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SUMMARY

We propose estimators based on kernel ridge regression for nonparametric causal functions
such as dose, heterogeneous, and incremental response curves. The treatment and covariates 15

may be discrete or continuous in general spaces. Due to a decomposition property specific to the
reproducing kernel Hilbert space, our estimators have simple closed form solutions. We prove
uniform consistency with finite sample rates via an original analysis of generalized kernel ridge
regression. We extend our main results to counterfactual distributions and to causal functions
identified by front and back door criteria. We achieve state-of-the-art performance in nonlinear 20

simulations with many covariates, and conduct a policy evaluation of the US Job Corps training
program for disadvantaged youths.

Some key words: Reproducing Kernel Hilbert Space; Continuous Treatment; Uniform Consistency.

1. INTRODUCTION

Program evaluation aims to measure the counterfactual relationship between the treatment 25

D and the outcome Y , which may vary for different subpopulations: if we intervened on the
treatment, setting D = d, what would be the expected counterfactual outcome Y

(d) for in-
dividuals with characteristics V = v? When the treatment is binary, the causal parameter is
a function ✓0(v) = E{Y

(1)
� Y

(0)
| V = v} called the heterogeneous treatment effect; when

the treatment is continuous, it is a function ✓0(d, v) = E{Y
(d)

| V = v} that we call the 30

heterogeneous response curve. Assuming selection on the observable covariates (V,X), the
causal function ✓0(d, v) can be recovered by integrating the regression function �0(d, v, x) =
E(Y | D = d, V = v,X = x) according to the conditional distribution P (x | v): ✓0(d, v) =R
�0(d, v, x)dP (x | v) (Rosenbaum & Rubin, 1983; Robins, 1986), which may be complex

when there are many covariates. 35
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2 R. SINGH, L. XU, AND A. GRETTON

The same is true for other causal functions such as dose and incremental response curves,
and even counterfactual distributions, albeit with different regressions and reweightings. There-
fore nonparametric estimation of a causal function involves three challenging steps: estimating a
nonlinear regression, with possibly many covariates; estimating the distribution for reweighting,
which may be conditional; and using the nonparametric distribution to integrate the nonpara-40

metric regression. For this reason, flexible estimation of nonparametric causal functions, such as
✓0(d, v), is often deemed too computationally demanding to be practical for program evaluation.

Our key insight is that the definition of the reproducing kernel Hilbert space (RKHS) H re-
solves technical and practical issues that arise when estimating nonparametric causal functions
with a continuous treatment. Suppose the treatment is continuous, fix the values (d, v), and45

define the functional F : � 7!
R
�(d, v, x)dP (x | v) so that the heterogeneous response curve

evaluated at (d, v) is ✓0(d, v) = F (�0). When F is defined over L2, it not bounded; there does
not exist a constant C < 1 such that F (�)  Ck�kL2 for all � 2 L

2 (van der Vaart, 1991;
Newey, 1994a). We show that when F is defined over H ⇢ L

2, it is bounded; there exists a
constant C < 1 such that F (�)  Ck�kH for all � 2 H by the RKHS definition. Indeed, the50

RKHS is defined as the Hilbert space of functions for which the functional � 7! �(d, v, x) is
bounded (Berlinet & Thomas-Agnan, 2004), so under weak regularity conditions, the functional
� 7!

R
�(d, v, x)dP (x | v) is bounded over the RKHS as well. Supplement 6 provides a related

discussion of pathwise differentiability (Bickel et al., 1993, ch. 3 and 5).
This insight has practical consequences. By the Riesz representation theorem, since F is a55

bounded linear functional over a Hilbert space, it admits an inner product representation within
that Hilbert space: there exists some ↵̃0 2 H such that F (�) = h�, ↵̃0iH for all � 2 H. In partic-
ular, ✓0(d, v) = h�0, ↵̃0iH. The Riesz representation separates the steps of nonparametric causal
estimation in the RKHS into three simple steps: estimating the regression �0; estimating ↵̃0,
which turns out to be a generalized regression that embeds P (x | v); and taking their product.60

This decomposition is a specific strength of our framework, since it follows from the RKHS
definition, and we use it to derive simple estimators.

Algorithmically, we adapt kernel ridge regression, a classic machine learning algorithm that
generalizes splines (Wahba, 1990), to estimate causal functions such as dose, heterogeneous, and
incremental response curves. Based on our key insight, we propose nonparametric estimators65

that are inner products of kernel ridge regressions, which therefore have closed form solutions
unlike previous work. They are substantially simpler yet outperform some leading alternatives in
nonlinear simulations with many covariates; see Section 8. As extensions, we generalize our new
algorithmic techniques to counterfactual distributions, and to causal functions and counterfactual
distributions identified by front and back door criteria; see the Supplementary Material.70

Statistically, we prove uniform consistency: our estimators converge to causal functions in
sup norm, which is a useful norm for policymakers who may be concerned about each treatment
value. Our nonasymptotic rates of convergence combine minimax optimal rates for smooth non-
parametric regressions, and they explicitly account for each source of error at any finite sample
size. Our rates do not directly depend on the data dimension, but rather the smoothness of non-75

linear functions and the spectral decay of covariance operators, generalizing standard Sobolev
assumptions. The rates may indirectly depend on dimension; see Section 4 for a discussion. Of
independent interest, we provide a technical innovation to justify our main results: relative to
previous work, we prove faster rates of convergence in Hilbert–Schmidt norm for conditional
expectation operators. We generalize our main results to prove weak convergence for counter-80

factual distributions. Future research may provide uniform confidence bands.
Empirically, we demonstrate how kernel methods for causal functions are practical tools for

empirical economics through a program evaluation of the Job Corps, the largest US job training
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Kernel Methods for Causal Functions 3

program for disadvantaged youths. Our key statistical assumption is that different intensities of
job training have smooth effects on counterfactual employment, and those effects are smoothly 85

modified by age. We find that the effect of job training on employment substantially varies by
class hours and by age; a targeted policy may be more effective. Our program evaluation confirms
earlier findings while also uncovering meaningful heterogeneity.

2. RELATED WORK

We view nonparametric causal functions as reweightings of an underlying regression, syn- 90

thesizing the g formula (Robins, 1986) and partial means (Newey, 1994b) frameworks. We
quote identification theorems that assume selection on observables (Rosenbaum & Rubin, 1983;
Robins, 1986; Altonji & Matzkin, 2005) then propose simple, global estimators that combine
kernel ridge regressions. Previous works that take a global view include van der Laan & Dudoit
(2003); van der Laan (2006); Dı́az & van der Laan (2013); Luedtke & van der Laan (2016b); Se- 95

menova & Chernozhukov (2021); Foster & Syrgkanis (2019); Kennedy (2020), and references
therein. A broad literature instead views causal functions as collections of localized treatment
effects and proposes local estimators with Nadaraya–Watson smoothing, e.g. Imai & Van Dyk
(2004); Rubin & van der Laan (2005, 2006); Galvao & Wang (2015); Luedtke & van der Laan
(2016a); Kennedy et al. (2017); Kallus & Zhou (2018); Chernozhukov et al. (2022); Fan et al. 100

(2022); Zimmert & Lechner (2019); Colangelo & Lee (2020); Chernozhukov et al. (2023), and
references therein. By taking a global view, we propose simple estimators that can be computed
once and evaluated at any value of a continuous treatment, rather than a computationally inten-
sive procedure that must be reimplemented at any treatment value. Section 6 gives comparisons.

