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 48 

Abstract | The Earth surface system and its dynamics are changing through nature-human interactions. 49 

Earth surface system modeling (ESSM) is essential for understanding Earth surface processes pertaining to 50 

the past, present and future, and for assisting in decision-making. Deep learning (DL), with its outstanding 51 

strength for data-driven inference, shows promise in assisting ESSM by exploiting information from big 52 

observational data. In this Perspective, we discuss current ESSM demands and DL potentials before 53 

examining hybrid ESSM, a new research paradigm that integrates DL strengths into ESSM. By overcoming 54 

subjective bias and deployment problems in current integration processes, we envision an intelligent 55 

revolution in ESSM. We illustrate a conceptual framework to automatically generate customized, scalable 56 

and accurate solutions for given ESSM tasks, based on modeling-related knowledge and DL strengths. We 57 

conclude by discussing potential prospects for ESSM when integrated with DL for identifying pathways 58 

toward a sustainable future. 59 

 60 

Introduction 61 

The Earth surface system encompasses dynamics on spatial scales ranging from sub-millimeter to global 62 

and in temporal scale from milliseconds to billions of years1,2. The Earth surface system consists of various 63 

components, such as hydrological, geological, (near-surface) atmospheric, biological and social subsystems 64 

(Fig. 1), which preserve interconnected and inter-constrained interactions through energy fluxes, material 65 

fluxes and information fluxes3,4. To understand the underlying mechanisms and anticipate chain reactions, 66 

ancient philosophers to current scientists have studied the interactions between nature and the human 67 

realm5,6. 68 

Based on computational techniques and mathematical models (typically, physically, (semi-)empirically or 69 

statistically based), Earth surface system modeling (ESSM, Fig. 1) is a primary tool for representing and 70 

quantifying the spatiotemporal variations and internal interactions of the Earth surface across the past, 71 

present and future7–9. The scientific lifecycle of ESSM can be generally described as having five 72 

methodological stages, namely (i) problem definition and contextualization, (ii) data preparation and 73 

processing, (iii) model development and integration, (iv) model evaluation and optimization, and (v) model 74 

simulation and application10,11. These stages may need to be attended to iteratively, and all are important 75 

for ensuring that the key processes are addressed and the modeling is suitable for the purpose12,13. However, 76 

ESSM is confronted with technical challenges due to the vast volume of data available, creating analytical 77 

barriers and necessitating the adoption of sophisticated technologies to overcome computational 78 

bottlenecks14,15. 79 



 80 

Fgiure1. An illustration of integrating Earth surface system modeling and deep learning to analyze 81 

current scientific challenges. The figure shows the various subsystems of the Earth surface system and 82 

how they connect and interact. The Earth surface system dynamics and interactions can be interpreted and 83 

predicted by Earth surface system modeling and deep learning methods to better understand frontier 84 

challenges such as climate change, natural resource exploitation, health and environment, and the 85 

sustainable city. 86 

Deep learning (DL, Fig. 1), using the power of deep neural networks for prediction accuracy, computational 87 

efficiency, and the ability to process multimodal data, has revolutionized several research fields, including 88 

computer vision, natural language processing, and protein structure prediction16. This data-driven approach 89 

has also found applications in geosciences17–19, demonstrating its potential to address the analytical and 90 

computational challenges faced by ESSM research20,21. However, the data-intensive nature of DL has 91 

inherent “black box” drawbacks due to its underlying abstract formalisms, whereas ESSM relies more on 92 

process-based and interpretable representations. Moreover, Earth sciences face unique challenges arising 93 

from the heterogeneous and noisy observed data, which often yields an incomplete view of Earth surface 94 

processes21. Despite the abundance of raw data, labeled and preprocessed data are scarce, mainly due to 95 



technical barriers and labor-intensive processes22. In light of the "bitter lesson's" emphasis on data quality23, 96 

it is challenging for DL models to recognize patterns and generate trustworthy trends from noisy data with 97 

few labels without adding prior domain expertise and physical principles20,24. 98 

Hybrid ESSM, which combines the strengths of ESSM and DL, is a current research trend that has resulted 99 

in groundbreaking discoveries (for example, emulating Earth surface processes in high resolution25,26) and 100 

an improved understanding of frontier challenges (Fig. 1)12–14. While enhancing the efficiency of analyzing 101 

from observational data and accelerating discovery in ESSM27,28, hybrid ESSM has also broadened the 102 

application range of DL, such as information extraction from remote sensing imagery and climate variable 103 

prediction21. However, existing research has currently focused more on combining approaches at the model-104 

integration level, rather than adopting a holistic approach that encompasses the modeling lifecycle; the latter 105 

helps to better understand and solve given tasks. The potential for subjective bias towards one paradigm 106 

over the other can lead to an inadequate balance between the two paradigms, potentially impeding their 107 

successful integration. In addition, the incompatibility of model deployment can result in computational 108 

bottlenecks, posing another substantial obstacle. 109 

In this Perspective, we discuss the challenges of existing ESSM research from a geographical perspective, 110 

as well as the opportunities presented by DL. Further, integration modes and shortcomings of hybrid ESSM 111 

are examined. Based on the modeling-related knowledge and the DL strengths, we propose a conceptual 112 

framework for intelligently managing the ESSM lifecycle and investigate a potential application case, with 113 

the aim of reducing current technical barriers. Finally, we look at future directions toward advancing ESSM 114 

research through its integration with DL. 115 

Challenges of current ESSM 116 

Numerous process-based models have been developed and applied in ESSM throughout the evolution of 117 

