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A multilevel account of hippocampal function in spatial
and concept learning: Bridging models of behavior and
neural assemblies
Robert M. Mok1* and Bradley C. Love2,3*

A complete neuroscience requires multilevel theories that address phenomena ranging from higher-level cog-
nitive behaviors to activities within a cell. We propose an extension to the level of mechanism approach where a
computational model of cognition sits in between behavior and brain: It explains the higher-level behavior and
can be decomposed into lower-level component mechanisms to provide a richer understanding of the system
than any level alone. Toward this end, we decomposed a cognitive model into neuron-like units using a neural
flocking approach that parallels recurrent hippocampal activity. Neural flocking coordinates units that collec-
tively form higher-level mental constructs. The decomposed model suggested how brain-scale neural popula-
tions coordinate to form assemblies encoding concept and spatial representations and why so many neurons
are needed for robust performance at the cognitive level. This multilevel explanation provides a way to under-
stand how cognition and symbol-like representations are supported by coordinated neural populations (assem-
blies) formed through learning.

Copyright © 2023

The Authors, some

rights reserved;

exclusive licensee

American Association

for the Advancement

of Science. No claim to

original U.S. Government

Works. Distributed

under a Creative

Commons Attribution

License 4.0 (CC BY).

INTRODUCTION
Neuroscience is a multilevel enterprise. Its target of explanation
ranges from behavioral to molecular phenomena. Satisfying and
complete explanations of the mind and brain will necessarily be
multilevel (1–3). In multilevel componential (or constitutive) expla-
nations, each component at a higher level can be decomposed into
its own lower-level mechanism (1). For example, the circulatory
system’s capacity to deliver oxygen and energy to the body can be
decomposed into lower-level mechanisms including the heart’s
blood pumping and kidney’s blood filtering mechanism, which to-
gether supports the function of the circulatory system. These mech-
anisms themselves can be decomposed into their components, such
as the muscle contractions of the heart or filtering units of the
kidney, which, in turn, can be further decomposed as desired (1).

Marr’s (4) well-known three level organization is one multilevel
proposal but seems inappropriate for neuroscience as it relegates all
of neuroscience to one level, namely, the implementational level,
whereas neuroscience itself is a multilevel endeavor. We extend
Craver (1) by proposing a mechanistic multilevel approach in
which the top level is behavior and the first level of mechanism
below behavior is an algorithmic model that captures behavior
and whose components can be related to brain measures. The com-
ponents of this mechanism can be further decomposed into their
own mechanisms to address finer-grain scientific questions (e.g.,
neural populations; Fig. 1).

Under this account, the highest-level mechanism could be a cog-
nitive model that captures behavior. The components of this cogni-
tive model could be related to neural measures and further
decomposed. What is a component at a higher level is a mechanism

at a lower level that can itself be decomposed into components to
account for additional findings and make new predictions. For a
mechanism to be truly multilevel, lower-level decompositions
must fully reproduce phenomena at higher levels, up to and includ-
ing behavior. This successful decomposition into constituent mech-
anisms is what provides explanatory power in multilevel accounts.
The power of this approach is that mechanisms at different levels are
not unrelated efforts aiming to explain different types of data.
Instead, multilevel explanations can be integrated and offer a
more complete understanding of the domain in which one can
“zoom in or out” to the level of granularity desired for the current
question.

Constructing theories and testing their predictions at multiple
levels provide a more comprehensive account of the system of inter-
est. Although neuroscience is guilty of a bias toward lower-level ex-
planations (5, 6), higher-level mechanisms are crucial in multilevel
explanation because they offer explanatory concepts not available at
lower levels (3). For example, the heart’s contractions make little
sense without considering the function of the circulatory system,
and the hippocampal synaptic weights and activity patterns make
little sense without notions of memory and learning. In neurosci-
ence, it is common to construct a specific theory or model to fit
the specific data at hand, which unfortunately leads to a disconnect-
ed patchwork of theories for individual phenomena. Multilevel the-
ories can weave this patchwork together into a coherent and
complete account in which each level is situated within mechanisms
that lie above and below. As one descends levels, additional phe-
nomena can be addressed, whereas, as one ascends, the function
of the mechanism within the overall system becomes clearer.

Neuroscience has very few multilevel theories of this variety that
can bridge between cognitive constructs and neuronal activity—
multilevel explanations from behavior to neurons. For example,
how does the brain implement a symbol? Specifically, how do
brain systems coordinate neural populations to form symbol-like
representations, such as highly selective neural assemblies (7–9)
that encode concepts (10) or specific spatial locations (11)? One
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suggestion is that the hippocampal formation represents physical
space (12–14) and abstract spaces for encoding concepts and ab-
stract variables (15–17), constructing cognitive maps (18) for
mental navigation in these spaces. However, it is unclear how pop-
ulations of similarly tuned neurons in the hippocampus acquire
their highly selective tuning properties to concepts or spatial loca-
tions. While tantalizing, identifying a cell tuned to particular
concept, such as Jennifer Aniston (10), does not specify the sup-
porting mechanisms leaving such findings as curiosities that
invite explanation.

Attempts have been made to offer multilevel theories in neuro-
science, but critical explanatory gaps remain. In our own work, we
have developed a cognitive model, SUSTAIN, of how people learn
categories from examples. SUSTAIN addresses a number of behav-
ioral findings (19, 20), and aspects of the model have been related to
the brain (20–23). The hippocampus was related to SUSTAIN’s
clustering mechanism, which bundles together relevant informa-
tion in memory during learning, and this account was verified by
a number of brain imaging studies (20–22). The goal-directed atten-
tional mechanism in SUSTAINwas linked to the ventral medial pre-
frontal cortex, and this account was verified by brain imaging (23)
and animal lesion studies (24). These same mechanisms provide a
good account of place and grid cell activity in spatial tasks (17).