Our work appears to be the first to reduce the estimation of dose, heterogeneous, and incre- 105

mental response curves to kernel ridge regressions. Previous works incorporating the RKHS
into nonparametric estimation focus on different causal functions: the nonparametric instrumen-
tal variable regression (Carrasco et al., 2007; Darolles et al., 2011; Singh et al., 2019), and
the heterogeneous treatment effect conditional on the full vector of covariates (Nie & Wager,
2021). Nie & Wager (2021) propose the R learner to estimate the heterogeneous treatment ef- 110

fect ✓0(x) = E{Y
(1)

� Y
(0)

| X = x}, and review the extensive literature that considers this
estimand. The R learner minimizes a loss that contains inverse propensities and different regu-
larization (Nie & Wager, 2021, eq. A24), and it does not appear to have a closed form solution.
The authors prove oracle mean square error rates. By contrast, we pursue a more general het-
erogeneous response curve with a discrete or continuous treatment, conditional on some inter- 115

pretable subvector V (van der Laan, 2006; Abrevaya et al., 2015): ✓0(d, v) = E{Y
(d)

| V = v}.
Unlike previous work on nonparametric causal functions in the RKHS, we (i) consider dose, het-
erogeneous, and incremental response curves; (ii) propose estimators with simple closed form
solutions; and (iii) prove uniform consistency, which is important for policy evaluation.

We extend the framework from causal functions to counterfactual distributions. Existing work 120

focuses on distributional generalizations of the average treatment effect (ATE) or average treat-
ment on the treated (ATT) for a binary treatment (Firpo, 2007; Cattaneo, 2010; Chernozhukov
et al., 2013), e.g. ✓0 = P{Y

(1)
}� P{Y

(0)
}. Muandet et al. (2021) propose an RKHS approach

for distributional ATE and ATT with a binary treatment using inverse propensity scores and an
assumption on the smoothness of a density ratio, which differs from our approach. Unlike previ- 125

ous work, we (i) allow the treatment to be continuous; (ii) avoid the inversion of propensity scores
and densities; and (iii) study a broad class of counterfactual distributions for the full population,
subpopulations, and alternative populations, e.g. ✓0(d, v) = P{Y

(d)
| V = v}.
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4 R. SINGH, L. XU, AND A. GRETTON

We provide a detailed comparison with kernel methods for binary treatment effects in Sec-
tion 6. Whereas we study causal functions, these works study causal scalars (Kallus, 2020; Hir-130

shberg et al., 2019; Singh, 2021). We clarify the sense in which our causal function estimators
generalize known estimators for treatment effects to new estimators for causal functions. Previ-
ous work is inherently tied to the L

2 bounded functional perspective. However, evaluation of a
causal function is not a bounded functional over all of L2, as described in Section 1. Therefore
our algorithms extend the conceptual framework of kernel methods for causal inference in a new135

direction. Our statistical contribution is a new, uniform analysis of response curves that goes
beyond pointwise approximation of response curves by local treatment effects.

This paper subsumes our previous draft (Singh et al., 2020, Section 2).

3. CAUSAL FUNCTIONS

A causal function summarizes the expected counterfactual outcome Y
(d) given a hypothetical140

intervention on a continuous treatment that sets D = d. The causal inference literature studies
a rich variety of causal functions with nuanced interpretations, which we define below. Unless
otherwise noted, expectations are with respect to the population distribution P .

DEFINITION 1 (CAUSAL FUNCTIONS). We define the following.

1. Dose response: ✓ATE
0 (d) = E{Y

(d)
} is the counterfactual mean outcome given the interven-145

tion D = d for the entire population.
2. Dose response with distribution shift: ✓

DS
0 (d, P̃ ) = EP̃ {Y

(d)
} is the counterfactual mean

outcome given the intervention D = d for an alternative population with the distribution P̃ .
3. Conditional response: ✓ATT

0 (d, d0) = E{Y
(d0)

| D = d} is the counterfactual mean outcome
given the intervention D = d

0 for the subpopulation who received the treatment D = d.150

4. Heterogeneous response: ✓CATE
0 (d, v) = E{Y

(d)
| V = v} is the counterfactual mean out-

come given the intervention D = d for the subpopulation with the subcovariate value V = v.

Likewise we define incremental functions, e.g. ✓r:ATE
0 (d) = E{rdY

(d)
} where rd means @/@d.

The superscript of each causal function corresponds to its familiar parametric analogue. Results
for the means of potential outcomes immediately imply results for the differences thereof. See155

Supplement 2 for counterfactual distributions and Supplement 3 for graphical models.
The dose response curves ✓ATE

0 (d) and ✓
DS
0 (d, P̃ ) are causal functions for entire populations.

The second argument of ✓DS
0 (d, P̃ ) concerns external validity: though our data were drawn from

population P , what would be the dose response for a different population P̃ ? For example, a job
training study may be conducted in Virginia, yet we may wish to inform policy in Arkansas, a160

state with different demographics (Hotz et al., 2005). Such questions are studied under the names
of transfer learning, distribution shift, and covariate shift (Quiñonero-Candela et al., 2009; Pearl
& Bareinboim, 2014).

Both ✓
ATE
0 (d) and ✓

DS
0 (d, P̃ ) are dose response curves for entire populations, but causal func-

tions may vary for different subpopulations. Towards the goal of personalized interventions, an165

analyst may ask another nuanced counterfactual question: what would have been the effect of the
treatment D = d

0 for the subpopulation who received the treatment D = d? When the treatment
is continuous, we may define the conditional response ✓

ATT
0 (d, d0) = E{Y

(d0)
| D = d}.

For ✓ATT
0 (d, d0), heterogeneity is indexed by the treatment D. Heterogeneity may instead be

indexed by some interpretable covariate subvector V , e.g. age, race, or gender, and an analyst170

may wish to measure effects for subpopulations characterized by different values of V (van der
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Kernel Methods for Causal Functions 5

Laan, 2006; Abrevaya et al., 2015). For simplicity, we write the covariates as (V,X) for this set-
ting, where X are additional identifying covariates besides the interpretable covariates V . While
many works focus on the special case where the treatment is binary, our definition of the hetero-
geneous response curve ✓

CATE
0 (d, v) = E{Y

(d)
| V = v} allows for a continuous treatment. 175

LEMMA 1 (IDENTIFICATION (ROSENBAUM & RUBIN, 1983; ROBINS, 1986)). Under
standard assumptions of selection on observables and covariate shift in Supplement 1,
✓
ATE
0 (d) =

R
�0(d, x)dP (x), ✓DS

0 (d, P̃ ) =
R
�0(d, x)dP̃ (x), ✓ATT

0 (d, d0) =
R
�0(d0, x)dP (x |

d), and ✓
CATE
0 (d, v) =

R
�0(d, v, x)dP (x | v), where �0(d, x) = E(Y | D = d,X = x) and

�0(d, v, x) = E(Y | D = d, V = v,X = x). Likewise we identify incremental functions, e.g. 180

✓
r:ATE
0 (d) =

R
rd�0(d, x)dP (x) (Altonji & Matzkin, 2005).