Geosciences. In order to analyze more comprehensive issues involving numerous processes, communities 118 

have developed a series of integrated models based on ESSM that can depict interactions among multiple 119 

subsystems29. Table 1 lists prominent modeling applications in distinct domains. As indicated below, we 120 

have identified four significant challenges that ESSM is currently facing. 121 

Table 1 | Example conventional ESSM approaches and new DL options to scientific problems in various domains. 122 

Domain Scientific challenge 
Example conventional 

ESSM approaches  
DL-integrated options  

Hydrological system 

Rainfall-runoff 
simulation 

SAC-SMA30 
LSSVM-HHO31 (multilayer 

Perceptron (MLP) based) 

Groundwater modeling MODFLOW32 

CNN-BiLSTM33 (convolutional 

neural network (CNN) and long 

short term memory network 

(LSTM) based) 

Geological system 
Soil erosion modeling WEPP34 ANFIS35 (MLP based) 

Sediment estimation SEDD36 SediNet37 (MLP based) 

Atmospheric system 
Air quality assessment 

Gaussian Plume 

Model38 
AQC-Net39 (CNN based) 

Weather prediction WRF40 Graph neural network41 

Biological system 

Forest carbon estimation SEIB-DGVM42 FLUXCOM43 (MLP based) 

Wetland monitoring WSM44 
Bootstrap-BP neural network45 

(MLP based) 

Social system 
Epidemic spread 

modeling 
Susceptible-infected-
susceptible Model46 

LSTM47 



Human migration 

simulation 
Gravity Model48 

Deep Gravity model49 (MLP 

based) 

Completeness of understanding problems. Understanding the dynamics of the Earth surface system, 123 

which exhibit self-organization, emergent, and hierarchical properties, should consider the intrinsic 124 

interactions and feedbacks between different subsystems50,51. In ESSM, macroscopic problems are often 125 

decomposed hierarchically into less complex and more manageable ones to facilitate analysis and problem-126 

solving, while underlining the importance of interactions and emergent properties across different 127 

scales52,53. Yet, some current methodologies in ESSM, particularly those designed for large-scale 128 

simulations, may not fully capture the intrinsic connections among related subsystems, potentially resulting 129 

in reductionist approach54,55. Furthermore, these methods could lead to incomplete understanding and 130 

computational challenges. Specifically, decomposed subproblems with too few geographic objects (for 131 

example, landforms, vegetation, river) in subsystems might not provide a comprehensive view of the 132 

relevant Earth surface states7,56; but in contrast, those with a large number of geographic objects may not 133 

necessarily address the nonlinearity problem effectively and could introduce additional computational 134 

complexities4457,58. 135 

Capability of handling big data. A plethora of sensors continue to proliferate unstructured observational 136 

data that capture states, fluxes and interactions of the Earth’s surface59. They include Earth-observation 137 

satellites, the global positioning system, in situ observations, and social media; all of these generate 138 

quintillions of bytes every day60,61. Although this data availability has created numerous opportunities for 139 

ESSM studies, it has also led to unprecedented technological obstacles because of Big data’s “five Vs” 140 

characteristics, namely, volume, variety, veracity, velocity and value62,63. It is generally difficult to fully 141 

process the various data sources and further extract deep-level patterns, let alone discover knowledge from 142 

them, utilizing conventional ESSM approaches64. 143 

Precision of modeling dynamics. The construction of process-based models, particularly when involving 144 

multiple subsystems and (semi-) empirical representations, is largely dependent on an expert’s 145 

perspective65. So, model architecture and configuration are potentially affected by subjectivity and are 146 

prone to bias, errors and unexpected simulation results66. This is also accentuated when the derived models 147 

consist of physical, (semi-)empirical, or statistical models that may struggle with effectively addressing 148 

complex nonlinear dynamics67,68. Although data assimilation strategies can enhance the performance of 149 

these models, the pace of creating data frequently far exceeds the ability of models to assimilate it sensibly20. 150 

Efficiency of computational technology. The computational efficiency of process-based models is crucial, 151 

particularly for high resolution or (near-) real-time modeling (for example, natural disaster assessment), 152 

where delays in results caused by large time overheads could potentially impact decision-making 153 

processes69,70. Hardware-wise, current ESSM research often relies on multiple central processing units 154 

