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Abstract

Ab initio calculations of the PN potential and electric dipole moment in the
X1Σ+ ground electronic state were performed at short bond lengths, r = 0.2–0.8
Å, and semi-empirical analytical potential-energy and dipole-moment functions
were constructed based on all available experimental and theoretical informa-
tion. The analytical forms for the potential-energy functions include the Ex-
tended Morse Oscillator and the Extended Hulburt-Hirshfelder potential. The
dipole-moment function of PN was presented by our irregular and rational func-
tions previously used for CO. The potential-energy and dipole-moment model
functions were fitted simultaneously to the experimental line positions and per-
manent dipoles at v = 0-2, as well as to the ab initio data from our present
and previous studies. With these new functions, the improved line list for the
ground electronic state of 31P14N was calculated. We show that the new analytic
representations of the potential and dipole moment functions help significantly
reduce the numerical noise in the intensities of high overtones as well as the
associated saturation at high wavenumbers leading to the so-called “overtone
plateaus” in spectra of diatomic molecules (see Medvedev et al., J. Mol. Spec-
trosc., 330, 36 (2016)) and thus provide reliable transition intensities at very
high transition frequencies. The 3-0 band is identified as vibrational anomaly,
and rotational anomalies inside this and some other bands are found.

1. Introduction

The importance of PN for astrophysics was described in detail in Refs. [1, 2].
In these papers, model potential-energy and electric-dipole-moment functions
(PEFs and DMFs) were constructed based on the experimental line positions
and the ab initio calculations for the ground and several excited electronic states.
It turned out that the ground-state DMFs and PEFs of PN used lead to un-
satisfactory description of the intensities of high-overtone transitions, as was
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recently demonstrated for several diatomics in Ref. [3], including PN. This is
illustrated in Fig. 1, where the calculated intensities of the overtone transitions
v-0 R(0) in the 1Σ+ ground state of PN from Ref. [1] clearly show nonphysi-
cal saturation at v > 6 (circles 1 ). When a polynomial function is used in the
present study instead of splines to interpolate the ab initio DMF of Ref. [1], this
saturation disappears (squares 2 ), yet another one emerges at v > 13 caused by
the discontinuity of the PEF higher derivatives at re (PEC-R in Ref. [1]).

In this paper, we design analytical representations for the DMFs and PEFs
of PN, all without discontinuities, which lead to systematic improvement of the
overtone intensities with no saturation effects up to the maximum limit achiev-
able with the standard double precision arithmetic (triangles 3 and diamonds
4 ). The remaining saturation at v > 23 is due to insufficient accuracy of calcu-
lation of very low overtone intensities and can be in principle further improved
by using the quadruple-precision arithmetic (not shown) or by calculating an
equivalent integral in the complex plane [4, Appendix] (pluses 5 ); in the latter
case, double and even simple precision is sufficient.

Here, we use our positive experience with the accurate calculations of the
overtone-transition intensities in the ground electronic state of CO [6] to study
a different diatomic molecule, PN, where we follow the approach based on the
arguments presented in Ref. [4, Appendix] and references therein. A Review of
these arguments can be found in Appendix A, although presented at a slightly
different angle. At this junction, it should be stressed1 that all calculations
in the present paper are performed with use of the traditional method, i.e. by
solving the Schrödinger equation and calculating the transition integral whereas
the NIDL theory of Appendix A is used only as a powerful tool to analyze the
numerical results.

In Sec. 2 we describe our new ab initio calculations aiming at extending
the data toward the shorter bond lengths, and further, in Sec. 4, we explain
why the data are needed in a region where the potential is millions cm−1 and
the wave functions are strictly zero. In Sec. 3, the analytic PEFs of PN are
presented, which are the Extended Morse Oscillator (EMO) and the Extended
Hulburt-Hirshfelder (EHH) model; we also describe the electric dipole moment
of PN with the DMFs used for CO [3, 4, 6]. In Sec. 5, basic requirements to the
model PEFs and DMFs are formulated. In Sec. 6, we describe the data sets used
to fit the functions and review the fitting procedure. In particular, we apply
a new method in which the PEF and DMF of PN are fitted simultaneously
to all the available experimental data and the ab initio potential and dipole
moment. In Sec. 7, properties of the fitted functions are reviewed. In Sec. 8,
the new calculated line list of PN and the associated spectra up to 20000 cm−1

are presented. Section 9 describes the anomalies in the calculated vibrational-
rotational bands of PN, and estimates of the calculation uncertainties are given
in Sec. 10.