Although successful in addressing both behavior and accompa-
nying brain activity, this line of work, similar to almost all work in
model-based neuroscience, is limited to (i) proposing

correspondences between model components and brain regions
and (ii) evaluating these correspondences in terms of model-brain
correlates. However, how do we move beyond mere neural corre-
lates to a lower-level mechanistic explanation that unpacks the
higher-level theory? Cognitive models, such as SUSTAIN, come
with abstract constructs such as clusters, and it is left entirely
open how they could be decomposed into the neural populations
that give rise to behavior. It is insufficient to state that each cognitive
construct (e.g., a cluster) is instantiated by a number of neurons, just
as it is unsatisfying to state that Jennifer Aniston is somehow rep-
resented by multiple neurons, the spreadsheet on a computer relies
on a number of transistors, and so forth. How do neurons coordi-
nate to give rise to the higher-level construct? This is the key ques-
tion that needs to be addressed to move beyond mere neural
correlates toward a mechanistic understanding of how the brain im-
plements cognition.

We aim to address this explanatory gap by decomposing aspects
of a cognitive model, SUSTAIN, into a mechanism consisting of
neuron-like units. Critically, the aggregate action of these neuron-
like units give rise to virtual structures akin to the higher-level cog-
nitive constructs in SUSTAIN (i.e., clusters) while retaining SUS-
TAIN’s account of behavior (Fig. 1, C and D). By taking a key
component of a cognitive model that addresses behavior and de-
composing it to the level of a neuron, we offer an account of how
concept cells and spatially tuned cell assemblies can arise in
the brain.

Fig. 1. Multilevel explanation of concept learning in the brain: decomposition of a cognitive model into neural flocks. (A) Levels of mechanisms for neuroscience.
Behavior is the phenomenon of interest, explained by a task-performing algorithm (cognitive model), which can be decomposed into lower-level mechanisms. (B) Our
behavior of interest is concept learning and categorization. (C) Behavior is explained by the cognitive model. After the stimulus is encoded, attention is applied, and
neuron-like units activate according to their similarity to the input. These activations are transmitted through learned association weights to generate an output (e.g.,
category decision). Dotted circles are abstract clusters. (D) Decomposition of the clusters into neuron-like units and the flocking learning rule. Clusters from (C) are
decomposed into neuron-like units [gray circles in (C) represent units, and dashed circles highlight units in the same flock or virtual cluster]. Left to right: k winners
(blue) move toward the stimulus (“S”), followed by a recurrent update, where units move toward their centroid (“C”). k neuron-like units become similarly tuned over
time, forming a neural flock.
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One of the main challenges is how to bridge from abstract con-
structs such as clusters to neurons, while retaining the high-level
behavior of the model. How do single neurons track a concept?
How does the brain coordinate the activity of many neurons
during learning, as there are thousands of neurons, but only a few
clusters are required to represent a concept at the cognitive level?
That is, how does a select population of neurons learn and
become tuned to similar features in the world such as in concept
cells and place cells rather than independently develop their own
tuning? To implement a higher-level construct, such as a cluster
or symbol, neurons must somehow solve this coordina-
tion problem.

Inspired by algorithms that capture flocking behavior in birds
and fish (25), we propose that the hippocampus may exhibit
neural flocking, where coordinated activity—virtual clusters or
flocks—arises from local rules (Fig. 1D). This coordination could
be achieved by recurrent processing in the hippocampus [e.g.,
(26)], which we formalize in learning rules in which neuron-like
units that are highly active in response to a stimulus (e.g., a photo
of Jennifer Aniston) both adjust their tuning toward that stimulus
and to each other. The latter learning update is the key to flocking as
members of the neural flock coordinate by moving closer to each
other. That simple addition to standard learning rules is sufficient
to solve the coordination problem and give rise to virtual clusters
and hippocampal place or concept cell (10) assemblies (8).

Gazing at the neuron-like units forming the model, one will not
see clusters just as one will not see clusters nor symbols by peering
into the gray goo of the brain. Nevertheless, the coordinated activity
of these neuron-like units can be described as supporting these
higher-level constructs that behave in aggregate like the higher-
level cognitive model, SUSTAIN. In the model specification and
simulations that follow, we aim to close the aforementioned explan-
atory gap and make the case for multilevel explanation in neurosci-
ence. In addition, by decomposing the higher-level model, we can
consider how the brain benefits in terms of fault and noise tolerance
by implementing clusters in a large neuronal flock. For instance, the
mental representation of a concept is preserved when one neuron,
or even a set of neurons in the neural assembly, dies, as well as when
there is synaptic turnover over relatively short time scales (typical in
the hippocampus) (27). Finally, we consider how the model can be
extended and further decomposed to account for differences in pro-
cessing across anterior-posterior hippocampus axis.

RESULTS
Multineuron clustering model
Our multineuron clustering model, SUSTAIN-d, is a decomposi-
tion of the SUSTAIN model of category learning. Whereas proto-
type models always form one unit in memory for each category and
exemplar models store one unit for each episode, SUSTAIN moves
between these two extremes depending on the nature of the learning
problem. SUSTAIN assumes that the environment is regular and
clusters similar experiences together inmemory until there is an un-
expected prediction error, such as encountering a bat and wrongly
predicting that it is a bird based on its similarity to an existing bird
cluster. When such an error occurs, a new cluster is recruited.
Notable episodes (e.g., encountering a bat for the first time) can
transition to concepts over time (e.g., other similar bats are stored
in the same cluster). The hippocampus is critical in supporting this

form of learning (28). SUSTAIN has other elements that are not the
focus of this contribution, such as an attentional mechanism that
determines which aspects of stimuli are most relevant to
categorization.

