrained by the anatomical
boundaries according to the Desikan-Killiany atlas (Desikan et al.,
2006). We opted to use this particular atlas because it comprises an
optimal spatial scale for graph theory analysis (Romero-Garcia
et al., 2012). Average CT was extracted for each of the 308 regions
in each participant.

Analyses

Missing data handling
All analyses were conducted using R version 3.4.1 "Single Candle"
of the Lavaan package (Rosseel, 2012). From the NSPN cohort
(N= 2406), all behavioral measures were complete for 1907
participants. The subset with no missing data did not differ from
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the larger sample in terms of age (t(4091)=−0.027, p= 0.97),
gender (χ2 = 0.01, df = 1, p= 0.92), socioeconomic status (SES;
index of multiple deprivation based on participant postcodes;
t(4038)=−1.29, p= 0.19), or ethnicity (χ2= 3.65, df = 5, p= 0.60).
Thus, missing data on the measures used in the below analyses
were imputed using the Amelia package in R (Honaker et al., 2011).
We calculated resilient functioning scores (as per the below
description) within all 5 imputed datasets. These resilient
functioning scores were highly correlated (r’s> 0.9, see supple-
mental Table S1 for specifics). Therefore, for this manuscript, we
used the resilient functioning scores that were calculated using data
from the first imputation sample.

Resilient functioning scores
Following the procedure detailed in van Harmelen et al. (2017), we
estimated resilient functioning using the "residual method" on the
imputed dataset for the NSPN cohort (N= 2406). Please refer to
Ioannidis et al. (2020) for a detailed discussion of the benefits and
drawbacks of this approach to quantify resilient functioning, and
Cahill et al. (2022) for external validation of this approach which
has shown good psychometric properties. Using this method we
previously showed that adolescent friendships predict resilient
functioning in two large independent samples; theN = 2406 NSPN
sample (van Harmelen et al., 2017), and in the N = 1238 Roots
sample (van Harmelen et al., 2021). We used principal component
analysis (PCA) to compute individual psychosocial functioning
scores using standard-normally transformed individual total
scores across a range of measures (see Table 1; MFQ, RCMAS,
S-LOI, K10, CBCL, APSD, CADS, ICU, SPQ, BIS-11, and
WEMWBS). We also utilized PCA to calculate individual levels
of CFA severity using standard-normally transformed sum scores
for the MOPS and the APQ subscales (see Table 1) within the
entire NSPN sample (N= 2409). Resulting CFA factor scores were
regressed onto the psychosocial functioning factor scores, and the
best fitting regression model (in this case, quadratic) was obtained.
The residuals from this model reflect how much better or worse
individuals are functioning when compared to others with similar
CFA scores. As such, these residual scores can be interpreted as a
proxy to indicate individual degree of "vulnerable to resilient"
functioning (from here, for brevity we refer to this as "resilient
functioning"), with higher scores reflecting better psychosocial
functioning relative to the level of CFA. Next, individual resilient
functioning scores were extracted for the MRI cohort (N= 275)
and utilized in subsequent analyses.

Structural covariance
To estimate each structural network, we used Pearson’s correlation
coefficients on the cortical thickness (CT) values estimated from
Freesurfer based on structural MRI. Cortical thickness estimates
were corrected for intracranial volume. Further, we performed a
linear regression on regional CT values to remove effects of age and
gender on cortical thickness. The residuals of this regression then
replaced the raw values in the CT data matrix. These detrending
steps were implemented to remove potentially confounding
interindividual variation related to age and gender and intracranial
volume. This method has been utilized by others (Melie-Garcia
et al., 2018). Next, we used bootstrapping to threshold the network.
Using this method, and for each window, an equal number of
participants were resampled with replacement to construct 1000
bootstrapped structural networks. We then examined whether
there were significant relations between each pair of regions across
all bootstrapped networks. Consistent relationships between a pair

of regions (at p< .001 adjusted for the False Discovery Rate (FDR)
at the pair level (Váša et al., 2018)) were retained and the remaining
relationships were discarded. For comparison, the main analyses
were repeated without the detrending step for age and gender
(Supplement).