(CPU)-based computers or supercomputers, which have been outperformed by expanding computational 155 

demands71. A three-year study of fine-grained climate simulations on supercomputers shows that GPUs 156 

outperform CPUs by at least an order of magnitude during high-resolution simulations72. Regarding 157 

software, ESSM lifecycle processes typically require manual operations or intermediate data transfers, 158 

which can impede the computing pipeline. In addition, some models with computationally expensive 159 

modules, such as the solution of optimization problems and partial differential equations, necessitate time-160 

intensive iterative simulations. 161 

DL strengths 162 

As a specific subfield of artificial intelligence, DL comprises a large class of approaches based upon the 163 

different variations of deep neural network architectures. For example, convolutional neural networks, 164 

architectures that focus on local connections through multi-dimensional convolutions, are often used to 165 

extract patterns from various data modalities (for instance, 1D convolutions for sequences, 2D convolutions 166 

for images, and 3D convolutions for videos)16. Recurrent neural networks, particularly those equipped with 167 



memory cells known as Long Short-Term Memory (LSTM) networks73, are commonly adept at learning 168 

features and long-term dependencies from sequential inputs74. More sophisticated networks, like graph 169 

neural networks, generative adversarial networks, and transformers, expand the applicability of neural 170 

networks beyond relatively specific uses and demonstrate greater flexibility and adaptability for various 171 

tasks41,75,76; in particular, transformers have been shown to be applicable across diverse purposes with 172 

outstanding performance in geoscientific applications, such as modeling spatio-temporal patterns of climate 173 

variables77 and tectonic plate movement78.  174 

Compared to conventional process-based models, deep neural networks generally exhibit superior 175 

prediction performance in terms of fitting observational data16. Although it is important to acknowledge 176 

that these networks typically have limited interpretability for understanding decision processes79,80, with the 177 

research community actively working to address these shortcomings, the characteristics of deep learning 178 

still pave the way for data-driven discovery of patterns in Earth surface system dynamics. Table 1 contains 179 

some existing examples of DL-integrated ESSM options for the different domains. Since the introduction 180 

of DL in 2006, most research areas have witnessed its development, with the number of published papers 181 

related to these methods increasing annually (see Fig.2). In some fields, the volume of papers based on DL 182 

published in the last three years is nearly half of the total published using these methods over the past decade 183 

or more. On a broader note, the opportunities that DL brings to mitigate the challenges of ESSM can be 184 

seen from four perspectives, as described in the following sections. 185 

 186 

Figure 2. Quantity of published research papers utilizing deep learning in various subsystems from 187 

2006 to 2021. Each subfigure displays the proportion of articles published in the last three years relative to 188 

the total number of articles in that category. The statistical data are collected from Web of Science. 189 

Maximum use of multimodal data. Data derived across space and time are often characterized by 190 

multimodalities; that is, they are multi-source, heterogeneous, unstructured, or multi-temporal81. Integrating 191 

information from various modalities into a homogeneous space helps uncover distinctive characteristics 192 

and explain the observed processes82. Techniques for multimodal data fusion are numerous. Those 193 

techniques that rely heavily on manual encoding with domain-specific expertise inevitably impair the fusion 194 

results83. In contrast, deep neural networks can adapt to unstructured multimodal data and uncover 195 

complicated correlations among them84. The ability to tackle the challenges of ESSM using this aspect of 196 

DL is a major advantage. For instance, DL-based approaches can fuse the various multimodal data derived 197 

from decomposed problems, thereby affording an efficient way to understand Earth’s surface processes 198 

more comprehensively. 199 

Self-adaptive feature representation. The data generated by natural laws exhibit considerable uncertainty 200 

and high dimensionality20,85. To extract information from and understand such data, scientific communities 201 

have a strong interest in representing their features. Traditional methods like Scale-invariant Feature 202 



Transform (SIFT), Term Frequency - Inverse Document Frequency (TF-IDF), and Principal Component 203 

Analysis (PCA) commonly extract low- or mid-level features and are only suitable for certain workloads86. 204 

In contrast, DL-based approaches have received attention in geoscientific applications due to the self-205 

adaptive feature learning mechanism (commonly based on supervised learning and labeled data). 206 