1We are grateful to the Referee for his criticism.
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Figure 1: Einstein A coefficients of the PN v–0 R(0) overtone transitions, v = 1–40. 1, data
of Ref. [1], spline-interpolated DMF and empirical PEF (PEC-R) in the Extended Morse
Oscillator (EMO) form with discontinuous higher derivatives at re; 2, the same PEF as in
1 and the six-order polynomial DMF (present study) fitted to the same ab initio data as
in [1]; 3, the irregular DMF (irreg13) and the EMO PEF of the present study, all without
discontinuities (see Sec. 3); 4, the irreg13 DMF and the Extended Hulburt-Hirshfelder (EHH)
PEF of the present study; 5, the result of the calculation of the transition integral with the
same PEF and DMF as in 4 along a path in the complex plane, see Appendix A. The dotted
line shows the bottom of the first excited electronic state above which the model of the isolated
ground state does not apply. ω ≈ ωe = 1337 cm−1 [5].
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2. Ab initio calculations

Towards construction of the DMFs with extended coverage at shorter bond
lengths (< 0.8 Å), new high level ab initio calculations were performed. Two
calculation strategies were explored.

In the first one, all calculations were carried out using the coupled-cluster
method CCSD(T). No electrons were included in the core. The atomic basis
set cc-pV6z for both atoms was used. The DMF was calculated by the finite-
field technique: The molecule is perturbed by a small electric field, E = ±0.001
a.u., along the molecule axis. The DMF was calculated by the formula d(r) =
(V (r, E)−V (r,−E)/2E) where V (r, E) is the PEF in the presence of the electric
field. Both PEF and DMF were calculated within the range of 0.2-2.5 Å. All
calculations were carried out by the GAMESS-US program package [7]. The
PN molecule is characterized by the closed-shell system, therefore the CCSD(T)
method is expected to be reliable for the internuclear distances not too far from
the equilibrium, within the range of about 0.7–2.0 Å. Still we will use the short-
range data as explained in Sec. 6.

In the second method, ab initio calculations of the PEF and DMF in the
ground electronic state of PN were performed in the far-from-equilibrium geome-
tries at r = 0.3-0.7 Å using MRCI as implemented in MOLPRO 2020 [8]. The
internally contracted multireference configuration interaction (icMRCI) method
was used with the aug-cc-pV5Z basis set level of theory for both phosphorus and
nitrogen atoms. The Douglas-Kroll correction was taken into account without
the core-valence correlation for these calculations, denominated as -DK in the
basis set. The complete active space self-consistent field (CASSCF) calculation
was run with active space selected to be (9,3,3,0) with (4,1,1,0) as closed orbitals,
similar to some of the previous work [2, 9]. The state-averaging set consisted of
11 singlet configurations (4A1, 2B1, 2B2, and 3A2). An ab initio grid consisting
of 10 equidistant bond lengths from 0.3 to 0.7 Å was used whereas the data
points of 0.7-3.5 Å are extracted from our previously published work [2].

3. Potential-energy and dipole-moment functions

Two model PEFs are considered. One is the standard EMO potential [10],

VEMO(r) = De

[
1− e−β(r)(r−re)

]2
, (1)

β(r) =

4∑
i=0

βi

(
r4 − r4e
r4 + r4e

)i

, (2)

where β3 and β4 are not put to zero on the left of re as was done in Ref. [1].
The EMO PEF has 7 adjustable parameters.

The other one we call the Extended Hulburt-Hirschfelder (EHH) potential,

VEHH(r) = De

[(
1− e−q

)2
+ cq3

(
1 +

3∑
i=1

biq
i

)
e−2q

]
, (3)
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where q = α (r − re). As distinct from the original Hulburt-Hirschfelder form
[5, 11] (see Eqs. (9) and (15), respectively), the expansion in the second term
is extended up to the third order. Cazzoli et al. [5] noted that the Hulburt-
Hirschfelder potential was very successful in reproducing both the experimental
and ab initio data, see [5, Fig. 1]. This was the reason to try its extended
version here. The EHH PEF also has 7 adjustable parameters, including De

and re in contrast to Ref. [1] where they were fixed at the values indicated in
Table 4. Energies are in cm−1, r in Å.