Lemma 1 expresses each causal function as an integral of the regression function �0 according
to a marginal or conditional distribution. As previewed in Section 1, nonparametric estimation
of ✓CATE

0 (d, v) involves three steps: estimating a nonlinear regression �0(d, v, x), which may
involve many covariates X; estimating the conditional distribution P (x | v) for reweighting; and 185

using the latter to integrate the former. In what follows, we summarize the RKHS concepts that
we will use to propose original estimators that achieve all three steps of nonparametric estimation
in a simple closed form solution with finite sample uniform guarantees.

4. RKHS BACKGROUND

4.1. Concepts for algorithm derivations in Sections 5 and 6 190

A scalar-valued RKHS H is a Hilbert space of functions � : W ! R. The RKHS is fully
characterized by its feature map, which takes a point w in the original space W and maps it to a
feature �(w) in the RKHS H. The closure of span{�(w)}w2W is the RKHS H. In other words,
{�(w)}w2W can be viewed as the dictionary of basis functions for the RKHS H. The kernel
k : W ⇥W ! R is the inner product of features �(w) and �(w0): k(w,w0) = h�(w),�(w0)iH. 195

A real-valued kernel k is continuous, symmetric, and positive definite.
The essential property of a function � in an RKHS H is the eponymous reproducing property:

�(w) = h�,�(w)iH. In other words, to evaluate � at w, we take the RKHS inner product between
� and the features �(w) for H. We formally define the RKHS inner product and the features
below. Our key insight is to interpret the reproducing property as a way to separate the function � 200

from the features �(w) and thereby decouple the three steps of nonparametric causal estimation.
The RKHS is a practical hypothesis space for nonparametric regression. Consider the out-

put Y 2 R, the input W 2 W , and the goal of estimating the conditional expectation function
�0(w) = E(Y | W = w). A kernel ridge regression estimator of �0 is

�̂ = argmin
�2H

n
�1

nX

i=1

{Yi � h�,�(Wi)iH}
2 + �k�k

2
H, (1)

where � > 0 is a hyperparameter on the ridge penalty k�k
2
H

, which imposes smoothness in 205

estimation. The solution to the optimization problem has a well known closed form (Kimeldorf
& Wahba, 1971), which we exploit and generalize throughout this work:

�̂(w) = Y
>(KWW + n�I)�1

KWw. (2)

The closed form solution involves the kernel matrix KWW 2 R
n⇥n with (i, j)th entry

k(Wi,Wj), and the kernel vector KWw 2 R
n with ith entry k(Wi, w). To tune the ridge hy-
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6 R. SINGH, L. XU, AND A. GRETTON

perparameter �, both generalized cross validation and leave-one-out cross validation have closed210

form solutions, and the former is asymptotically optimal (Craven & Wahba, 1978; Li, 1986).
The feature map takes a value in the original space w 2 W and maps it to a feature in the

RKHS �(w) 2 H. One may generalize this idea, from the embedding of a value w by �(w) 2 H,
to the embedding of a distribution Q by µ = EQ{�(W )} 2 H (Berlinet & Thomas-Agnan,
2004; Smola et al., 2007). Boundedness of the kernel implies existence of the mean embed-215

ding. Mean embeddings facilitate the evaluation of expectations of RKHS functions: for � 2 H,
EQ{�(W )} = EQ {h�,�(W )iH} = h�, µiH. The final expression foreshadows how we will use
the technique of mean embeddings to decouple the nonparametric regression step from the non-
parametric reweighting step in the estimation of causal functions. A natural question is whether
the embedding Q 7! EQ{�(W )} is injective, i.e. whether the RKHS representation of the dis-220

tribution is unique. This is called the characteristic property of the kernel k, and it holds for
commonly used RKHSs e.g. the exponentiated quadratic kernel (Sriperumbudur et al., 2010).

The tensor product RKHS is one way to construct an RKHS for functions with multiple ar-
guments. Consider the RKHSs H1 and H2 with positive definite kernels k1 : W1 ⇥W1 ! R

and k2 : W2 ⇥W2 ! R, respectively. An element �1 2 H1 is a function �1 : W1 ! R and an225

element �2 2 H2 is a function �2 : W2 ! R. The tensor product RKHS H = H1 ⌦H2 is the
RKHS with the product kernel k : (W1 ⇥W2)⇥ (W1 ⇥W2) ! R, {(w1, w2), (w0

1, w
0

2)}7!
k1(w1, w

0

1)k2(w2, w
0

2). Equivalently, the tensor product RKHS H has the feature map �(w1)⌦
�(w2) such that k�(w1)⌦ �(w2)kH = k�(w1)kH1k�(w2)kH2 . Formally, tensor product no-
tation means (a⌦ b)c = ahb, ci. An element of the tensor product RKHS � 2 H is a func-230

tion � : W1 ⇥W2 ! R. We assume that the regression function �0(w1, w2) = E(Y | W =
w1, w2 = w2) is an element of a tensor product RKHS, i.e. �0 2 H. As such, the different argu-
ments of �0 are decoupled, which we exploit when calculating partial means.

Finally, we introduce the RKHS L2(H1,H2), which is a space of Hilbert–Schmidt operators
from one RKHS to another. If the operator E is an element of L2(H1,H2), then E : H1 ! H2.235

Moreover, tensor products form Hilbert–Schmidt operators, e.g. k�(w1)⌦ �(w2)kL2(H1,H2) =
k�(w1)kH1k�(w2)kH2 . The space L2(H1,H2) is an example of a vector-valued RKHS with an
appropriately defined kernel and feature map (Micchelli & Pontil, 2005). In the present work,
we assume that the conditional expectation operator E0 : �1(·) 7! E{�1(W1) | W2 = ·} is an
element of this RKHS. We estimate E0 by a kernel ridge regression in L2(H1,H2), which co-240

incides with estimating the embedding µw1(w2) = E{�(W1) | W2 = w2} via the kernel ridge
regression of �(W1) on �(W2); see Section 5.

Remark 1 (Takeaways). For � 2 H, �(w) = h�,�(w)iH, where �(w) is called the feature
map for the RKHS H. Moreover, E{�(W )} = h�, µiH, where µ is called the mean embedding
of the distribution of W . Ridge regression in H has a closed form solution. We can construct245

RKHSs with these properties for functions of multiple variables and for operators. See Supple-
ment 5 for further technical details.

4.2. Concepts for consistency proofs in Section 7
To prove uniform consistency, we place approximation assumptions which are standard in

RKHS learning theory: smoothness and spectral decay. To define these approximation assump-250

tions, we introduce an eigendecomposition. Recall the example of a generic RKHS H with the
kernel k : W ⇥W ! R consisting of functions of the form � : W ! R. Let ⌫ be any Borel mea-
sure on W . Let L2

⌫(W) be the space of square integrable functions with respect to the measure ⌫.
Define the integral operator L : L2

⌫(W) ! L
2
⌫(W), � 7!