Sliding window method
We applied a sliding window method to assess how resilient
functioning was related to changes in the nodal degree of the
network, defined as the number of edges connected to a node
(Figure 1). CT values of each region were cross-correlated with
windows containing the same numbers of participants and moved
across resilient functioning scores by stepwise increases. At each
step (within each window) we estimated a structural covariance
network. For more information on the sliding window technique
see Váša et al. (2018). The selection of sliding window parameters,
including window width (ww) and step size (ss) in units of number
of participants involved several tradeoffs. The number of windows
was defined using the following equation:

Nwind ¼ ceilððNpart � wwÞ=ssÞ

Where Npart was the number of participants (n= 275), and ceil
the ceiling function, which rounds non-integer fractions to the
smallest integer larger than said fraction. The ss and ww define the
number of windows and this in turn has an impact on the
sensitivity of the analyses. Therefore, we varied these parameters to
explore consistency in the results, considering all nine combina-
tions of window widths (40, 60, 80) and step sizes (5, 10, 20), plus
one further combination of ww= 60 and ss = 30, overlapping
structural networks of 275 participants. We assessed the network
topology changes by measuring the nodal degree. We then
evaluated linear regional changes in nodal degree as a function of
the median resilient functioning with Akaikes information
criterion (AIC) and corrected for multiple comparisons (adjusted
for the false discovery rate, p< .05). We ran permutation tests at
the level of the windows without reconstructing the correlation
matrices to see if the regional effects of change in structural

Table 1. Factor loadings for the PCA’s for psychosocial functioning

Measure
PCA factor load-

ings

Mood and Feelings Questionnaire 0.364

Revised Children’s Manifest Anxiety Scale 0.357

Short Leyton Obsessional Inventory 0.282

Child Behavior Checklist 0.241

Kessler Psychological Distress scale-10 0.35

Antisocial Process Screening Device 0.253

Child and Adolescent Dispositions Scale pro-sociality* −0.123

Child and Adolescent Dispositions Scale negative
emotionality

0.287

Child and Adolescent Dispositions Scale daring 0.001

Schizotypal Personality Questionnaire 0.329

Warwick-Edinburgh Mental Well Being Scale* −0.309

Inventory of Callous-Unemotional traits 0.234

Barratt Impulsivity Scale-11 0.238

*High score indicates positive psychosocial functioning.
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correlation as a function of resilient functioning was valid. A
convergence index was calculated for each of the brain region
under consideration, where the index represents the number of
times the region is associated with resilient functioning for each of
the above combinations. Thus, the convergence index of a cortical
region 10 indicates that the region is always associated with
resilient functioning and the convergence value of 0 of another
region (or node) indicates that it never is (see Figure 1). Next, we
conducted a standardization to define the significant regions
associated with resilient functioning (z> 1.645).

Availability of data and code

Data and code for the analyses will be available upon reasonable
request at the University of Cambridge repository (https://www.
repository.cam.ac.uk/). We uploaded the main results in the
neuroimaging repository neurovault.org (Gorgolewski et al., 2015).
The 1_6CI.nii.gz upload (https://identifiers.org/neurovault.
image:785762) corresponds to the mean of the ß-estimates after
thresholding of the main effect of resilient functioning on local
nodal degree (Figure 2).

Results

Principal component scores

The first principal component of PCA for psychosocial functioning
explained 44% variance across all psychological functioningmeasures
(SD= 2.41, see Table 1 for all factor loadings). A higher score on the
first component score was related to poorer psychosocial functioning,
therefore, individual scores were subsequently inverted so that higher
scores would indicate better psychosocial functioning.

The PCA for CFA resulted in a first component score that
explained 37% variance (SD= 2.02, see Table 2 for specifics). Here,
higher scores were related to lower CA and were subsequently
inverted to indicate more CFA. As the score for CFA included a few
positive parenting scales, we repeated the PCAwithout the positive
parenting subscale. After removal of this subscale, the explained
variance of our principal component was reduced by 0.3% (from
37.2% to 36.9%). Furthermore, principal component scores with
and without this subscale correlated highly (r= .98, t=−331.5,
df = 2404, p-value< 2.2e-16). Therefore, we decided to leave the
positive parenting subscales in the PCA, in line with previous work
(van Harmelen et al., 2017).