Specifically, deep neural networks can uncover patterns and relationships from data, such as interpreting 207 

various objects within complex backgrounds in observed images, that may be challenging to formulate 208 

using traditional methods based on our a priori knowledge87,88. This facilitates the extraction of deep-level 209 

features without tedious feature engineering. Further, unsupervised or self-supervised approaches can 210 

automatically adapt to latent domains in heterogeneous data at a fraction of manual and computational 211 

cost89,90. Modelers can use pre-trained models on public datasets like ImageNet91 to transition to 212 

geoscientific applications, reducing time-consuming labeling efforts. 213 

Superior fitting precision. DL-based approaches perform well in complex Earth surface system dynamics 214 

as universal functional approximators92. For example, DL-based forecasting or nowcasting of climate 215 

variables (e.g., precipitation, temperature and humidity) can achieve better results, spatially and temporally, 216 

including the exact timing, location and intensity90,93. On the other hand, traditional models such as optical 217 

flow frequently struggle to effectively capture nonlinear climate dynamics (for example, moist convection 218 

and cloud formation)93,94, which can be attributed to the separation of internal processes and the presence 219 

of nonoptimizable parameters95. Some studies have also attempted to shift the paradigm for specific tasks 220 

to enhance their performance, such as visual question-answering for geographic scenes96, synthetic 221 

spatiotemporal data generation97, and extreme weather prediction98, that seem impossible for traditional 222 

process-based models through customized networks. All of the preceding examples rely on the ability of 223 

deep neural networks to fit with superior precision. There is however one large caveat to recognize here in 224 

that, as with all modeling, the parameterization of deep neural networks depends on the training dataset(s), 225 

which greatly affects fitting performance99. Biases embedded in training data could get encoded into the 226 

model, making it essential to consider data quality and the conditions that affect their parameterizations and 227 

extracted patterns100,101. 228 

High inferencing speed. It is undeniable that training deep neural networks require a significant amount of 229 

time102. However, the inferencing speed of trained networks can be orders of magnitude faster than 230 

conventional process-based models103, such as numerical methods, which frequently require lengthy 231 

simulation durations to yield reliable outcomes72,104. The computational efficiency of these conventional 232 

models can be significantly enhanced with trained networks as a substitute17. End-to-end network 233 

architecture and parallel computing explain inferencing’s computational advantage. First, end-to-end setups 234 

enable networks to learn complex representations of data, from inputs to targets, by feeding given data 235 

directly without manual manipulations, thereby being highly beneficial for large-scale simulation105. 236 

Second, the data in deep neural networks are usually structured as a couple of tensors or matrices, which is 237 

suitable for parallel computation106. The resulting inferencing speed can be increased by several orders of 238 

magnitude with GPUs and TPUs107. 239 

Integrating ESSM and DL 240 

The integration of ESSM and DL offers a promising avenue for advancing our understanding of Earth 241 

surface system dynamics. While these two approaches have distinct research paradigms—theory-242 

simulation-driven and data-driven—they complement each other in principle28. ESSM offers a strong 243 

theoretical foundation for interpreting and representing Earth surface processes but may struggle to handle 244 

complex dynamics in the context of big observational data. Conversely, DL excels at uncovering 245 

information and fitting trends in large datasets, though it lacks interpretive equations and physical 246 

constraints. Hybrid ESSM leverages the strengths of both approaches, demonstrating enhanced prediction 247 

and interpretability capacities, potentially expediting the discovery of underlying Earth surface system 248 

dynamics and interactions108,109. 249 



Existing hybrid ESSM research primarily focuses on integrating process-based models with deep neural 250 

networks during the stage of model development and integration in the modeling lifecycle. The main 251 

integration modes can be categorized into three fundamental modes: the cascading mode, the parallel mode, 252 

and the embedding mode (Fig. 3). It is worth noting that complex tasks often require a combination of these 253 

fundamental modes. 254 

 255 

Figure 3. Computational logics of hybrid models. The cascading mode is a computational pipeline consisting of 256 
process-based models and deep neural networks that runs sequentially and transmits intermediate results. There are 257 
two cases according to the sequential order of the models. The parallel mode is when both types of models are run 258 
simultaneously. The embedding mode is when the two types of models are embedded into each other’s models as 259 
plug-in modules. According to the embedding relationship, they can also be divided into two cases. 260 

Cascading mode. The cascading mode is a computational pipeline consisting of process-based models and 261 

deep neural networks that run sequentially and transmit intermediate results. This mode has two cases. 262 

In the first case, the process-based model is executed before the deep neural network (diagram 1 in Fig. 3). 263 

Using a process-based model to produce training data or perform feature engineering for a deep neural 264 

network and the latter's ability to downscale the output variables of the former are two typical functions. 265 

For instance, process-based models can filter high-quality samples based on physics-based criteria or 266 

construct simulated datasets for training deep neural networks to achieve high prediction accuracy with less 267 

ground truth data110,111. Moreover, deep neural networks can statistically downscale the coarse outputs of 268 

process-based models, which is crucial for predicting climate variables112,113 and reconstructing real-world 269 

landscapes114,115. 270 

In the second case, the deep neural network is utilized first, followed by the process-based model (diagram 271 

2 in Fig. 3). As an example, process-based models can constrain or refine deep neural network outputs to 272 

adhere to physical mechanisms116,117. In addition, deep neural networks can be used to calibrate process-273 

based models to reduce parameterization complexity when solving partial differential equations118,119. 274 