Here, we decompose SUSTAIN into more neuron-like units
while retaining its overall function. We will refer to this model as
SUSTAIN-d for SUSTAIN decomposed (see Materials and
Methods for formal model description). Both models use a local
learning rule, the Kohonen learning rule, but SUSTAIN-d has a
second update rule that implements flocking through recurrence.
Both models have a recruitment mechanism, but rather than
recruit cognitive units like clusters, SUSTAIN-d, like the hippocam-
pus, has an existing pool of neuron-like computing that enter each
task with some tuning (i.e., preferentially activated for particular
stimuli). Unlike SUSTAIN, which will recruit a handful of clusters
for a learning problem, SUSTAIN-d can consist of an arbitrarily
large number of computing units (see below for brain-scale simu-
lations where the number of computing units is equal to the number
of neurons in the hippocampus). Finally, both models have atten-
tion weights with a local update rule and have connection weights
from clusters or units to outputs that are updated through task-
related error.

Despite these notable differences, SUSTAIN-d’s thousands of
neuron-like computing units show the same aggregate behavior as
SUSTAIN. This is accomplished by solving the aforementioned co-
ordination problem by what we refer to as neural flocking (Fig. 1D).
The key to neural flocking is that units that are highly activated by a
stimulus both adjust their tunings toward the stimulus and each
other. This double update leads to virtual clusters forming that
can consist of thousands of neuron-like computing units. In
general, the number of clusters SUSTAIN recruits will match the
number of neural flocks that arise in SUSTAIN-d, which leads to
the models providing equivalent behavioral accounts. Whereas
SUSTAIN associates clusters with a category or response,
SUSTAIN-d’s individual neuron-like units form connection
weights (Fig. 1C). In summary, SUSTAIN-d is formulated absent
of cognitive constructs like clusters, but, nevertheless, its neuron-
like units in aggregate manifest the same principles and can
account for the same behaviors, which provides an account of
how cognitive constructs can be implemented in the brain.

Formation of concept and spatial representations by
neural flocking
SUSTAIN-d’s neural flocking mechanism can explain how concept
cells (Fig. 2, A and B) and spatially tuned place and grid cells arise
(Fig. 2, C and D). Whereas our previous work (17, 19) relied on
higher-level mental constructs (i.e., clusters) to account for such
phenomena, here, we show how a neural population can coordinate
to virtually form such structures via the flocking learning rule. In
the spatial domain, we simulated an agent (e.g., rodent) exploring
a square environment (free foraging), which leads to virtual clusters
akin to place cells distributed in a grid-like pattern (Fig. 2C), which,
in turn, leads to cells that monitor these units’ activity displaying a
grid-like firing pattern (Fig. 2D). An alternative model with no re-
currence (i.e., no flocking rule) shows no self-organization of spatial
cells (fig. S5A). In the conceptual domain, where the representation
space is not as uniformly sampled, virtual clusters are clumpier
(Fig. 2B), and monitoring units will show no grid response. These
results in the conceptual and spatial domain hold across a wide
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range of parameters. The flocks that arise from the interaction of
numerous neuron-like units are a higher-level representation in
that the number of underlying neuron-like units involved can
vary over orders of magnitude with the aggregate behavior at the
“flock level” remaining constant. This robustness allows
SUSTAIN-d to decompose cognitive constructs to neuron-like
units at same scale as the brain as demonstrated by simulations
where the number of units is equal to the number of neurons in
the corresponding brain regions.

Neural population-based model retains high-level
cognitive model properties and captures concept learning
behavior
One major challenge for our multilevel proposal is to account for
complex behaviors that hitherto were the sole province of cognitive
models. Can SUSTAIN-d with its neuron-like units account for the
same behaviors that SUSTAIN does by relying on cognitive con-
structs? We evaluate whether SUSTAIN-d can account for human
learning performance on the six classic learning problems of
Shepard et al. (29) (Fig. 3). To provide a true multilevel theory,
we aim for SUSTAIN-d’s solution in terms of virtual clusters
arising from neural flocking to parallel SUSTAIN’s clustering solu-
tions, which provide a good correspondence to hippocampal activ-
ity patterns (22).

SUSTAIN-d was trained in a manner analogous to human par-
ticipants, learning through trial and error in these supervised learn-
ing tasks. On each trial, SUSTAIN-d updated its neuron-like units’
positions in representational space, attention weights, and connec-
tions weights from its neuron-like to category responses (see Mate-
rials and Methods for details). All the learning updates were error-
driven and local, as opposed to propagating errors over multiple
network layers as in deep learning models. Whereas SUSTAIN
forms a new cluster in response to an unexpected error (e.g., learn-
ing that a bat is not a bird), SUSTAIN-d recruits the k-nearest un-
connected neuron-like units to the current stimulus, which is in
accord with the intuition that the brain repurposes existing resourc-
es during learning. The neural flocking learning rule leads to these
recruited units forming a virtual cluster.

SUSTAIN-d captured the difficulty ordering of the human learn-
ing curves (Fig. 3B, right), and its solutions paralleled those of
SUSTAIN in terms of the modal number of clusters recruited
(two, four, six, six, six, and eight flocks for each of the six learning
problems) and attentional allocation to features. Notably,
SUSTAIN-d’s results scale to a large number of neuron-like units,
producing the same output and learning curves from few (e.g., 50)
to many neurons [3.2 × 106 hippocampal principal cells (30, 31) as
used here]. Thus, SUSTAIN-d provides a multilevel account (1) of
hippocampally mediated learning that ranges from behavior to