Other components were observed in the data, however, the
variance explained by these components was not enough to
warrant additional analyses for any of these components in
isolation. Scree plots showing the explained variance for each
component in both PCA’s can be found in the Supplement (Figure
S1). The supplement also includes descriptive statistics for all
subscales included in the PCA and demographic variables (age,
gender and ethnicity) are listed (Table S3).

Resilient functioning

To quantify the level of resilient functioning in our sample, we
regressed the factor scores for CFA onto the factor score for
psychosocial functioning. A linear model provided good fit
(adjusted R-squared= 0.28, F(1,2404)= 957.2, p< 2.2e-16, Est=
−06.36e-01, SE= 2.05e-02, t=−30.94, p< 2e-16, AIC=
10,257.64). A quadratic term improved model fit (Est=−0.04,
SE= 0.005, t= 7.09, p= 1.73e-12, AIC = 10,204.58), SSM=
204.24, F(1)= 50.3, p< 1.73e-12). A further cubic model showed
weak model fit (Est=−0.002, SE= 0.001, t=−1.98, p= .05), and
only a minimal improvement (AIC= 10,202.68, SSM= 15.82
F(1)= 3.90, p= .05). Therefore, a quadratic model was selected
(Figure 1b). Residual scores for this relationship were extracted as
they reflect individual degrees of resilient functioning and were
utilized in the subsequent analyses within the subsample from
NSPN that underwent MRI (N= 275). These resilient functioning
scores were normally distributed in the subsample with MRI data,
and there were no significant relationships between estimated
resilient functioning and age (p= 0.15), gender (p= 0.97), SES
(p= 0.36), or scanning location (p= 0.9) (see Supplementary
Figure S2).

Main results

Upon standardization (z> 1.65) of those regions that were
convergently related to resilient functioning, we found that
resilient functioning was associated with a decrease in the nodal
degree (p< .05 FDR) of the posterior superior temporal sulcus
(PSTS), dorsolateral prefrontal cortex (DLPFC), medial prefrontal
cortex (MPFC), inferior and middle temporal gyrus (ITG and
MTG), lateral occipital cortex (LOCC), pericalcarine, and

Table 2. Factor loadings for the PCA’s for childhood family adversity

Measure
PCA factor
loadings

Alabama Parenting Questionnaire positive parenting* 0.338

Alabama Parenting Questionnaire inconsistent parenting −0.129

Alabama Parenting Questionnaire poor supervision −0.227

Alabama Parenting Questionnaire involvement* 0.326

Alabama Parenting Questionnaire corporal punishment 0.232

The Measure of Parenting Style maternal abuse −0.354

The Measure of Parenting Style maternal indifference −0.343

The Measure of Parenting Style maternal control −0.326

The Measure of Parenting Style paternal abuse −0.337

The Measure of Parenting Style paternal indifference −0.321

The Measure of Parenting Style paternal control −0.301

*High score indicates positive childhood family experiences.

Figure 2. Brain parcellations with positive or negative correlations between nodal
degree and resilient functioning. Cortical regions where resilient functioning was
significantly convergently associated with nodal degree after thresholding based on
the convergence index (z > 1.645). The colorbar represents the mean of the β-
estimates with positive correlations in red and negative correlations in blue.
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premotor cortex (Figure 2). Resilient functioning was also related
to an increase in the nodal degree (p< .05 FDR) of the anterior
fusiform gyrus (FG) (Figure 2).

Sensitivity analysis

To investigate the impact of the statistical correction of regional CT
values for age and gender, we next reestimated structural networks
using raw CT values (uncorrected for age and gender, see
supplemental material for details). When CT was uncorrected, our
findings remained largely similar (Figure S3). Resilient functioning
was positively associated with nodal degree in the DMPFC, PSTS,
MPFC, left temporal pole, lateral occipital, and lingual gyrus and
negatively associated with nodal degree in the FG. In addition, our
findings now also included positive associations between resilient
functioning and nodal degree in the left temporoparietal junction
(superior parietal and supramarginal gyrus).