R
k(·, w)�(w)d⌫(w) with eigenvalues
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Kernel Methods for Causal Functions 7

(⌘j) and eigenfunctions {('j)⌫}, the latter of which are equivalence classes in L
2
⌫(W). Let 'j 255

be a continuous element in the equivalence class ('j)⌫ .
The following observations help to interpret this eigendecomposition. Without loss of general-

ity, ⌘j � ⌘j+1, and (⌘j) are the eigenvalues of the feature covariance operator T = E{�(W )⌦
�(W )}. The eigenfunctions {('j)⌫} form an orthonormal basis of L

2
⌫(W). By a general-

ized Mercer’s Theorem, under regularity conditions described in Supplement 7, k(w,w0) = 260P
1

j=1 ⌘j'j(w)'j(w0), where (w,w0) are in the support of ⌫; under regularity conditions, (⌘j)
and ('j) describe the eigendecomposition of the kernel. Since k(w,w0) = h�(w),�(w0)iH, we
can therefore express the feature map �(w) as {⌘1/2j 'j(w)} for w in the support of ⌫.

We have seen how to conduct kernel ridge regression with the RKHS H. To analyze the bias
from ridge regularization, we place a smoothness assumption called the source condition on 265

the regression function �0(w) = E(Y | W = w) (Smale & Zhou, 2007; Caponnetto & De Vito,
2007; Carrasco et al., 2007). Formally, we place assumptions of the form

�0 2 H
c =

0

@f =
1X

j=1

�j'j :
1X

j=1

�
2
j

⌘cj

< 1

1

A ⇢ H, c 2 (1, 2]. (3)

While c = 1 recovers correct specification �0 2 H, c 2 (1, 2] is a stronger condition: �0 is a
particularly smooth element of H, well approximated by the leading terms in the series {('j)⌫}.
Smoothness delivers uniform consistency. A larger value of c corresponds to a smoother target 270

�0 and a faster convergence rate for �̂. Rates do not further improve for c > 2.
To analyze the variance of kernel ridge regression, we place a spectral decay assumption called

the effective dimension of the basis ('j) for the RKHS H. To obtain faster convergence rates,
we place a direct assumption on the rate at which the eigenvalues (⌘j), and hence the importance
of the eigenfunctions ('j), decay: we assume there exists some constant C such that for all j 275

⌘j  Cj
�b
, b � 1. (4)

A bounded kernel, which we will assume, implies that b is at least one (Fischer & Steinwart,
2020, Lemma 10). The limit b ! 1 may be interpreted as a finite dimensional RKHS (Capon-
netto & De Vito, 2007). For intermediate values of b, the polynomial rate of spectral decay
quantifies the effective dimension of the RKHS H in light of the measure ⌫. Intuitively, a higher
value of b corresponds to a lower effective dimension and a faster convergence rate for �̂. 280

For intuition, we relate the source condition and effective dimension to a familiar notion of
smoothness in the Sobolev space, since certain Sobolev spaces are RKHSs. Let W ⇢ [0, 1]p.
Denote by H

s
2 the Sobolev space with s > p/2 derivatives that are square integrable. Suppose

H = H
s
2 is the RKHS used for estimation. Suppose the measure ⌫ supported on W is absolutely

continuous with respect to the uniform distribution and bounded away from zero. If �0 2 H
s0
2 , 285

then c = s0/s (Pillaud-Vivien et al., 2018; Berthier et al., 2020). Written another way, (Hs
2)

c =
H

s0
2 . In this sense, c precisely quantifies the additional smoothness of �0 relative to H. Moreover,

in this Sobolev space, b = 2s/p > 1 (Fischer & Steinwart, 2020). The effective dimension is
increasing in the input dimension p and decreasing in the degree of smoothness s. The minimax
optimal rate in Sobolev norm is n

�(c�1)/{2(c+1/b)} = n
�(s0�s)/(2s0+p), which is achieved by 290

kernel ridge regression with the rate optimal regularization � = n
�1/(c+1/b) = n

�2s/(2s0+p). Our
analysis applies to Sobolev spaces over [0, 1]p as a special case; our results are much more
general, allowing the treatment and covariates to be in Polish spaces.

Remark 2 (Takeaways). Let ('j) be the eigenfunctions and (⌘j) be the eigenvalues of the
kernel. Functions in L

2 can be expressed in terms of ('j) with square summable coefficients. 295
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8 R. SINGH, L. XU, AND A. GRETTON

Functions in H can be expressed in terms of ('j) with coefficients that remain square summable
after dividing by (⌘j). The smoothness assumption is square summability of coefficients after
dividing by higher powers of (⌘j). The spectral decay assumption is the rate at which (⌘j) vanish.
See Supplement 7 for further technical details.

5. ALGORITHM300

5.1. Decoupled representation
Lemma 1 makes precise how each causal function is identified as a partial mean of the

form
R
�0(d, x)dQ for some distribution Q. To facilitate estimation, we now assume that �0

is an element of an RKHS. In our construction, we define scalar-valued RKHSs for the treat-
ment D and covariates (V,X), then assume that the regression is an element of the ten-305

sor product space. Let kD : D ⇥D ! R, kV : V ⇥ V ! R, and kX : X ⇥ X ! R be measur-
able positive definite kernels corresponding to scalar-valued RKHSs HD, HV , and HX . De-
note the feature maps �D : D ! HD, d 7! kD(d, ·); �V : V ! HV , v 7! kV(v, ·); �X : X !

HX , x 7! kX (x, ·). To lighten notation, we suppress subscripts when arguments are provided.
For ✓ATE

0 , ✓DS
0 , and ✓

ATT
0 , we assume the regression �0 is an element of the RKHS H with310

the kernel k(d, x; d0, x0) = kD(d, d0)kX (x, x0). We appeal to the fact that the product of posi-
tive definite kernels for HD and HX defines a new positive definite kernel for H. The product
construction provides a rich composite basis; H has the tensor product feature map �(d)⌦ �(x)
and H = HD ⌦HX . In this RKHS, �0(d, x) = h�0,�(d)⌦ �(x)iH. Likewise for ✓

CATE
0 we

assume �0 2 H = HD ⌦HV ⌦HX . We place regularity conditions on this RKHS construction315

in order to represent causal functions as inner products in H. In anticipation of counterfactual
distributions in Supplement 2, we also include conditions for an outcome RKHS in parentheses.

Assumption 1 (RKHS regularity conditions). Assume (i) kD, kV , kX (and kY ) are continuous
and bounded, i.e. supd2D k�(d)kHD  d, supv2V k�(v)kHV  v, supx2X k�(x)kHX  x

{and supy2Y k�(y)kHY  y}; (ii) �(d), �(v), �(x) {and �(y)} are measurable; (iii) kX (and320

kY ) are characteristic. For incremental functions, further assume D ⇢ R is an open set and
rdrd0kD(d, d0) exists and is continuous, hence supd2D krd�(d)kH  

0

d.

Commonly used kernels are continuous and bounded. Measurability is a similarly weak condi-
tion. The characteristic property ensures injectivity of the mean embeddings.