Fig. 2. Formation of concept and spatial representations by neural flocking. (A) Themodel learns distinct representations for apples and oranges. kwinners (i.e., most
activated units) adjust their receptive fields toward the current stimulus, followed by a recurrent update toward their centroid. (B) The second update is sufficient to solve
the coordination problem allowing SUSTAIN-d to form neural flocks or virtual clusters (which, in this example, represent the concepts apple and orange). (C) Spatial
representation formation. Left: An agent (e.g., a rodent) forages in an environment. Right: Development of spatial representations. SUSTAIN-d’s neuron-like units are
initially uniformly tuned to locations. At each time step, the k winners move toward the stimulus (e.g., sensory information at the current location) and each other (i.e.,
neural flocking). This learning dynamic creates flocks or virtual clusters of units with similar spatial tuning, akin to place-cell assemblies. These flocks tile the environment.
(D) Examples of grid cell-like activity patterns and corresponding spatial autocorrelograms after learning. See fig. S1A for more examples and fig. S1B for distributions of
grid scores).
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Fig. 3. SUSTAIN-d’s brain-scale population of neuron-like units collectively displays the same behavior as the high-level cognitive model that it decomposes,
while making additional predictions about robustness in neural computation. (A) Six concept learning structures (29). Bottom: In each box, stimuli in the left and
right columns are in different categories. Top: Cubes represent each stimulus in binary stimulus feature space (color, shape, and size) for each structure. (B) Learning
curves from human behavior (65) (left) and model fits (right). Probability of error is plotted as a function of learning block for each structure. (C) Neuron-like units form
neural flocks or virtual clusters (e.g., type I in blue and type VI in brown; see fig. S2 for all types) that parallel clusters in the higher-level cognitive model. The number of
units are subsampled from thewhole population for better visualization. (D) The more neuron-like units, the more robust the model is when confronted by failure modes
(e.g., cell death, noise, and synaptic transmission failure). (E) The stronger the recurrence during learning, the better the noise tolerance. See fig. S3 for more examples.
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neuron-like units. SUSTAIN-d is able to display similar aggregate
behavior over a wide range of neuron-like units because its learning
updates and operations can be scaled to reflect the number of units
involved (see Materials and Methods).

Similar to the human brain, SUSTAIN-d is resistant to minor
insults and faults. Each neural assembly or flock can consist of
many neuron-like units (Fig. 3C and fig. S2), not all of which are
needed for the remaining units to function as a virtual cluster.
SUSTAIN can be viewed as SUSTAIN-d when the number of
highly activated units in response to the stimulus is 1 (i.e., k = 1).
As k or total number of units increase, lesioning a subset of
SUSTAIN-d’s units has negligible effects on aggregate behavior
(Fig. 3D and fig. S3). This robustness through redundancy is con-
sistent with operation of the brain where multiple neurons and syn-
apses with similar properties offset the effects of damage and
natural turnover of dendritic spines (27, 32–34).

Having multiple units combined with SUSTAIN-d’s recurrent
update can also counteract noise (Fig. 3E). In these simulations,
we added noise to SUSTAIN-d’s neuron-like units, which will
lead to units from other assemblies (or neural flocks) becoming
highly active, which can lead to incorrect decisions and disrupt
learning. SUSTAIN’s recurrent update (Fig. 1, C and D) ameliorates
these effects of noise by pulling individual units’ responses toward
the mean of flock (Fig. 3E and fig. S4). The same self-organizing
learning rules that enable SUSTAIN-d’s neuron-like units to
behave in aggregate like a cognitive model also make it more
robust to noise and damage.

Furthermore, recurrence is particularly important when coordi-
nating large populations of noisy neurons, as the resulting com-
bined magnitude of noise is markedly stronger. We find that the
recurrence strength markedly reduces the effect of noise for
10,000-unit models compared to 20-unit models (fig. S4). Finally,
alternative models such as a prototype model (one unit per
concept label) are not capable of capturing learning behavior and
the disruptive effects of lesions and noise (fig. S5B).

Further decomposing to capture differential function in
anterior and posterior hippocampus
In a multilevel mechanistic account, model components can be
further decomposed to capture findings that require more fine-
grain mechanisms. SUSTAIN-d decomposed SUSTAIN’s clusters
into neuron-like units. Here, we further decompose SUSTAIN-d’s
neuron-like units into two pools to capture functional differences
between anterior and posterior hippocampus.

Anterior place fields tend to be broader and lower granularity
than posterior hippocampal fields (35), and this appears to be a
general principle at the population level (36, 37). For category learn-
ing studies, one prediction is that learning problems with a simpler
structure that promotes broad generalization would be more ante-
rior, whereas learning problems that have a complex irregular struc-
ture would be better suited to posterior hippocampus. This pattern
holds across studies (21, 22) (Fig. 4A). Here, we simulate Shepard’s
six learning problems, which order from what should be most an-
terior (type I) to most posterior (type VI). Type I can be solved by
focusing and generalizing on the basis of one stimulus feature,
whereas type VI requires memorizing the details of each item.

Although the anterior-posterior distinction may best be viewed
as a continuous axis, we simplified to create two banks of neuron-
like units for SUSTAIN-d, one corresponding to anterior

hippocampus and one to posterior hippocampus. These two
banks of neuron-like units only differed in how broad their
tuning was with anterior fields being broader than posterior
fields. The responses from both pools of neuron-like units were
pooled to determine the category response (Fig. 4B). The two
pools of units formed neural flocks independently and were only
linked in that they both aimed to correctly predict the category
label. Thus, the pool that was more suited to a learning problem
will take over by developing larger connection weights to the
output units indicating the response. In effect, both pools of units
compete to guide the overall response (see Materials and Methods).
Thus, the anterior pool of units should guide the overall system re-
sponse when a problem is very simple (e.g., type I), whereas the pos-
terior pool should take over when a problem is highly irregular and
complex (e.g., type VI).

As predicted, the anterior pool guided the overall response for
simple problems like the type I problem, whereas the posterior
pool did so for complex problems, like the type VI problem
(Fig. 4C). The posterior pool learns the type VI problem faster
than the type I problem because SUSTAIN-d forms eight virtual
cluster (neural flocks) for the type VI problem, which is ideally
suited to the narrow fields in the posterior pool that favor memori-
zation over broad generalization, exactly the opposite functional
properties of the anterior pool. These simulations suggest that the
anterior-posterior axis in the hippocampus may provide comple-
mentary learning mechanisms.