Parallel mode. In the parallel mode, process-based models and deep neural networks are executed 275 

concurrently (diagram 3 in Fig. 3). This mode has three practical uses due to its parallel nature: (i) solving 276 

complex issues by dividing and conquering, (ii) processing multimodal data and (iii) parallel computing. 277 

Specifically, the divide-and-conquer strategy, generally built for decomposed sub-problems, 278 

simultaneously employs the process-based model and deep neural network to address the challenges at 279 

which they excel120,121. Also, process-based models generally process data in specific file formats (e.g., 280 

Shapefile and NetCDF) more efficiently than deep neural networks in terms of preprocessing and encoding 281 

these raw datasets. Therefore, from the standpoint of computational efficiency, it is promising to use 282 

process-based models or deep neural networks to process the data they can handle most efficiently while 283 

performing tasks involving heterogeneous data sources122,123. Parallel computing cannot only employ 284 

supercomputer technology to boost computational performance124 but also partition the modeling 285 

environment, thereby avoiding incompatibilities caused by heterogeneous computing resources between 286 

process-based models and deep neural networks125,126. 287 

Embedding mode. The embedding mode allows process-based models and deep neural networks to be plug-288 

and-play components127–129. Specifically, the two approaches will be seen as plug-ins, complementing one 289 

other. The embedding mode can be further subdivided into two cases. 290 

The first case involves incorporating deep neural networks as surrogate modules into process-based models 291 

(diagram 4 in Fig. 3). The trained deep neural networks can be neural surrogates or solvers for difficult-to-292 

compute submodules, such as based on partial differential equations130, optimization procedures131, and 293 

high-dimensional tasks118. Thus, the local modules of process-based models can be automatically 294 

parameterized and modified132, thereby improving computational efficiency and accurately solving 295 

complex systems133,134. 296 

The second case refers to the integration of process-based models into deep neural networks (diagram 5 in 297 

Fig. 3) to incorporate physical mechanisms and principles and construct physics-informed architectures135, 298 

such as Physics-Informed Neural Networks (PINNs)92. For example, designing specific loss functions to 299 

optimize networks is a straightforward and effective way to constrain inferred results to confirm to domain-300 

specific understanding136. Some studies have investigated methods for determining the network’s structure 301 

(e.g., hidden layers) based on domain laws or physical techniques. Although this is not an easy task, 302 

groundbreaking results have been achieved, such as neural ordinary differential equations137 and 303 

geographically weighted artificial neural network138. In addition, another promising application of research 304 

is the incorporation of physical restrictions into deep neural networks to determine new equations that 305 

characterize Earth surface dynamics139. 306 

Shortcomings 307 

Despite many years of sustained research, hybrid ESSM is still in its infancy. Highly heterogeneous data, 308 

insufficient ground truth data, and low interpretability of outcomes have been previously described as the 309 

main challenges20. This section examines further theoretical and practical shortcomings in existing hybrid 310 

ESSM studies, to identify opportunities for significant improvements in hybrid ESSM capabilities. 311 

Restricted integration scenarios. Existing hybrid ESSM studies concentrate mainly on model-level 312 

integration. Nevertheless, the ESSM lifecycle is more comprehensive and generally includes the five 313 

indispensable stages in the scientific methodology summarized in the introduction. These stages are all 314 

essential for determining the quality and relevance of the solution so that the modeling is suitable for the 315 

purpose, such as is captured by the notions of usability, feasibility and reliability12. Future studies can focus 316 

on systematically organizing knowledge about the lifecycle processes in ESSM, encompassing the physical 317 

mechanisms behind Earth surface processes, data sources, model structures, and computational 318 

methodologies. By integrating this prior knowledge with deep learning techniques, an intelligent question-319 

answering and recommendation system can be developed to assist users in generating accurate and 320 

customized solutions for their specific tasks. In this envisioned process, modeling-related knowledge would 321 



guide and constrain the inference of deep learning models, while deep learning techniques could potentially 322 

uncover new discoveries and insights by leveraging the existing knowledge base. 323 

Subjectivity in the modeling lifecycle. Subjective factors can be the primary obstacles to achieving highly 324 

accurate outcomes in hybrid ESSM. As noted previously, researchers are prone to use their expertise or 325 

criteria, likely making the modeling logic less precise and potentially biased. For example, modelers can 326 

favor physical or numerical models, whereas others with a strong background in DL prefer a more data-327 

driven approach. Both may lead to suboptimal hybrid models for a specific task140. Another underlying 328 

challenge is that numerous innovative ideas and techniques about DL continue to inundate scientific 329 

communities, necessitating researchers to comprehend the most current technical advancements141. When 330 

it comes to choosing configurations (e.g., architectures or hyperparameters) for deep neural networks, many 331 

experienced ESSM researchers might be at a loss. 332 

Incompatible computational environment. Incompatibilities between ESSM and DL in terms of hardware, 333 

software stack, and operating environment could impair computational efficiency. Specifically, process-334 