Discussion

The aim of this study was to investigate how brain structural
network topology varies as a function of resilient functioning in a
sample of adolescents and young adults with CFA.We showed that
resilient psychosocial functioning is negatively associated with
nodal degree of the dorsolateral prefrontal cortex (DLPFC), the
medial prefrontal cortex (MPFC), the posterior superior temporal
sulcus (PSTS), the inferior and middle temporal gyrus (ITG and
MTG, resp.), the lateral occipital cortex (LOCC), the pericalcarine
cortex, and the premotor cortex. These regions all play a role in a
wide array of functions. Of particular interest is the role of these
regions in social and emotional processing and regulation, given
the importance of socio-emotional functioning in mental health
vulnerability in adults exposed to CA (McCrory et al., 2022). The
DLPFC is part of the CEN and involved in cognitive control and
emotion regulation (Ochsner et al., 2002, 2012). Whereas the
MPFC plays an important role in understanding social emotions
and mentalizing (Blakemore, 2008; Olson et al., 2013; Van
Overwalle, 2009). Importantly, apart from its role in social
functioning alterations in medial prefrontal cortex (mPFC)-
subcortical circuitry after CFA are associated with a wide array
of affective and cognitive functions (Tottenham, 2020).
Furthermore, the MPFC and temporal cortex are part of the
default mode network (DMN, (Dixon et al., 2017)), which is
thought to underpin introspective processes such as emotional
processing, decision-making, memory, social cognition, and self-
referential processes such as thinking about self-mental states
(Northoff et al., 2006; Qin & Northoff, 2011). The DMN is also
involved in thinking about other people’s beliefs, intentions, and
motivations (Koster-Hale & Saxe, 2013; Spreng et al., 2009). The
PSTS has been identified as an important hub in social cognitive
processing at different levels, integrating advanced associative and
lower-level sensory processing areas (Allison et al., 2000). As such,
our findings of reduced nodal degree of regions related to resilient
functioning point to regions that help guide socio-emotional
functioning.

During adolescence, the brain undergoes remarkable structural
and functional reorganization, such as cortical thinning (Frangou
et al., 2022; Tamnes et al., 2017;Wierenga et al., 2014), a decrease in
cortical surface area and cortical volume (Tamnes et al., 2017) and
increases in white matter volume (Giedd et al., 1999). On the
microstructural level, such increases in white matter integrity and
reorganization of structural brain networks are thought to
contribute to more efficient structural brain networks (Koenis

et al., 2015). Resting-state functional connectivity shows age-
related increases within networks and decreases between networks
(Teeuw et al., 2019). In the current sample, decreases in nodal
degree have been associated with the pruning of synaptic
connections or attenuation of axonal projections in adolescence
(Váša et al., 2018) and associated cortical thinning as well as the
associated increases in myelination in these regions (Whitaker
et al., 2016). As such, decreases in nodal degree are thought to
reflect a normative developmental shift to a more efficient brain
network configuration (Khundrakpam et al., 2013; Váša et al.,
2018). Decreased nodal degree of brain regions in more resilient
adolescents thus potentially resembles a mature structural network
configuration in these individuals. Social support is known to
influence adaptive maturational patterns; stronger mother-child
interactions are associated with more mature prefrontal-limbic
connectivity patterns in children (Gee et al., 2014), and friendship
increases are associated with faster cortical thinning in the mPFC
in adolescents (Becht et al., 2021). Friendships support has been
well-established as predictor of resilient functioning in adolescents
and young adults exposed to CA (Fritz et al., 2018; van Harmelen
et al., 2017; 2021). Taking together the evidence of previous studies
in the same and different samples, we suggest that our findings of
negative associations between nodal degree and resilient function-
ing may reflect a more mature-like structural network topology in
more resilient individuals. However, as we did not include
longitudinal data, we can only speculate that developmental
mechanisms explain the found associations. As such, it should be
examined whether lower nodal degrees in individuals with more
resilient functioning reflect more mature structural brain topology
and or distinct developmental trajectories of the DLPFC, MPFC,
PSTS, ITG, and MTG.