DISCUSSION
Neuroscience is inherently a multilevel enterprise that requires mul-
tilevel theories to move from a patchwork understanding of the
mind and brain toward more integrative and encompassing theo-
ries. One solution, which we advance, is to adopt a levels of mech-
anism approach (1) in which the components of a higher-level
model are unpacked into their ownmechanisms. Specifically, we ex-
tended the levels of mechanism approach to computational models,
effectively combining it with levels of analysis (4) and building an
account that bridges across levels from behavior to algorithm to
multilevel mechanisms. This is particularly important for cognitive
neuroscience, where many mechanisms are best described via an
abstract algorithmic account, and the challenge is to specify how
it could arise from lower-level mechanisms. Notably, this is not con-
strained to a single implementational level, as one can selectively
decompose arbitrarily lower levels for the aspects of the model
that are of scientific interest depending on the question at hand,
from macroneural systems to neural assemblies and neurotransmit-
ters, down to ion channels. It has been assumed that levels can be
linked, but there has been no concrete effort to specify how—we
provided a solution on how to bridge across relevant levels in neu-
roscience. Here, we demonstrate this through a multilevel explana-
tion of concept learning in which a cognitive model at the top level
that accounts for behavior is decomposed into populations of
neuron-like units that form assemblies.

This breakthrough was largely achieved by a novel learning rule
that promoted neural flocking in which neuron-like units with
related receptive field properties becamemore similar by coordinat-
ing using recurrence. Similar to a flock of birds, these units func-
tioned as a collective, providing an account of how symbols and
other cognitive constructs, such as clusters, can arise from
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neuron-like computing elements following biologically consistent
operations.

The recurrent update in the learning rule was inspired by biolog-
ical recurrence in the hippocampal formation (within the hippo-
campus and big-loop recurrence in the medial temporal lobe)
(26), where multiple passes allow for deeper processing. Symbol-
like neural representations naturally form through our implemen-
tation of recurrence, suggesting that functional neural assemblies
can form through a flocking mechanism like in birds. With recent
advances in large-scale neural recordings over time, future neuro-
physiological or imaging studies in animals that record from hippo-
campus across time and over learning could search for such a neural
mechanism.

With a neural population and a recurrent mechanism, the model
also naturally captures the brain’s tendency to encode the same in-
formation in many neurons (i.e., redundancy) (32–34), which
makes the systemmore tolerant to neuronal damage, natural synap-
tic turnover, and noise. Notably, there could be more than one re-
current update, as there are multiple recurrent loops in the brain.
Future work could introduce more recurrent steps or different
forms of recurrence such as constraining it by known anatomical
pathways.

Note that the model assumes a sparse representation where most
neurons are dormant but active neurons are highly active for a small
group of stimuli, which parallels sparse coding in the hippocampus.
Furthermore, the sparse code of a fixed proportion of highly activat-
ed winners in a neural population is consistent with recent hippo-
campal neurophysiological evidence showing that the overall
activity of place cells within an environment is constant (38). This
work shows how localist coding models (i.e., with sparse, highly
tuned neurons) can be implemented in a neural population (39–
42). One way for related approaches to showing mixed selectivity
is for different stimulus dimensions to be relevant in different con-
texts. For example, a neuron may respond to wool socks in a cloth-
ing context and to tart flavors in a food context with the relevant
dimensions or features in each context being nonoverlapping.

Our model makes several experimental predictions. One predic-
tion is that neural flocking in the hippocampus will lead to receptive
fields harmonizing over learning. Specifically, cells initially activat-
ed in response to novel stimuli will form a neural assembly, and
their tunings will become more harmonized over stimulus repeti-
tions (forming a virtual cluster). According to the theory, it will
be (largely) the same group of neurons that will keep responding
[k-winners-take-all (k-WTA)], consistent with sparse coding in
the hippocampus. This could be tested by recording many
neurons in rodents or nonhuman primates during trial-by-trial
learning. It would be particularly interesting to record across mul-
tiple regions to test for recurrent processing across the hippocam-
pal-cortical loop and how this corresponds to our implementation
of recurrence. Our flocking mechanism suggests that initially acti-
vated cells to novel stimuli should flock together and become highly
tuned neural assemblies such as concept and place cell assemblies.

Another prediction relates to the stability of the hippocampus
(43) including representational changes due to synaptic turnover
(27) and neuron death (44). Despite these changes, hippocampal
representations appear to be relatively consistent over time [e.g.,
concepts cells (10) and place cells (45, 46)], and the hippocampus
appears to be important for precise long-term memories (47). In
our model, a group of neuron-like units are recruited when the

Fig. 4. Further decomposing SUSTAIN-d to capture known functional differ-
ences along the anterior-posterior axis of the hippocampus. (A) Illustration of
the anterior-posterior (blue-yellow) gradient in human hippocampus (HPC). Place
fields in the anterior hippocampus are broader, and posterior hippocampus place
fields are more narrow. Likewise, anterior hippocampus is strongly activated by
concept learning structures that follow broad, general rules (left), and posterior
hippocampus is more strongly engaged by irregular rule-plus-exception structures
where specific instances are important. (B) SUSTAIN-d is further decomposed into
a bank of units with broader tuning to model anterior hippocampus (blue) and a
narrowly tuned bank of units to model posterior hippocampus (yellow). Both
banks contribute to the output and compete to exert control over the category
decision. (C) Model output (left) combines the anterior (middle) and posterior
(right) neuron-like units’ output. The anterior units dominate for simple category
structures, whereas the posterior units dominate for irregular structures.
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task demands it. As demonstrated in the lesion simulations, if the
model only has a few neuron-like units, then there is a marked detri-
ment to performance when units are removed (e.g., from neuron
death), but with a larger population of units, the model is more re-
silient to such insults. When the magnitude of losses is sufficiently
large, the model will make incorrect decisions, which leads to re-
cruitment of units to maintain performance. This account is consis-
tent with the relative stability in the hippocampus for representing
long-term concepts and locations, while, at the same time, having
instability in the biological substrate [see (48, 49) for a potential
mechanism for place or concept cell recruitment]. Hence, the
model predicts that new neurons will be recruited if a sufficient
number of neurons lose their synaptic efficacy, die, or tuning
simply drifts. This could be tested by tracking neural populations
over time with calcium imaging or new neurophysiological tech-
niques that can record the same neurons over long periods of
time (50).