based models are often executed on multi-CPU computers or high-performance computing facilities142, 335 

whereas the training and inferencing phases of deep neural networks are typically deployed in GPU-based 336 

and container-based (e.g., Docker) environments143. Further, process-based models, particularly 337 

mechanistic ones, were until recently often constructed using Fortran and C++, whereas deep neural 338 

networks in specific environments employ Python and packages like Tensorflow and PyTorch. This latter 339 

distinction has become less problematic as many scientists are starting to embrace Python and the emerging 340 

technique of scientific machine learning (SciML) developed by Julia144. But these discrepancies in 341 

development and deployment methodologies generally result in separating DL and ESSM workloads. As a 342 

result, it significantly impacts data and message transmission and limits the computing capacity of hybrid 343 

ESSM. 344 

Towards intelligent ESSM 345 

Constructing appropriate and effective solutions to complex ESSM tasks is generally challenging. An initial 346 

undertaking is to fully understand the problem contexts and associated geographic objects. Handling big 347 

and multimodal data, especially extracting useful information or knowledge from it, is also a laborious task. 348 

Further, it is essential to focus on the trade-offs between model complexity and computational efficiency, 349 

as well as to calibrate the derived models and quantify or at least indicate model performance including 350 

uncertainty aspects. Finally, when applying constructed models, computational environments and software 351 

stacks are not easy to comprehend for those domain experts who are often not also experts in computation. 352 

Given the possible challenges and shortcomings analyzed earlier, we aim to start an intelligent revolution 353 

in ESSM that automatically delivers customized, scalable and accurate solutions to given ESSM tasks so 354 

as to lower technical barriers. We propose a conceptual framework intending to direct the entire modeling 355 

lifecycle automatically and intelligently for specific tasks (Box 1). 356 

Box 1 | The construction of the conceptual framework. 357 

In a homogeneous environment, adaptive guidance plans are intelligently generated to guide modeling tasks 358 

and allocate modular resources throughout the modeling lifecycle. These plans are the outputs of question-359 

answering mechanisms and recommendation functions, powered by a modeling-related knowledge 360 

repository and a DL computing system. The repository organizes knowledge like domain theory, 361 

computational resources and model configurations, extracted from peer-reviewed literature, web corpora, 362 

and expert input. The DL computing system employs advanced strategies to predict user preferences (user-363 

item interactions) in modeling, enabling acquisition of the most desired resources. Moreover, the 364 

knowledge repository provides a priori knowledge to constrain the prediction results of the DL computing 365 

system, while the latter can provide inferencing aid to uncover and infer unknown knowledge from given 366 

material to improve the former’s completeness. The adaptive guidance plans function as follows: 367 

Stage 1. Problem definition and contextualization. A given ESSM topic to investigate can be 368 

hierarchically decomposed into multiple sub-analyses or interactions of the subsystems 369 



involved. Geographic objects and their relations in space and time can be recognized and 370 

visualized automatically, giving modelers a clearer understanding of what to analyze before 371 

investigation commences. 372 

Stage 2. Data preparation and processing. Relevant data is retrieved, with adaptive recommendations for 373 

processing techniques. Therefore, beneficial patterns and interior knowledge can be acquired 374 

from various types of data rather than through manual manipulation. 375 

Stage 3. Model development and integration. A modular strategy organizes model modules, allowing 376 

knowledge-based reasoning methods to build customized models for specific needs. Automatic 377 

methods, including calibration and uncertainty estimation, improve prediction results and 378 

computational efficiency. 379 

Stage 4. Model evaluation and optimization. Suitable metrics for evaluating performance will also be 380 

selected at this stage. The probabilistic inferencing and other methods will be deployed to 381 

estimate the statistical confidence in the various models and other ways to represent 382 

uncertainties. 383 

Stage 5. Model simulation and application. Based on the characteristics of the data and models, it is 384 

proposed that the CPU, GPU, memory, storage and network resources be dynamically scheduled 385 

to enhance computational performance and efficiency. 386 

 387 

Modeling-related knowledge repository. The purpose of the modeling-related knowledge repository is to 388 

organize the diverse knowledge required to model Earth surface processes, not only about the paradigm of 389 

conventional methods, but also about the DL techniques. For example, there should be knowledge about 390 

geophysical mechanisms in the subsystems, as well as modeling information such as data, methods, models 391 

and computational logic. This repository could have the advantage of not only organizing a vast amount of 392 

knowledge but also serving as an a priori medium and constraint to improve performance of the DL 393 

computing, thereby enabling the discovery of previously undiscovered information. 394 