Resilient functioning was also associated with increased nodal
degree in the anterior FG. One interpretation of our finding would
be that maturation of the FG might be protracted (Haist &
Anzures, 2017) or that this structure may be less mature in resilient
individuals in this age group. The FG is specialized in the
processing of faces and involved in facial emotion recognition
(Adolphs, 2002). Aberrant neural activation in response to
emotional faces in individuals exposed to CA is consistently
reported in literature (Bérubé et al., 2023). The social transactional
model of psychiatric vulnerability in adults exposed to CA suggests
that such aberrant facial emotion processing reflects biased threat
processing which could inadvertently impact social functioning
and relations, and thereby increase vulnerability for psychiatric
disorders (McCrory et al., 2022). Indeed, functional imaging
studies showed that resilient adults with CA show improved ability
to regulate emotions through medial prefrontal cortex–limbic
downregulation, lower hippocampal activation to emotional faces,
and increased amygdala habituation to stress (reviewed in
Moreno-López et al., 2020). It should be examined if increased
nodal degree in the anterior FG aids resilient functioning through
improved facial emotion processing.

Strengths of this study include a large sample of carefully
assessed participants recruited from the community with low to
moderate CFA experiences and the use of a MPM protocol. One
limitation is that we focused on CFA limiting the generalizability of
results to individuals exposed to other types of CA. Furthermore,
individuals with current treatment for psychiatric disorders were
excluded and the lower spectrum of CFA was overrepresented in
this study. Therefore, future studies are needed to investigate
whether similar or distinct mechanisms aid resilient functioning in
individuals with more extreme CFA experiences. A limitation of
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our residual variance approach to quantify resilient functioning is
that this entails a strong association between psychosocial
functioning and the measures of functioning; as the residuals will,
by design, be highly correlated with psychosocial outcomes.
However, in our sample CFA severity was correlated significantly
with psychosocial outcomes as such, our approach can explicitly
separate functioning outcomes towards the extremes of CFA
severity. As an example, an individual who has experienced little or
no CFA will have lower resilient functioning scores than an
individual who experienced severe CFA, even if the latter may have
lower absolute psychosocial functioning (see Figure 1b). Another
limitation of our study is that we did not include subcortical regions
in our analysis. Future studies should aim to explore structural
covariance between and among cortical and subcortical gray matter
structures to describe a more substantive and thorough structural
covariance network underlying possible differences in for instance
social cognition and emotional regulation in adolescents. Also, it was
beyond the scope of this study to incorporate different structural
covariance measures while other measures, such as modularity,
show interesting developmental effects as well (e.g., Aboud et al.,
2019). Further, the results of any sliding window method are
dependent on the parameters used (i.e., windowwidth and step size),
in addition to the resilience scores being non-homogeneously
distributed. However, we systematically varied these parameters,
and focused on only those regions showing significant convergent
results across ten parameter combinations.

CA is one of the strongest predictors of mental health problems
in later life, and as such it is critical that we better understand how
resilience can be achieved in young people with CA. To do so,
resilience research examines why some young people with CA go
on to develop mental illness, whereas others do not. By better
understanding this variability in functioning outcomes in CA-
exposed individuals, resilience research represents a shift away
from a disease focussed model towards a preventative model. As
such, resilience research aims to inform intervention and
prevention efforts for individuals at risk (Masten, 2019; Luthar
& Cicchetti, 2000). Recent models emphasize that resilience is
facilitated by complex interrelations across cultural, social,
psychological, and neurobiological systems and their development
over time (Masten & Cicchetti, 2010; Masten et al., 2021). Within
this multisystem framework, neuroimaging studies help inform
our understanding of the neurobiological mechanisms that help
aid resilient functioning (Ioannidis et al., 2020). By studying how
these mechanisms interact with social or psychological systems
these studies can provide key insights for prevention or
intervention efforts (Cicchetti & Toth, 2015). In this study, we
integrated two systems: individual psychosocial functioning and
the brain. We examined the structural network topology of
resilient functioning in adolescents and young adults exposed to
CFA. We found that higher resilient functioning was convergently
associated with lower nodal degree of DLPFC, MPFC, PSTS, ITG
and MTG, LOCC, pericalcarine cortex, and the premotor cortex.
These regions all play a role in a wide array of functions, of
particular interest is their role in social-emotional functioning.
Developmental changes in adolescence include extensive remod-
eling of structural covariance patterns, including reductions in
nodal degree. As previous work in this sample showed negative
associations between age and nodal degree (Váša et al., 2018;
Whitaker et al., 2016), our findings of lower nodal degree being
related to higher resilient functioning may be compatible with
more mature-like structural network topology in more resilient
young people with CFA.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0954579423000901.
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