The hippocampus exhibits mixed selectivity where neurons
respond to different features across contexts [e.g., (51)]. In the
tasks we considered, the feature space was low dimensional such
that only one set of attention weights was required. However, the
model could be extended such that neuron-like units would
display a unique peak response for each context. Each context
would correspond to a different subspace with its own set of atten-
tion weights. Futurework will explore these approaches to capturing
mixed selectivity in hippocampal cells and consider how this tuning
supports behavior.

One benefit of multilevel theories is that model components can
be decomposed into their ownmechanisms as desired. In effect, one
can selectively zoom in to consider the aspects of the mechanism of
interest at a finer grain. In the last set of simulations, we further de-
composed SUSTAIN-d’s neuron-like units into two banks of units
corresponding to anterior and posterior hippocampus. Further de-
composing SUSTAIN-d allows us to account for finer-grain phe-
nomena and make new predictions.

We found that the bank of units best suited to the task dominat-
ed learning. For learning problems with a simple structure, the
broader receptive fields of the anterior bank dominated. When
the learning problem had an irregular structure that required mem-
orization, the posterior bank dominated. By varying the broadness
of the receptive fields, we introduced a generally applicable frame-
work in which modules compete with one another to guide behav-
ior but are ultimately complementary in terms of accomplishing the
goals of the overall system. This cross-regional competitive frame-
work captures the common finding across cognitive neuroscience
where brain regions that have the more appropriate or useful repre-
sentations for the task at hand are more strongly activated and con-
tribute more to behavior.

In the future, we plan to extend the method to include connec-
tions across modules (e.g., excitatory/inhibitory) based on known
anatomy and functional properties and to model more interacting
brain regions. The neuron-like units themselves could be further de-
composed and elaborated to behave more like biological neurons.
For our present purposes, we did not require spiking neurons
with complex dynamics. However, just as SUSTAIN was decom-
posed into SUSTAIN-d, so too can SUSTAIN-d be decomposed
as desired, all the while retaining the overarching principles and be-
havior of the higher-level models.

In our work, we used the Kohonen learning rule that is simple,
based on local computation, and has powerful information-process-
ing capabilities. However, the rule is still abstract, and future work
can decompose it into a lower-level mechanism with biologically
constrained implementational details. Furthermore, there are dif-
ferent ways to consider the sources of error (52–54) and learning
mechanisms such as temporal-difference error-driven learning in
complementary learning system models of the hippocampus (55–
57). Future work can consider different learning rules and their de-
compositions into lower-level mechanisms to assess how the hippo-
campus learns from error.

We can extend this approach to other functions of the hippo-
campus and neocortex such as episodic memory. The role of the
hippocampus in concept learning is closely related its role in epi-
sodic memory formation, where trial-by-trial learning leads to
concept formation “one episode at a time” (28). Future work
could construct multilevel accounts for theories of hippocampal
function for memory, such as transitive inference (58), statistical
learning (59), and consolidation (47), to assess how populations
of neurons across multiple brain regions learn under these contexts.

Our account of the hippocampal formation is an alternate view
to prior models that focus on navigation and path integration [e.g.,
(60)] or structure learning (61, 62). In prior work (17), we proposed
that hippocampal cells including concept and place cells play a rep-
resentational role, whereas medial entorhinal cortex (mEC) grid
and nongrid spatial cells monitor the activity of hippocampal cells
and play an error-monitoring role for cluster or cell recruitment.
mEC cells contain information as to whether there exists a hippo-
campal place or concept cell that encode the current location or
stimulus, and if error is high (no field in mEC cells), then the hip-
pocampus can recruit a new cell to represent this new experience.
Despite this, it is possible that grid-like representations in our
model could be reused for other functions. Our model produces
spatial cell-like representations, and so downstream brain areas
can use this location information for path integration, but this is
a consequence a general hippocampal learning algorithm. More
generally, our work aims to address the domain-general properties
of the hippocampal formation across concept learning, concept rep-
resentations, and aspects of spatial representations, and our current
model extends this an account that provides an explanation to the
level of neural assemblies.

In sum, cognitive neuroscience can benefit from multilevel ex-
planations by exploring and bridging mechanisms across levels.
We have many cognitive models that characterize behavior success-
fully but are in need to be decomposed into a set of mechanistic
processes that could be implemented in the brain. In recent years,
neuroscience is finally putting more emphasis on behavior (6), but
we suggest that for a complete account of the cognitive function of
interest, a successful high-level explanation of the behavior (e.g.,
through a cognitive model) that can be decomposed into the rele-
vant lower-level mechanisms is key.

MATERIALS AND METHODS
Overview and motivation of the model
SUSTAIN-d is a decomposition of SUSTAIN (19), a cognitive
model of concept learning that has captured behavior in a
number of tasks (19, 20) and brain-activity patterns including in
the hippocampus and medial temporal lobe structures (17, 21, 22)
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[also see (63)]. The formal specification of SUSTAIN is included in
the aforementioned papers. Whereas SUSTAIN contains clusters (a
cognitive construct) that are recruited in response to unexpected
events, SUSTAIN-d decomposes the notion of cluster into
neuron-like units that coordinate to form virtual clusters through
a flocking learning rule as described below.