The general mathematical structure of this model is identical to the MHH7
model recently proposed by Hajigeorgiou [12]. Both models have 7 adjustable
parameters and the seemingly sole difference is the choice of the reduced inter-
nuclear coordinate. However, MHH7 is not analytic at equilibrium since it
contains discontinuities in the higher derivatives, which has no effect on the en-
ergy levels, the focus of Hajigeorgiou’s paper, but is not desirable for calculating
the transition intensities leading to saturation as demonstrated in the present
paper in Fig. 1 for the EMO model (curve 2 ). The same notion relates to the
previous Hajigeorgiou paper [13] where a different EHH model, yet with similar
non-analytic behavior at re and one more point, was presented.

Our first model DMF is an irregular function with two branch points in the
upper half-plane as was recommended in Ref. [4],

dirreg(r;n, k) =
[1− exp(−αr)]n√

(r2 − a21)
2
+ b21

√
(r2 − a22)

2
+ b22

k∑
i=0

ci
(
1− 2e−βr

)i
. (4)

It depends on 7 + k variable parameters.
According to theory [14], the asymptote at the united-atom (UA) limit de-

pends on the UA electronic configuration. In our case, the UA is 22Ti with the
3F2 ground state [15], therefore DMF ∝ r5. The asymptote at infinity is r−4 if
at least one atom has quadrupole moment. In the present case, both P and N
have quadrupole moments due to the electrons at the p-orbitals with the 14N
value given in [5, Table 1] and [16, Table II]. The DMF in Eq. (4) satisfies this
requirement at infinity. In Eq. (4), we used the theoretically justified value of
n = 5 (UA value) and the value of n = 3 for the function that will be used for
comparison.

Functions dirreg(r; 5, 4), dirreg(r; 5, 5), and dirreg(r; 5, 6) will be called irreg11,
irreg12, and irreg13 DMFs, respectively. We will show that irreg13 is our best
DMF, the others will be used for comparison. Function dirreg(r; 3, 4) leads to
intensities with “incorrect” behavior, therefore it will be called the wrong DMF.

Two additional DMFs based on the rational form,

drat(r) =
ar3

Π4
i=1

[
(r − ri)

2
+ v2i

] , (5)

will be used for comparisons. This form contains 9 adjustable parameters. The
DMFs are in debye.
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All the above functional forms for the PEF and DMF contain adjustable
parameters that are determined by minimization of the difference between the
calculated and input data characterized by χ2, Eq. (6), which is a measure of
the quality of the fit. The input five data sets and the details of the minimization
procedure are described in Sec. 6. For the rational form of Eq. (5), two local
minima of χ2 with nearly the same values of χ2 were found that gave two sets
of parameters. The corresponding rational DMFs will be called ratA and ratB.

4. Why we use the very short bond lengths values

As we showed earlier [17], in order to improve the numerical stability of the
overtone intensities, it is important to use analytic functions with adjustable pa-
rameters to represent model PEFs and DMFs, which are rather rigid construc-
tions. If we add new ab initio data at 0.2–0.8 Å, we have to refit the functions,
which then change everywhere including the classical region between the turning
points where the contribution to the transition integral comes from. The result-
ing relatively small changes of the wave functions and DMF in the region of
integration will have large impact on the high-overtone transition probabilities,
which are exponentially small due to severe cancellation of the ± contributions
of the integrand.

5. Requirements for the model dipole moment and potential energy
functions

A powerful tool to analyze the intensities of the vibrational overtone tran-
sitions is the Normal Intensity Distribution Law (NIDL) that was derived the-
oretically and verified experimentally as described in review [18] and references
therein. According to the NIDL, the transition-dipole-moment values of the
overtone transitions are expected to decay exponentially. The NIDL-like behav-
ior of the transition probabilities in the form of Einstein A coefficients of PN is
illustrated in Fig. 1, where the values of log(A) for high-enough overtones show
linear dependence when plotted against

√
Ev/ω used as an overtone count (Ev

is the vibrational energy and ω is the harmonic frequency). The perfect NIDL
up to A as low as 10−32 s−1 seen in Fig. 1 tells us about the unprecedentedly
high quality of the molecular functions.

As discussed in [17], it is important to represent the potential energy and
the dipole moment as analytic functions of r in order to avoid the numerical
noise caused by extrapolations from any grid-based representations using splines
or piece-wise smooth functions. The analytic representations of the PEFs and
DMFs are built in our previous [6] and present papers by fitting the associated
adjustable parameters to the corresponding ab initio values and the experiment,
i.e., line positions (or energies), the permanent dipoles, and the intensities (or
transition dipole moments).