In constructing this knowledge repository strategies combine both “bottom-up” and “top-down” 395 

designations. The former uses natural language processing and computer vision methods to automatically 396 

extract dynamic knowledge about concepts, entities and relationships of the Earth surface system from 397 

publicly available authoritative data (e.g., peer-reviewed research literature and web corpora). The latter 398 

depends on the domain expertise of specialists. That is, it relies on the crowdsourced participation of experts 399 

or communities to build the repository’s structure and properties, encode existing knowledge, and to 400 

provide this in collaboration. Moreover, the “bottom-up” strategy can generate more comprehensive and 401 

up-to-date knowledge, and the construction process can be automated, but it relies on existing information 402 

and knowledge extraction technologies. On the other hand, the “top-down” strategy relies on expert 403 

knowledge, which could be more scientific but biased and would typically involve tedious manual 404 

manipulation. These two constructions have distinct characteristics and can be combined to create a 405 

comprehensive knowledge repository. 406 

Deep learning computing system. The DL computing system and the modeling-related knowledge 407 

repository ideally are built in a homogeneous environment. There are two potential practical advantages 408 

from a computational standpoint. First, a homogeneous environment is likely to be efficient for interaction 409 

and communication between these two components since it avoids the issue of incompatible local 410 

computing facilities. Second, such a homogeneous environment can continuously acquire data from the 411 

Internet and crowdsourcing, update deep neural networks online and dynamically complete the modeling-412 

related knowledge repository. 413 

In order to anticipate the probability value of modeling resources being used through deep neural networks, 414 

it must first comprehend the demands of modelers based on context analysis and historical user-item 415 

interaction records. The DL computing system can also be used during the “bottom-up” development, and 416 

to infer unknown or missing information among the existing knowledge based for instance on Bayesian 417 

learning strategies, all of which can be used to complete the knowledge repository. Data deficiency, that is, 418 

the lack of high-quality ground truth data, will be a foreseeable challenge for the DL computing system. In 419 

this case, (semi- or un-) supervised learning or self-taught learning offer promising solutions. The deep 420 

neural networks would update their parameters based on unlabeled data and maintain lifelong learning on 421 

the backend, facilitating self-renewal of the conceptual framework. 422 

Adaptive guidance plans. Crucially, the framework entails question-answering mechanisms and 423 

recommendation functions to generate adaptive modeling guidance plans. The question-answering 424 

mechanisms should grasp modeling descriptions and requirements and then acquire answers, whereas the 425 

recommendation function adaptively relates to the next modeling steps. The adaptive guidance plans are 426 

expected to serve as clear guidelines for issues that arise throughout the entire modeling lifecycle. 427 

Potential application case. There are many uncertainties in modeling human activities in the Earth surface 428 

system because human behavior is heterogeneous and variously influenced not only by themselves but also 429 

by their social and natural environment145. And unlike purely biophysical systems human behavior is not 430 

governed by scientific laws. Moreover, most of the data for such modeling are derived from questionnaires, 431 

survey observations, interviews, expert opinion and global positioning systems, thereby incorporating a 432 

large degree of subjective and systematic bias146. Here, human behavior, especially in the context of the 433 

post-COVID-19 pandemic era, will be used to demonstrate the proposed framework. 434 

The rapid transmission of COVID-19 and its unprecedented worldwide scope have radically altered 435 

contemporary societies. We have entered the post-COVID-19 era during which all countries live with 436 

COVID. Consequently, we are interested in questions like what are the various impacts of the changed 437 

travel behaviors adapted to the post-COVID-19 era? Understanding this question will assist in analyzing 438 

how the pandemic affected the social and natural environment to promote sustainable development. We 439 

employ our conceptual framework to guide the modeling of this problem, with potential guidance plans as 440 

illustrated in Fig. 5. 441 



 442 

Figure 5. Potential plans for guiding the modeling for analyzing impacts of travel behaviors adapted to the post-443 
COVID-19 era. The guidance plans are generated by our conceptual framework and can direct modelers to build 444 
customized solutions to solve given problems. The guidance can be divided into five stages according to the ESSM 445 
lifecycle. 446 

First, this macroscopic problem can be automatically subdivided into mesoscopic issues (such as changes 447 

in air pollution, global energy supply and consumption, or vehicle supply chains) and additional 448 

microscopic issues (e.g., different varieties of travel behaviors, spatiotemporal variations in these behaviors, 449 

time series trajectories and spread routings of COVID-19, and interrelationships between COVID-19 450 

variants and travel behaviors). By visualizing the geographic objects and relationships involved, the 451 

decomposed sub-problems help modelers comprehensively understand the raw problem. 452 

Second, multimodal data collection and processing will be a significant technical challenge. This conceptual 453 

framework should capture and extract real-time information from open platforms such as administrative 454 

websites, social media platforms and news websites, to recommend various sorts of up-to-date data and 455 

their associated processing methods. By assembling modular deep neural networks and process-based 456 

models, customized model architectures for distinct challenges can be created. Through automated 457 



parameterization of models, the potential of these models for addressing associated issues can be enhanced. 458 