Model learning implementation details
The model was initialized with a population of neuron-like units.
Full-scale simulations used 32,000,000 units to model the hippo-
campus principal cell population. To determine the best fitting pa-
rameters for these simulations (see below), 10,000 units were used
to reduce computational costs. Units were placed randomly (uni-
formly) in the stimulus feature space, where all units are inactive
or unconnected to the task context. On the first trial (no output)
or when the model makes an error (greater output for the incorrect
category), k (proportion of total; set to 0.00005 or 0.005% for the
hippocampus simulation and 0.01 for parameter search) neurons
are recruited at the current stimulus’ position (note that number
of units and k do not change model behavior; see section on
scaling below). Once units are recruited, they are connected and ac-
tivate in response to stimulus input, and their activations contribute
to the category decision. On each trial, the winners’ activations con-
tribute to the output decision, and they update their tuning by
moving toward the current stimulus (Kohonen learning rule) and
then toward their own centroid (recurrent update), and the atten-
tion weights and connection (i.e., output) weights are updated
through learning.

Specifically, the model takes a stimulus vector as input on each
trial; the most strongly activated k connected neuron-like units are
considered winners (k-WTA), and the activation of these units is
computed on each trial

acti ¼ ζ � e� ζ�disti ð1Þ

where ζ is a positive scaling parameter that controls the steepness of
the tuning curve and disti is the attention-weighted distance
between neuron i’s position posi and the stimulus x in the Rn rep-
resentational space they inhabit

disti ¼
Xn

j¼1
½aj � jposij � xj jr�

1=r
ð2Þ

where r is set to 1 for the city-block distance (for separable-dimen-
sion stimuli) and the non-negative aj attention weights sum to 1.
The n attention weights correspond to each stimulus feature dimen-
sion, and their magnitude reflects the importance of each feature.
The attention weighting also corresponds to each unit’s receptive
field, which is centered on its position along each feature dimension
(Fig. 1B, attention weighting). ζ controls the steepness of the recep-
tive field and will be used tomodel the different tuning properties of
the anterior and posterior hippocampus (see below). Hence, units
most strongly tuned to the current stimulus input are activated, and
the activity is propagated forward to produce the categorization de-
cision. Only winners have non-zero output that contribute to the
category decision

outi ¼
acti; if unit i is a winner
0; otherwise

�

ð3Þ

and evidence for category decisions propagates from the output

evidencej ¼
Xm

i¼1
wij � outi ð4Þ

where wij is the connection weight (Fig. 1B, cyan and pink connec-
tions) between unit i and decision j and m is the number of units.
Finally, the probability of making decision j is computed by

probj ¼
eϕ�evidencej
Xz

v¼1
eϕ�evidencev

ð5Þ

where z is the number of possible decisions and ϕ is a non-negative
decision certainty parameter or inverse temperature [see (19, 64) for
related formulations]. If there are no connected units (e.g., first
trial) or fewer than k winners, then no units respond or fewer
than k units respond, respectively.

During learning, the k winners update twice, once toward the
stimulus and a second time toward each other, which supports
neural flocking. We view unit updating as a continuous process
through time relying on recurrent connections, which we simplify
here to two simple updates. In the first update, the kwinners update
their positions toward the current stimulus’ position on each trial
according to the Kohonen learning rule

Δposi ¼ ηpos � ðx � posiÞ ð6Þ

where ηpos is the learning rate, x is the current stimulus’ location,
and posi is unit i’s position in representational space (Fig. 1C,
first update). Bold type is reserved for vectors. This is the first learn-
ing step, where the initial forward pass of stimulus information
occurs and the first clustering update is applied. In the second
update, the k winners perform an additional recurrent step which
re-codes the stimulus based on their activity, updating their posi-
tions toward the centroid of the k winners’ positions

Δposi ¼ ηgroup � ðgroup � posiÞ ð7Þ

where ηgroup is the learning rate for the recurrent update and group
is the centroid (mean position) of all the winners (Fig. 1C, second
update). With this double-update rule, neurons update their tuning
profiles to activate more to stimuli that inhabit that part of space in a
coordinated fashion, and over the course of learning will typically
stabilize into a portion of the space adaptive for the task. As coac-
tivated units cluster together and becomemore similar to each other
in tuning, this group naturally lead to a virtual cluster (i.e., many
units that are similar tuned to a concept) similar to a cluster (19)
and akin to a hippocampal place or concept cell assembly where as-
semblies of neurons show similar tuning and coactivate to similar
stimuli or environmental features (8–10).

To update attention weights over learning, the model applies
gradient ascent on the summed activation of winning units minus
the summed activation of the nonwinner units (i.e., connected but
not a winner) with learning rate ηattn. Note that this learning rule is
local (i.e., no backpropagation).

Connection weights are updated using descent on error (based
on the output probj) using cross-entropy loss with one-hot target
vector (i.e., one category is correct) on each trial, with learning
rate ηcweights. To display the output of the model and for fitting to
the behavioral data, we plot 1 − probj (where j is the correct category
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decision), averaged for each block tomatch the error learning curves
as done in prior work.

As the model activations, outputs, and learning update values
will vary depending on the number of units, we scaled the learning
rates to retain consistent outputs across models with different
numbers of units. This scaling means that changing the total
number of units and k (winners; proportion of total) does not
change the learning behavior and output of the model, meaning
that the model can scale from a small model with a few neurons
to millions of neurons without losing its theoretical essence and
cognitive capacities, allowing us to bridge across levels (assuming
no noise—see Results for beneficial effects of a larger number of
neuron-like units with noise). Furthermore, this allowed us to
perform parameter search for fitting human behavior with fewer
units and different k, while reporting the hippocampal-scale simu-
lation with many more units. First, the learning rate of the connec-
tion weights was divided by k, so that weight updates would scale by
the k winners that contribute to the output on each trial. As the at-
tention weights are updated locally by gradient ascent to the winner
neurons’ activations relative to the loser neurons’ activations, we
divided the update (the gradient) by the number of active units
(i.e., total number of the winner and loser neurons included to
compute the gradient).