Before entering the details of the fitting procedures, let us formulate the
necessary requirements that the analytic representations of PEFs and DMFs
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must obey. As explained in Appendix A, the fitted PEF and DMF can be
“correct” or “wrong” depending on their analytic properties in the complex
plane (i.e., when the bond lengths values are extended to the complex numbers),
where any analytic function unavoidably has singularities like poles and branch
points. They can also oscillate or increase in the complex plane. All these
features can in principle contribute to the intensities of overtone transitions, but
only the pole at r = 0, or more precisely the repulsive branch of the potential
associated with it has physical meaning.2 Therefore, the necessary requirements
for such analytic funcitons are: 1) all other singularities (except r = 0) must
not overweight the contribution from the repulsive part of the potential, or,
equivalently, they should not be located very close to the classical region; for PN,
this is about 1 bohr; 2) the functions should not increase or oscillate in the upper
half of the complex plane. With these restrictions fulfilled, the model functions
will provide the exponential fall-off of the intensities required to manifest in the
form of the NIDL, i.e., a straight-line distribution like that shown in Fig. 1. As
mentioned above, the non-analytic functions like splines and piece-wise smooth
functions result in a power-like law or even saturation having nothing to do
with the physical intensities; the analytic functions violating rules 1 and 2 above
result in a wavy intensity distribution like squares in Fig. 4 declining from the
NIDL, that also greatly overestimate the intensities.

Let us consider our models from this point of view. The EMO potential in
Eq. (1) has poles in the complex plane, one of them at r = ree

iπ/4, but, as
shown by curve 3 in Fig. 1, they do not degrade the NIDL because they are
located far from the real axis. The same is true for the potential of CO by
Meshkov et al. [6], which also has poles far from the real axis.

On the contrary, the DMFs in Eqs. (4) and (5) have branch points and
poles, which can affect the intensity distribution strongly thereby destroying
the NIDL. We will show in the next section how to avoid this undesirable effect
by proper adjusting the DMF parameters. As a result, the fitted irreg13 DMF
does not spoil the NIDL as seen in Fig. 1, curves 3 and 4.

6. The fitting procedure

For determining the parameters of the model potential and dipole functions,
the following sets of data are used: 1) the experimental transition frequencies,
as in Ref. [1], collected from Refs. [5, 16, 19–21], v ≤ 11; 2) the experimental
permanent dipole moment (PDM) values at v = 0,1,2 [22, 23]; 3) the ab initio
potential PEC-A and the dipole moment function from Ref. [1] in the range
of 1.5-10 a.u.; 4) the ab initio potentials of Ref. [2] (all methods) and of the
present study; 5) the dipole moment values at r < 0.8 Å of the present study.

The reason to separate the short-range DMF data stems in the fact that they
are highly unreliable, yet bearing important information on the sign change of

2The Morse potential has no pole at r = 0, yet its repulsive branch provides the intensity
distribution in the form of the straight NIDL line.
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the PN DMF as manifested by the results of two independent methods shown
in Fig. 2 by circles and crosses. Therefore, our task is to use set 5 in such a way
as to preserve the DMF sign change without deteriorating the NIDL conditions,
which could easily occur if the branch points of the irregular DMF came close
to the real axis where the main contribution to the transition dipole moment
(TDM) integral, ⟨v′′J ′′|d(r)|v′J ′⟩, comes from or by other reasons specified in
Sec. 5. Here |v′J ′⟩ is rovibrational eigenfunction. This task can be performed
by assigning large enough individual uncertainties used as inverse weights in the
fitting procedure to the ab initio points of set 5.
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Figure 2: The ab initio (points) and fitted (lines) DMFs. 1, irreg13; 2, irreg12; 3, irreg11.

The least-squares fitting was performed by minimization of the following
functional:

χ2 =

5∑
α=1

χ2
α, (6)

χ2
α =

∑
i

(
yfitαi − ydatαi

σαi

)2

, (7)

where y’s are transition frequencies, PDMs, ab initio PEF and DMF points,
and χ2

α are contributions of the individual data sets. We also will discuss the
total reduced and individual standard deviations,

χred =
√
χ2/N, std =

√
1

Nα

∑
i

(
yfitαi − ydatαi

)2
, (8)
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where N and Nα are the total and individual numbers of the data points.
Initially, we followed Ref. [1] by fitting the irreg11 DMF only to set 3. Since

the short-range data were not used in the fitting, curve 3 in Fig. 2 remained
negative everywhere. Two other DMFs, irreg12 and irreg13, shown in the figure
were fitted to all five data sets simultaneously with the EHH PEF, see the next
paragraph. Curves 1 and 2 poorly reproduce the ab initio points at r < 0.8 Å
because of large uncertainties, yet they do change sign as required.