THEOREM 1 (DECOUPLING VIA KERNEL MEAN EMBEDDINGS). Suppose the conditions325

of Lemma 1, Assumption 1, and �0 2 H hold. Then (i) ✓
ATE
0 (d) = h�0,�(d)⌦ µxiH

where µx =
R
�(x)dP (x); (ii) ✓DS

0 (d, P̃ ) = h�0,�(d)⌦ ⌫xiH where ⌫x =
R
�(x)dP̃ (x); (iii)

✓
ATT
0 (d, d0) = h�0,�(d0)⌦ µx(d)iH where µx(d) =

R
�(x)dP (x | d); (iv) ✓

CATE
0 (d, v) =

h�0,�(d)⌦ �(v)⌦ µx(v)iH where µx(v) =
R
�(x)dP (x | v). Likewise for incremental func-

tions, e.g. ✓r:ATE
0 (d) = h�0,rd�(d)⌦ µxiH.330

Proof sketch. Consider ✓CATE
0 (d, v). Boundedness of the kernel implies Bochner integrabil-

ity, which allows us to exchange the integral and inner product:
Z

�0(d, v, x)dP (x | v) =

Z
h�0,�(d)⌦ �(v)⌦ �(x)iHdP (x | v) = h�0,�(d)⌦ µx(v)iH.

See Supplement 4 for the full proof. Here, µx(v) =
R
�(x)P (x | v) is the mean embedding of the

conditional distribution P (x | v). It encodes the distribution P (x | v) as a function µx(v) 2 HX335

such that the causal function ✓
CATE
0 (d, v) can be expressed as an inner product in H.
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Kernel Methods for Causal Functions 9

5.2. Closed form solution
The representation in Theorem 1 is essential to the algorithm derivation. In particular, the

representation cleanly separates the three steps necessary to estimate a causal function: estimat-
ing a nonlinear regression, which may involve many covariates; estimating the distribution for 340

reweighting; and using the nonparametric distribution to integrate the nonparametric regression.
For example, for ✓CATE

0 (d, v), our estimator is ✓̂CATE(d, v) = h�̂,�(d)⌦ �(v)⌦ µ̂x(v)iH. The
nonlinear regression estimator �̂ is a standard kernel ridge regression of Y on �(D)⌦ �(V )⌦
�(X); the reweighting distribution estimator µ̂x(v) is a generalized kernel ridge regression of
�(X) on �(V ); and the latter can be used to integrate the former by simply multiplying the 345

two. This algorithmic insight is a key innovation of the present work, and the reason why our
estimators have simple closed form solutions despite possibly complicated integration.

Algorithm 1 (Estimation of causal functions). Denote the empirical kernel matrices
KDD,KV V ,KXX 2 R

n⇥n calculated from observations drawn from the population P . Let
X̃i (i = 1, ..., ñ) be observations drawn from the population P̃ . Denote by � the elementwise 350

product. Causal function estimators have the closed form solutions

1. ✓̂
ATE(d) = n

�1Pn
i=1 Y

>(KDD �KXX + n�I)�1(KDd �KXxi);
2. ✓̂

DS(d, P̃ ) = ñ
�1Pñ

i=1 Y
>(KDD �KXX + n�I)�1(KDd �KXx̃i);

3. ✓̂
ATT (d, d0) = Y

>(KDD �KXX + n�I)�1[KDd0 � {KXX(KDD + n�1I)�1
KDd}];

4. ✓̂
CATE(d, v) = Y

>(KDD �KV V �KXX + n�I)�1[KDd �KV v � {KXX(KV V + 355

n�2I)�1
KV v}];

where (�,� 1,�2) are ridge regression penalty hyperparameters. Likewise for incremental
functions, e.g. ✓̂r:ATE(d) = n

�1Pn
i=1 Y

>(KDD �KXX + n�I)�1(rdKDd �KXxi) where
(rdKDd)i = rdk(Di, d).

Proof sketch. Consider ✓
CATE
0 (d, v). Analogously to (1), the kernel ridge regres- 360

sion estimators of the regression �0 and the conditional mean embedding µx(v)
are given by �̂ = argmin�2H n

�1Pn
i=1{Yi � h�,�(Di)⌦ �(Vi)⌦ �(Xi)iH}2 + �k�k

2
H

and
Ê = argminE2L2(HX ,HV ) n

�1Pn
i=1{�(Xi)� E

⇤
�(Vi)}2 + �2kEk

2
L2(HX ,HV )

, where µ̂x(v) =

Ê
⇤
�(v) and E

⇤ is the adjoint of E. Analogously to (2), the closed forms are

�̂(d, v, ·) = Y
>(KDD �KV V �KXX + n�I)�1

{KDd �KV v �KX(·)}, 365

[µ̂x(v)](·) = K(·)X(KV V + n�2I)
�1

KV v.

To arrive at the main result, match the empty arguments (·) of the kernel ridge regressions. ⇤

See Supplement 4 for the full derivation and a comparison to series estimation. We give theoret-
ical values for (�,� 1,�2) that optimally balance bias and variance in Theorem 2 below. Supple-
ment 5 gives practical tuning procedures based on generalized and leave-one-out cross validation 370

to empirically balance bias and variance, the former of which is asymptotically optimal.

6. DETAILED COMPARISONS TO KERNEL METHODS FOR CAUSAL SCALARS

We now connect our kernel methods for causal functions with related kernel methods for
treatment effects. Recall the definition ✓

ATE
0 (d) = E{Y

(d)
}. We allow the treatment to be con-

tinuous, so ✓
ATE
0 is a causal function called the dose response. In related work, the treatment is 375
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10 R. SINGH, L. XU, AND A. GRETTON

binary, so ✓
ATE
0 is a vector of two causal scalars ✓ATE

0 (1), ✓ATE
0 (0) whose difference is called

the treatment effect.
We clarify three points. (i) There is a sense in which our algorithms generalize known esti-

mators for treatment effects to new estimators for causal functions. (ii) A treatment effect is a
bounded functional over L2 with a balancing weight representation, while a response curve is380

not. Our key insight is that a response curve is a bounded functional over the RKHS H, which
is a subset of L2. (iii) Our theoretical contribution is a new, uniform analysis of response curves.
The analysis goes beyond pointwise approximation of response curves by local treatment effects.

We begin by reviewing the theory of balancing weights, which are widely used in causal
inference with a binary treatment. For clarity, in this section we emphasize a fixed treatment385

value by writing d
⇤
2 D. The following representation is well known.

PROPOSITION 1 (EXISTENCE FOR TREATMENT EFFECTS (HERNÁN & ROBINS, 2020)).
Suppose selection on observables holds as stated in Supplement 1, and that the treatment is
binary. Fix d

⇤
2 D. If pr(D = d

⇤
| X) is bounded away from zero almost surely, then there

exists a balancing weight ↵0 2 L
2 such that for all � 2 L

2,
R
�(d⇤, x)dP (x) = h�,↵0iL2 .390

In particular, ✓ATE
0 (d⇤) =

R
y↵0(d, x)dP (d, x, y) = h�0,↵0iL2 and the balancing weight is

↵0(d, x) = 1(d = d
⇤)/pr(D = d

⇤
| x), where 1(·) is the indicator function.

In summary, a treatment effect has two representations: the primal representation of Lemma 1
as a partial mean of the regression �0(d, x) = E(Y | D = d,X = x), and the dual representa-
tion of Proposition 1 as a reweighting of the outcome Y using the balancing weight ↵0(d, x) =395

1(d = d
⇤)/pr(D = d

⇤
| x). Clearly, the two representations are related by the law of iterated

expectations. Moreover, from the closed form of ↵0, we require pr(D = d
⇤
| X) > 0 for ↵0 to

exist. This property keenly relies on the treatment being discrete. Indeed, it is well known that a
balancing weight representation does not exist for response curves.