Model fitting: Human concept learning behavior
To model the classic Shepard et al. (29) results, we fit the learning
curve data (minimizing sum of squared errors) from the Nosofsky
et al. (65) replication of the study of Shepard et al. (29). We present a
brief overview of this classic study here. Participants learned to cat-
egorize eight stimuli that varied on three binary feature dimensions
(shape, size, and color) into two categories. The concept structure
was one of six possible logical structures from Shepard et al. (29)
(Fig. 3A). On each trial, participants categorized each stimulus
into a category and was provided feedback, learning by trial and
error. Participants completed blocks of 16 trials (with two repeti-
tions of each stimulus). Participants continued learning until they
made no errors in four sub-blocks of eight trials or if they completed
25 blocks (400 trials). In both studies, they plotted error curves (1 −
proportion correct) for the first 16 blocks (16 trials per block),
which are the data we will fit (Fig. 3B, left).

Task blocks consisted of 16 stimuli presented in a randomized
order. To obtain error curves for each parameter set, a random stim-
ulus sequence for each problem type was generated 25 times, and
the error curves were produced by taking the mean across those it-
erations. To maintain consistency, each iteration was seeded with a
specific number, so that the 25 sequences were the same across the
different parameters.

Model learning curves were fit to display the human pattern of
results. We performed a hierarchical grid search across the param-
eters. For the standard model (i.e., no separation of brain regions or
modules), there were six free parameters: ζ, ϕ, and four learning
rates (attention weights ηattn, connection weights ηcweights,
Kohonen update ηpos, and recurrent update ηgroup). To fit the
model that includes a separate anterior and posterior bank of
units, separate tuning (ζ) parameters were used for each bank
with the constraint that the anterior bank should have a broader
tuning than the posterior bank of units (12 free parameters).

Robustness to failure modes: Noise and lesion experiments
To demonstrate the beneficial effect of having a population of
neurons (rather than a single unit or cluster in cognitive models)
and the recurrent update, we simulated Shepard’s problems with
different failure modes during the learning process and how
robust the model was to these perturbations. To simulate noise in
the learning process, we added noise to the units’ positions. For each
trial, noise was sampled from a n-dimensional Gaussian distribu-
tion (corresponding to n features) with zero mean and SD of 0,
0.5, or 1.0 that was added to the update. By adding noise to the
unit’s position in representational space, this causes potential prob-
lems for (i) selecting the appropriate k neurons as winners, (ii) ap-
propriate updating of the attention weights, and (iii) appropriate
updating of the connection weights.

To simulate damage-like events in the neural population, we per-
formed a lesion-like experiment where we randomly removed a
subset of the active neurons from the model, simulating typical bi-
ological changes such as neuron death or synaptic turnover. For a
simple illustration of the beneficial effect of the number of neurons
on damage-like events, we set up one “lesion” event at trial 60 where
0, 25, or 50 units were removed and rendered inactive from that
point on. The results hold with more lesion events or a larger
number of neurons removed.

Unsupervised learning on spatial tasks
To simulate a rodent foraging in an environment, we placed an
agent in a two-dimensional square environment and produced a
randomly generated 500,000 sets of steps with the restriction that
the agent could not step out of the environment. On each trial, it
was able to move left, right, up, or down in steps of 0, 0.025, 0.05,
or 0.075. The environment was a square that spanned from 0 to 1 on
the horizontal and vertical dimensions.

For unsupervised learning, the model could recruit units like
SUSTAIN does by relying on a surprise signal. Here, we further sim-
plify as in (17) and assume that all units in the population are rel-
evant to the current context. Unit positions were updated according
to the learning rules specified above. While a rodent’s actual envi-
ronment contains many features, we assumed that these features ef-
fectively reduce to a two-dimensional space corresponding to
coordinates within the agent’s enclosure.

On each trial, the agent moved a step (randomly selected over
four directions and four step sizes; one trial), and the model
updated the k winners with the Kohonen learning rule as before,
with an annealed learning rate so that the units would eventually
settle and stabilize into a particular location

Δposi ¼ ηt � ðx � posiÞ

where ηt is the learning rate at time t. The learning rate followed an
annealing schedule

ηt ¼
η0

1þ ρ � t

where η0 is the initial learning rate and ρ is the annealing rate set to 4
× 10−12 [see (17)]. The recurrence update learning rate ηgroup was
fixed at 1.0, although smaller values such as 0.8 and 0.6 produce
similar results.

To compute grid scores at the end of learning, activation maps
were produced by generating a new movement trajectory with
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250,000 steps (as above) and computing the unit activations based
on their positions at the end of learning [i.e., freezing the positions;
see (17)]. For each value of k, we ran 100 simulations and computed
the grid scores at the end of learning. The activation maps were
binned in 40 × 40 bins (original 100 × 100) and then normalized
by the number of visits to each binned location (normalized activa-
tion map). Grid scores were calculated on the basis of (66). Briefly,
the spatial autocorrelogram of the activation maps were calculated
as defined in (67), and gridness was computed using the expanding
gridness method, where a cicular annulus with a radius of eight bins
was placed on the center of the autocorrelogram, with the central
peak removed. The annulus was rotated in 30 steps, and the
Pearson correlation between the rotated and unrotated version of
the spatial autocorrelogram was recorded. The highest correlation
value for 30, 90, and 150 rotations was subtracted from the lowest
correlation value at 0, 60, and 120 to give an interim grid score. This
was repeated expanding the annuls by two bins, up to 20. The final
grid score was the highest interim grid score.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5

View/request a protocol for this paper from Bio-protocol.
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