In this paper, for the first time to the best of our knowledge, we perform
simultaneous fitting of the PEF and DMF to all available experimental and
theoretical data. This means that the functional in Eq. (6) has contributions
from both the potential and dipole-moment data. The necessity in such kind
of fitting stems in the fact that there are high-precision data on the PDM of
PN at v = 0–2, which depend on both the PEF and DMF. There exist no
experimental data on the transition intensities bearing information on the DMF.
Therefore set α = 2 of the PDMs proved to be very important since it restricted
the parameters very strongly due to high precision of the data. Similarly, the
experimental frequencies of set 1 are very important because, in combination
with set 2, they guarantee the correct re value very close to experiment, see
Table 4. Further discussion of this issue is given in Sec. 7.

Apart from the requirements formulated in Sec. 5, which the fitting proce-
dure must fulfill, another important problem is assigning uncertainties to the ab
initio data, which are not known. We gave σαi = 5% to all ab initio potential
energy data since this is a typical scatter of the values obtained with different
methods and different basis sets. This choice is also justified by the fitted values
of De and re for the EHH potential shown in Tables 2 and 4 that are very close
to their experimental values. For the EMO potential, the value of De = 53388
cm−1 obtained (see Table 1) is worse than that obtained with the EHH PEF,
therefore we consider EHH as the best PEF to be used for calculation of the
line list.

The ab initio DMFs at r > 0.8 Å were assigned uncertainties of σαi = 0.02
debye, which is a typical scatter obtained with different methods. The data
at r < 0.8 Å were individually assigned with large uncertainties varying from
0.5 to 20 debye in order to fulfil, first, the requirement of the sign change and,
second, the restrictions of Sec. 5 on the DMF properties in the complex plane.

Minimization of the functional in Eq. (6) has been carried out by a home-
made program using the Levenberg-Marquardt method. The level energies and
the corresponding wave functions have been calculated by the sinc-DVR method
applied to the Schrödinger equation transformed by the variable substitution
y = (r2−r20)/(r2+r20)), r0 = 1.49 Å. This procedure is in line with the adaptive
analytical mapping approach of Meshkov et al. [24]. The Einstein A coefficients
(in s−1) were calculated by the formula

A = 3.1361887× 10−7ν̃3
HL

2J ′ + 1
|TDM|2, (9)

where HL ≡ |m| is the Hönl-London factor equal to J ′+1 for the P -branch and
J ′ for theR-branch, ν̃ is transition frequency in cm−1 and TDM= ⟨v′′J ′′|d(r)|v′J ′⟩
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is transition dipole moment in debye.

Table 1: Fitted parameters of the EMO PEF

De, cm
−1 0.5338810940280822E+05

re, Å 0.1490865783006148E+01
β0, Å

−1 0.2188250046485733E+01
β1, Å

−1 0.1467040829582623E+00
β2, Å

−1 0.1532382369985083E+00
β3, Å

−1 0.1376729138537458E+00
β4, Å

−1 0.1388912048059677E+00

Table 2: Fitted parameters of the EHH PEF

De, cm
−1 0.519274276353915047E+05

re, Å 0.149086580348419329E+01
α, Å−1 0.221879954515301936E+01
c 0.948616297258670499E−01
b1 0.100084121923090996E+01
b2 0.470612349534084318E+00
b3 0.890787339171956738E−01

The values of the fitted parameters of the EMO and EHH potentials and the
irreg13 DMF are given in Tables 1, 2, 3, and in the supplementary FORTRAN
file. Table 4 shows the EHH spectroscopic parameters and compares them with
the literature data. The comparison demonstrates the high quality of the EHH
potential, which provides for the parameters close to their values from other
sources. The fitted functions will be discussed in the next section, here a short
comment is in order. If we use parameters ai of the Dunham potential, Eq. (3)
in Ref. [5], in order to derive coefficients c and b (b1 in our Eq. (3)) in Eqs.
(16) and (17) of Ref. [11]3, then inserting the ai values from [5, Table 3] gives
c ≈ 0.09455, b ≈ 1.02, which agrees with our values, c ≈ 0.09486, b1 ≈ 1.00,
as expected. However, with these Dunham potential parameters, the values of
ωe and ωexe turn out to differ from the experimental ones by more than the
experimental uncertainties shown in [5, Table 3] .