PROPOSITION 2 (NON-EXISTENCE FOR RESPONSE CURVES (VAN DER VAART, 1991)).400

Suppose selection on observables holds as stated in Supplement 1, and that the treatment
is continuous. Fix d

⇤
2 D. Even if the density f(d⇤ | X) is bounded away from zero al-

most surely, there does not exist a balancing weight ↵0 2 L
2 such that for all � 2 L

2,R
�(d⇤, x)dP (x) = h�,↵0iL2 . In particular, without further restrictions, there does not exist

↵0 2 L
2 such that ✓ATE

0 (d⇤) =
R
y↵0(d, x)dP (d, x, y) = h�0,↵0iL2 .405

Whereas a binary treatment effect is a bounded functional over L2 with a balancing weight
representation, a dose response is not a bounded functional over L2 and does not have a bal-
ancing weight representation in the classic sense. From a functional analytic perspective, this
discrepancy is the reason why the problems we study are nonparametric whereas previous work
on kernel methods for treatment effects are semiparametric. See Supplement 6 for a discussion.410

Our key insight is that the dose response is a bounded functional over the RKHS H, which is
a subset of L2. This fact follows from three simple observations: (i) the dose response is a partial
mean; (ii) in the RKHS, a partial mean can be reformulated as a kind of evaluation; and (iii) the
RKHS H is the subset of L2 for which evaluation is a bounded functional. Through this lens,
Theorem 1 shows that there can exist a function ↵̃0 2 H such that ✓ATE

0 (d) = h�0, ↵̃0iH even415

when there does not exist a function ↵0 2 L
2 such that ✓ATE

0 (d) = h�0,↵0iL2 .
What is the relationship between our kernel methods for causal functions and existing kernel

methods for treatment effects? There is a sense in which our dose response estimator, which is
the simplest case of our framework, is a relaxation of kernel balancing weight estimators from a
binary treatment to a continuous treatment. We formalize this connection as follows.420
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Kernel Methods for Causal Functions 11

COROLLARY 1 (RELAXATION OF BALANCING WEIGHT ESTIMATORS). Suppose the treat-
ment is binary, and take kD(d, d0) = 1(d = d

0) to be the treatment kernel. Then ✓̂
ATE(d⇤) =

n
�1Pn

i=1 Yi↵̂i, where ↵̂i = ↵̂(Di, Xi) and ↵̂ is a ridge regularized estimator of ↵0 2 L
2.

See Supplement 6 for the proof. The balancing weight estimator ↵̂ minimizes a generalized
balancing weight loss with ridge regularization; see Kallus (2020, eq. 8), Hirshberg et al. (2019, 425

eq. 1), and Singh (2021, Definition 3.2) for various formulations. Corollary 1 provides intuition
for our tensor product RKHS construction, which ensures that using the binary treatment kernel
amounts to subsetting and hence recovers previous algorithms. Our RKHS construction naturally
relaxes a binary treatment to a continuous treatment while retaining computational tractability.

As argued in Proposition 2, the balancing weight ↵0 2 L
2 does not exist for the dose response. 430

Nonetheless, our key insight in Theorem 1 is that a function ↵̃0 2 H does exist to serve a similar
purpose. By combining the partial mean perspective with the technique of kernel mean embed-
ding, we demonstrate that our framework easily extends to conditional nonparametric causal
functions, e.g. the heterogeneous response curve ✓

CATE
0 (d, v), which are substantially more

challenging than unconditional nonparametric causal functions, e.g. the dose response ✓ATE
0 (d). 435

Perhaps the most surprising consequence of our construction is the closed form solution for
causal functions. In particular, each closed form solution is a reweighting of the observed out-
comes with empirical weights that we characterize even though a population balancing weight
in L

2 does not exist. In sum, previous work (Kallus, 2020; Hirshberg et al., 2019; Singh, 2021)
on kernel methods for treatment effects is inherently tied to the L

2 population balancing weight 440

perspective; our algorithms apply the conceptual framework of kernel methods to new classes of
causal functions. The following corollary reinterprets Algorithm 1 through this lens.

COROLLARY 2 (CLOSED FORM EVEN WHEN BALANCING WEIGHT DOES NOT EXIST).
Suppose the treatment is continuous, with kD that is continuous and bounded. Then ✓̂

ATE(d) =
n
�1Pn

i=1 Yi↵̂
ATE
i , ✓̂

DS(d, P̃ ) = n
�1Pn

i=1 Yi↵̂
DS
i , ✓̂

ATT (d, d0) = n
�1Pn

i=1 Yi↵̂
ATT
i , and 445

✓̂
CATE(d, v) = n

�1Pn
i=1 Yi↵̂

CATE
i , where the weights have closed form solutions given in

Supplement 6. Likewise for incremental functions, e.g. ✓̂r:ATE(d) = n
�1Pn

i=1 Yi↵̂
r:ATE
i .

Each of our proposed causal function estimators is global. In particular, within Corollary 2,
the weights (↵̂ATE

j , ↵̂
DS
j , ↵̂

ATT
j , ↵̂

CATE
j ) (j = 1, ..., n) depend on all of the observations as re-

fracted through the ridge regularized empirical covariance and the kernel evaluations k(Di, d). 450

This approach departs from a localization approach to causal functions whereby the weight as-
signed to each observation is determined by Nadaraya–Watson smoothing (Kennedy et al., 2017;
Kallus & Zhou, 2018; Colangelo & Lee, 2020; Chernozhukov et al., 2022). In the localization
approach, the weight is kNW

{(Di � d)/h} where kNW is a Nadaraya–Watson kernel and h is a
vanishing bandwidth. By contrast, we consider a fixed kernel and vanishing ridge regularization. 455

The global perspective has several advantages. Our estimators can be computed once and
evaluated at any value of a continuous treatment. By contrast, a localized estimator is a com-
putationally intensive procedure that must be reimplemented at any treatment value. Next, our
estimators are constructed from function classes with designed-in smoothness properties, which
leads to smoother and therefore more plausible response curves. We compare our smooth esti- 460

mate with a jagged localizing estimate in the program evaluation of Section 8. Finally, we prove
uniform consistency of response curves, whereas localizations of previous results would only
lead to pointwise consistency. These uniform guarantees are the focus of Section 7.

Due to space constraints, we continue this discussion in Supplement 6. In particular, we re-
late the above discussion to pathwise differentiability. We also connect our kernel methods for 465

heterogeneous response curves with global estimators for heterogeneous treatment effects. We
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12 R. SINGH, L. XU, AND A. GRETTON

make three similar points. (i) There is a limited sense in which our algorithms adapt principles
from heterogeneous treatment effect estimation to heterogeneous response curve estimation. (ii)
The pseudo outcome of a heterogeneous treatment effect admits a balancing weight represen-
tation in L

2, while that of a heterogeneous response curve does not. We nonetheless achieve a470

closed form for the latter estimand by appealing to the geometry of H rather than L
2. (iii) Our

theoretical contribution is a new, uniform analysis of heterogeneous response curves. Our analy-
sis complements mean square (Nie & Wager, 2021), excess risk (Foster & Syrgkanis, 2019), and
pointwise (Kennedy, 2020) analyses for heterogeneous treatment effects in the RKHS.