The guidance plans should also include metrics and methodologies for outcome evaluation and uncertainty 459 

analysis, thereby enhancing trustworthiness. Finally, the guidance plans should stress application 460 

effectiveness and computational efficiency. Computing resources can be automatically aggregated in 461 

cyberspace and loaded with suitable operating systems and software applications to increase the 462 

compatibility of computational pipelines and efficacy of the analysis. 463 

Summary and future perspectives 464 

Integration of ESSM and DL approaches is an emerging paradigm for understanding Earth surface system 465 

dynamics. Most research focuses on integrating process-based models and deep neural networks into hybrid 466 

models, rather than exploring the advantages of a comprehensive approach that covers all modeling 467 

lifecycle stages. Moreover, integration success could be affected by subjective biases in the modeling 468 

processes and incompatible computational environments between the approaches. In this paper, we have 469 

examined the state and characteristics of studies of ESSM, DL, and their current hybrids before presenting 470 

a conceptual framework that we envision to be an intelligent revolution in ESSM. This aims to intelligently 471 

create customized, scalable, and accurate solutions for modeling Earth surface processes by integrating the 472 

ESSM knowledge and DL capabilities. 473 

Our framework shares similarities with ChatGPT147–149 in the ability to automatically generate customized 474 

responses based on user inputs by leveraging deep learning techniques, but it is specifically designed for 475 

the ESSM field. Notable differences between our framework and ChatGPT include the output form 476 

(multimodal outputs and modeling resource assignment vs. pure-text outputs), technical foundation 477 

(knowledge-constrained inference vs. inference by large-scale deep neural networks) and learning strategy 478 

(online self-learning vs. periodic background updates)147–149. 479 

In conclusion, the integration of ESSM and DL is across multiple disciplinaries and still an evolving field 480 

of science, thus aspiring to advance capability and capacity through the collaboration of an open scientific 481 

community and to increase the trustworthiness of the results through advanced tools and good practices. 482 

Here, we present recommendations for the future development of the ESSM and DL integration to make it 483 

more accessible, transparent and trustworthy. 484 

Open community. ESSM’s interdisciplinarity necessitates an open community for open knowledge, open 485 

resources (for example, datasets, codes and models) and open research cooperation. Research organizations, 486 

such as the OMF (Open Modeling Foundation)150, the OpenGMS (Open Geographic Modeling and 487 

Simulation)151 and CSDMS (Community Surface Dynamics Modeling System)152 already encourage 488 

collaboration and sharing. Hopefully among others, these environments will facilitate the collaboration of 489 

scientists from various disciplines to address complex problems. Building a virtual online platform for 490 

researchers to experiment and discuss will also enhance the transparency and reproducibility of modeling. 491 

Trustworthiness of outcomes. The black box nature of DL networks presents a unique challenge for 492 

geoscientific applications, as they are not easily interpretable despite producing superior results. 493 

Explainable or interpretable artificial intelligence using explanatory approaches (for example, layer-wise 494 

relevance propagation, integrated gradients, and occlusion analysis) do however allow users to understand 495 

internal mechanics of deep neural networks153. Merging process-based models with domain-specific 496 

knowledge as surrogates in deep neural networks can further increase the transparency of what might 497 

otherwise be black boxes154. Related research projects are still evolving, but there remains a significant 498 

trade-off between model performance in terms of explainability and simulation accuracy of model outputs. 499 

Moving forward, our framework anticipates the intelligent development of customized models; however, 500 

the pathway may not align entirely with geoscientists’ logic, as generated solutions predominantly depend 501 

on the inference results of deep neural networks. Therefore, it advocates not only enhancing the accuracy 502 

of the DL computing system based on specific objective functions, but also implementing contextually-503 

appropriate logic constraints that are compliant with the mindset of major geoscientists. These 504 



considerations should be taken into account throughout the entire modeling lifecycle, ultimately enhancing 505 

the trustworthiness of results and outcomes.  506 

Moreover, two typical characteristics reduce confidence in the predictive accuracy of ESSM. The first is 507 

the difficulty in accurately simulating certain extreme events due to the highly dynamic character of the 508 

Earth's surface system155. Second, climate change and technological progress, such as the capacity of 509 

humans to move sediments, could disrupt observed data, posing additional challenges to the efficacy of 510 

created models156,157. To mitigate these issues, maintaining regular updates of models and software is crucial, 511 

as is utilizing data assimilation, lifelong learning techniques, and explainable or interpretable artificial 512 

intelligence. In addition, acquiring the up-to-date and widespread data and processing the vulnerable 513 

observations using hybrid models can also effectively improve modeling performance.  514 

Ultimately, recognizing that uncertainty will always be present, enhancing the trustworthiness and 515 

credibility of results requires adherence to good modeling practices12,158. These include deliberating on 516 

fitness for purpose, applying systematic procedures, characterizing and discussing uncertainties, justifying 517 

choices, and clearly stating assumptions and limitations10. Ensuring transparency through thorough 518 

documentation further strengthens the reliability of the outcomes12,159. 519 
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