7. UNIFORM CONSISTENCY WITH FINITE SAMPLE RATES475

Towards a guarantee of uniform consistency, we place regularity conditions on the original
spaces. In anticipation of counterfactual distributions in Supplement 2, we also include condi-
tions for the outcome space in parentheses.

Assumption 2 (Original space regularity conditions). Assume D, V , X (and Y) are Polish
spaces. Further assume Y ⇢ R,

R
y
2dP (y) < 1, and a moment condition holds: there exist480

constants �,⌧ such that for all m � 2,
R
|y � �0(D,X)|mdP (y | D,X)  m!�2

⌧
m�2

/2 almost
surely. For ✓CATE

0 , replace X with (V,X).

A Polish space is a separable and completely metrizable topological space. Random variables
supported in a Polish space may be discrete or continuous and may even be infinite dimensional.
A bounded outcome Y implies the moment condition.485

Next, we assume the regression �0 is smooth in the sense of (3), and H has low effective
dimension in the sense of (4). Denote the jth eigenvalue of the integral operator for H by ⌘j(H).
Recall that ⌘j(H) is also the jth eigenvalue of the feature covariance operator.

Assumption 3 (Smoothness and spectral decay for regression). Assume �0 2 H
c with c 2

(1, 2], and ⌘j(H)  Cj
�b with b � 1.490

See Supplement 7 for alternative ways of writing and interpreting Assumption 3. We place
similar smoothness and spectral decay conditions on the conditional mean embeddings µx(d)
and µx(v), which are generalized conditional expectation functions. We articulate this assump-
tion abstractly for the conditional mean embedding µa(b) =

R
�(a)dP (a | b) where a 2 A` and

b 2 B`. All one has to do is specify A` and B` to specialize the assumption. For µx(d), A1 = X495

and B1 = D; for µx(v), A2 = X and B2 = V . For fixed A` and B`, we parametrize smoothness
by c` and spectral decay by b`.

Formally, define the conditional expectation operator E` : HA` ! HB` , f(·) 7! E{f(A`) |
B` = ·}. By construction, E` encodes the same information as µa(b) since

{µa(b)}(·) =

Z
�(a)dP (a | b) = {E`�(·)}(b) = {E

⇤

`�(b)}(·), a 2 A`, b 2 B`,

where E
⇤

` is the adjoint of E`. We denote the space of Hilbert–Schmidt operators between
HA` and HB` by L2(HA` ,HB`). Grünewälder et al. (2013) and Singh et al. (2019) prove that
L2(HA` ,HB`) is an RKHS in its own right, for which we can assume smoothness in the sense500

of (3) and spectral decay in the sense of (4).

Assumption 4 (Smoothness and spectral decay for mean embedding). Assume the following:
E` 2 L2(HA` ,H

c`
B`
) with c` 2 (1, 2], and ⌘`(HB`)  Cj

�b` with b` � 1.
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Kernel Methods for Causal Functions 13

Just as we place approximation assumptions for �0 in terms of H, which provides the features
onto which we project Y , we place approximation assumptions for E` in terms of HB` , which 505

provides the features �(B`) onto which we project �(A`). Under these conditions, we arrive at
our main theoretical guarantee.

THEOREM 2 (UNIFORM CONSISTENCY OF CAUSAL FUNCTIONS). Suppose the con-
ditions of Lemma 1 hold, as well as Assumptions 1, 2, and 3. Set (�,� 1,�2) =
{n

�1/(c+1/b)
, n

�1/(c1+1/b1), n�1/(c2+1/b2)}, which is rate optimal regularization. 510

1. Then with high probability k✓̂
ATE

� ✓
ATE
0 k1 = O

⇥
n
�(c�1)/{2(c+1/b)}

⇤
and k✓̂

DS(·, P̃ )�

✓
DS
0 (·, P̃ )k1 = O

⇥
n
�(c�1)/{2(c+1/b)} + ñ

�1/2
⇤
.

2. If in addition Assumption 4 holds with A1 = X and B1 = D, then with high probability
k✓̂

ATT
� ✓

ATT
0 k1 = O

⇥
n
�(c�1)/{2(c+1/b)} + n

�(c1�1)/{2(c1+1/b1)}
⇤
.

3. If in addition Assumption 4 holds with A2 = X and B2 = V , then with high probability 515

k✓̂
CATE

� ✓
CATE
0 k1 = O

⇥
n
�(c�1)/{2(c+1/b)} + n

�(c2�1)/{2(c2+1/b2)}
⇤
.

Likewise for incremental functions, e.g. k✓̂r:ATE
� ✓

r:ATE
0 k1 = O

⇥
n
�(c�1)/{2(c+1/b)}

⇤
.

Explicit constants hidden by the O(·) notation, as well as explicit specializations of Assump-
tion 4, are indicated in Appendices 7 and 8. These rates approach n

�1/4 when (c, c1, c2) = 2 and
(b, b1, b2) ! 1, i.e. when the regressions are smooth and when the effective dimensions are fi- 520

nite. Interestingly, each rate combines minimax optimal rates in RKHS norm: n�(c�1)/{2(c+1/b)}

for standard nonparametric regression (Fischer & Steinwart, 2020, Theorem 2); ñ�1/2 for uncon-
ditional mean embeddings (Tolstikhin et al., 2017, Theorem 1); and, in contemporaneous work,
n
�(c`�1)/{2(c`+1/b`)} for conditional mean embeddings (Li et al., 2022, Theorem 3).

Remark 3 (Technical innovation). Our conditional mean embedding rate builds on original 525

analysis of conditional expectation operators in Supplement 8 that is of independent interest. We
improve the rate from n

�(c`�1)/{2(c`+1)} (Singh et al., 2019, Theorem 2) to n
�(c`�1)/{2(c`+1/b`)}.

Our consideration of Hilbert–Schmidt norm departs from Park & Muandet (2020) and Talwai
et al. (2022), who study surrogate risk and operator norm, respectively. Our assumptions also
depart from Singh et al. (2019, Hypothesis 5), Park & Muandet (2020, Theorem 4.5), and Talwai 530

et al. (2022, Assumptions 3 and 4). Instead, Assumption 4 directly generalizes Fischer & Stein-
wart (2020, Conditions SRC and EVD) from RKHS functions to Hilbert–Schmidt operators.

Overall, rates slower than n
�1/4 reflect the challenge of a sup norm guarantee, which is

stronger than a mean square error guarantee and which is useful for policymakers concerned
about each treatment value. For comparison, the minimax optimal Sobolev norm rate for learn- 535

ing an s0-smooth regression, using H
s
2 over Rp, is n�(c�1)/{2(c+1/b)} = n

�(s0�s)/(2s0+p).

Remark 4 (Further rate improvements). We prove uniform rates for an RKHS estimator of
the heterogeneous response curve, under smoothness assumptions on the regression function and
conditional expectation operators. Supplement 6 connects our estimators with RKHS estimators
of heterogeneous treatment effects that have mean square (Nie & Wager, 2021), excess risk 540

(Foster & Syrgkanis, 2019) and pointwise (Kennedy, 2020) convergence rates, under smoothness
assumptions on the regression, propensity score, and heterogeneous treatment effect itself. If the
heterogeneous treatment effect is smoother than the regression and propensity score, then mean
square, excess risk, and pointwise rate improvements are possible (Nie & Wager, 2021; Foster &
Syrgkanis, 2019; Kennedy, 2020). Under further assumptions, future research may achieve such 545

rate improvements in sup norm for our RKHS estimator of the heterogeneous response curve.
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14 R. SINGH, L. XU, AND A. GRETTON

8. SIMULATIONS AND PROGRAM EVALUATION

8.1. Simulations

(a) Dose response curve. (b) Heterogeneous treatment effect.

Fig. 1: Nonparametric causal function simulations. For the dose response curve, we implement
four estimators. From left to right, these are: Kennedy et al. (2017) (DR1, checkered white),
Colangelo & Lee (2020) (DR2, lined white), Semenova & Chernozhukov (2021) (DR-series,
gray), and our own (RKHS, white). For the heterogeneous treatment effect, we implement three
estimators. From left to right, these are Abrevaya et al. (2015) (IPW, lined gray), Semenova &
Chernozhukov (2021) (DR-series, gray), and our own (RKHS, white). .

We demonstrate that our nonparametric causal function estimators outperform some leading
alternatives in nonlinear simulations with many covariates, despite the relative simplicity of our550

proposed approach. For each causal function design and sample size, we implement 100 simula-
tions and calculate mean square error with respect to the true causal function. Figure 1 visualizes
results. A lower mean square error is desirable. See Supplement 9 for a full exposition of the data
generating processes and implementation details.

The dose response curve design (Colangelo & Lee, 2020) considers the causal function555

✓
ATE
0 (d) = 1.2d+ d

2. A single observation consists of the triple (Y,D,X) for the outcome,
treatment, and high dimensional covariates, where Y,D 2 R and X 2 R

100. In addition to our
simple nonparametric estimator (RKHS, white), we implement the estimators of Kennedy et al.
(2017) (DR1, checkered white), Colangelo & Lee (2020) (DR2, lined white), and Semenova &
Chernozhukov (2021) (DR-series, gray). Both DR1 and DR2 are local estimators that involve560

Nadaraya–Watson smoothing with debiased pseudo outcomes, while DR-series uses series
regression with debiased pseudo outcomes, and we give it the advantage of correct specifica-
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Kernel Methods for Causal Functions 15

tion as a quadratic function. By the Wilcoxon rank sum test, RKHS significantly outperforms the
alternatives at the sample size 104, with a p value less than 10�3, despite its relative simplicity.

Though our approach allows for the heterogeneous response of a continuous treatment, we 565

implement a design for the heterogeneous effect of a binary treatment in order to facilitate com-
parison with existing methods. The heterogeneous treatment effect design (Abrevaya et al., 2015)
considers the causal functions ✓CATE

0 (0, v) = 0 and ✓
CATE
0 (1, v) = v(1 + 2v)2(v � 1)2. Each

observation is a tuple (Y,D, V,X) for the outcome, treatment, covariate of interest, and other
covariates, where Y,D, V 2 R and X 2 R

3. In addition to our simple nonparametric estimator 570

(RKHS, white), we implement the estimators of Abrevaya et al. (2015) (IPW, lined gray) and Se-
menova & Chernozhukov (2021) (DR-series, gray). The former involves Nadaraya–Watson
smoothing around an inverse propensity estimator, and the latter involves correctly specified se-
ries regression with a debiased pseudo outcome. The R learner (Nie & Wager, 2021) cannot be
implemented since V 6= X . The simple RKHS approach significantly outperforms the alterna- 575

tives at sample sizes 500 and 103 by the Wilcoxon rank sum test, with p values less than 10�5.

8.2. Program evaluation: US Job Corps

(a) Dose response curve. (b) Incremental response curve.

(c) Discrete treatment effects. (d) Heterogeneous response curve.

Fig. 2: Effect of job training on employment. We implement our estimators for dose, heteroge-
neous, and incremental response curves (RKHS, solid). For comparison, we also implement the
dose response curve estimator of Colangelo & Lee (2020) (DR2, dashes) as well as the kernel
treatment effects of Singh (2021) (DR3, vertical bars).
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16 R. SINGH, L. XU, AND A. GRETTON

To demonstrate how kernel methods for causal functions are practical for empirical economics,
we conduct a real world program evaluation. Specifically, we estimate dose, heterogeneous, and
incremental response curves of the Jobs Corps, the largest job training program for disadvan-580

taged youths in the US, which serves about 50,000 participants annually. Participation is free for
individuals who meet low income requirements. Access to the program was randomized from
November 1994 to February 1996; see Schochet et al. (2008) for details. Many studies focus on
data from this period to evaluate the effect of job training on employment (Flores et al., 2012;
Colangelo & Lee, 2020). Though access to the program was randomized, individuals could de-585

cide whether to participate and for how many hours. From a causal perspective, we assume that,
conditional on the observed covariates, participation hours were as good as random. Statisti-
cally, we assume that different intensities of job training have smooth effects on counterfactual
employment, and that those effects are smoothly modified by age.

The continuous treatment D 2 R is the total hours spent in academic or vocational classes in590

the first year after randomization, and the continuous outcome Y 2 R is the proportion of weeks
employed in the second year after randomization. The covariates X 2 R

40 include age, gender,
ethnicity, language competency, education, marital status, household size, household income,
previous receipt of social aid, family background, health, and health related behavior at base line
(Huber et al., 2020). As in Colangelo & Lee (2020), we focus on the n = 3, 906 observations595

for which D � 40, i.e. individuals who completed at least one week of training. We implement
various causal parameters in Figure 2: the dose response curve; the incremental response curve;
the kernel treatment effects with confidence intervals of Singh (2021); and the heterogeneous
response curve with respect to age. For the kernel treatment effects, we discretize treatment into
roughly equiprobable bins of class hours. It appears that the heterogeneous response of class600

hours, a continuous treatment, has not been previously studied in this setting. In Supplement 10,
we provide implementation details and verify that our results are robust to the choice of sample.

The dose response curve plateaus and achieves its maximum around d = 500, corresponding
to 12.5 weeks of classes. Our global estimate (RKHS, solid) has the same overall shape but is
smoother and slightly lower than the collection of local estimates from Colangelo & Lee (2020)605

(DR2, dashes). The smoothness of our estimator is a consequence of the RKHS assumptions, and
we see how it is a virtue for empirical economic research; a smooth dose response curve is more
economically plausible in this setting. The first 12.5 weeks of classes confer most of the gain in
employment: from 35% employment to more than 47% employment for the average participant.
The incremental response curve (RKHS, solid) is the derivative of the dose response curve, and it610

visualizes where the greatest gain happens. The kernel treatment effects of Singh (2021) (DR3,
vertical bars) corroborate our dose response curve, and their 95% confidence intervals contain
the dose response curve of Colangelo & Lee (2020) (DR2, dashes) as well as our own (RKHS,
solid). Finally, the heterogeneous response curve (RKHS, solid) shows that age plays a substantial
role in the effectiveness of the intervention. For the youngest participants, the intervention has615

a small effect: employment only increases from 28% to at most 36%. For older participants, the
intervention has a large effect: employment increases from 40% to 56%. It seems that 12–14
weeks of classes targeting individuals 21–23 years old may be an effective policy.

SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes standard identifying assump-620

tions; extensions to counterfactual distributions and graphical models; proofs; further discussion;
implementation details; and code.
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