7. Properties of the fitted model functions

Two our model PEFs, EHH and EMO, along with PEC-R of the previous
study [1] are graphically shown in Fig. 3. On the given scale, they all are

3There are sign misprints in the corresponding Eq. (11) of Ref. [5] (−7/12) and Eq. (17)
of Ref. [11] (−[...]).
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Table 3: Fitted parameters of the irreg13 DMF

n 5
α, Å−1 0.528882306544608771E+00
β, Å−1 0.174842312392832677E+01
a1, Å 0.367394402167278311E+00
b1, Å 0.126545114816554061E+00
a2, Å 0.226658916500257268E+01
b2, Å 0.263188285464316518E+01
c0, debye·Å4 0.954686180104024606E+04
c1, debye·Å4 −0.100829376358086127E+06
c2, debye·Å4 0.343009094395974884E+06
c3, debye·Å4 −0.593296257373294560E+06
c4, debye·Å4 0.574050119444558513E+06
c5, debye·Å4 −0.296914092409155215E+06
c6, debye·Å4 0.644340312384712088E+05

indistinguishable over the entire range of r except for very short r where the
EHH potential follows the ab initio points more closely than the EMO and PEC-
R do. This difference is not expected to affect the intensities strongly except
for very high overtones. Our EMO does not decline appreciably from PEC-R
anywhere.

Near equilibrium, significant differences between the fitted potentials and ab
initio data are seen. The very high precision of the measured permanent dipole
at v = 0, 1, 2 and detailed dependence of the line positions upon J impose
very rigid restrictions on re. The Be and re resulting from fitting are nearly
independent of the model and of the sets of the ab initio data, and both constants
are very close to their experimental values within rather small experimental
uncertainties, see Table 4. As seen in Fig. 3, re of ab initio is shifted by about
0.004 Å, which obviously corresponds to the precision of determination of re in
the ab initio calculations. It is seen that the models would coincide with the ab
initio points be the latter shifted by 0.004 Å along abscissa.

As seen from Table 5, our EMO and EHH potentials are equivalent in re-
producing the line positions and do this much better than the empirical PEF
of Ref. [1]. Comparing the EHH and EMO models, we see that EHH better
reproduces the short-r ab initio data and has De closer to the experimental
value (see Table 4). Therefore, we consider EHH as the best PEF to be used
for calculation of the line list. It should be emphasized that the fitting proce-
dure does not permit determination of the “true” dissociation limit because the
available data are insufficient; rather, the fitted De characterizes the quality of
the fitted function.

The above considerations suggest that the EHH model is slightly better than
the EMO one, yet the latter can be used as a comparison function to estimate
the expected uncertainties in the calculated intensities.
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Table 4: The spectroscopic parameters of the EHH potential in comparison with the literature
data

parameter value reference
De 51940 cm−1 Yorke14 [1]

51927 cm−1 This work
ωe 1335.6(15) cm−1 Wyse72 [16]

1337.0(1) cm−1 Ghosh81 [20]
1336.99230(66) cm−1 Maki81 [19]
1336.9992(52) cm−1 Cazzoli06 [5]
1336.9972 cm−1 This worka

ωexe 6.5(5) cm−1 Wyse72 [16]
6.88(2) cm−1 Ghosh81 [20]
6.91192(40) cm−1 Maki81 [19]
6.9164(34) cm−1 Cazzoli06 [5]
6.9134 cm−1 This worka

re 1.4908696082 Å Yorke14 [1]
1.49086(2) Å Wyse72 [16]
1.490865803 Å This work

Bv=0 0.7837138(87) cm−1 Ahmad95 [21]
0.78371339 cm−1 This workb

0.78371551(22) cm−1 Ahmad95 [21]
0.7837156(7) cm−1 Ghosh81 [20]
0.78371557 cm−1 This workc

Be 0.7864888(27) cm−1 Wyse72 [16]
0.78648563(20) cm−1 Maki81 [19]
0.786486(4) cm−1 Ghosh81 [20]
0.7864844(28) cm−1 Ahmad95 [21]
0.78648611(12) cm−1 Cazzoli06 [5]
0.786485916 cm−1 This workd

aFrom the potential derivatives [25].
bOne half of the J = 1 → 0 transition frequency at v = 0.
cAverage of h̄2/2µr2 over the v = 0 state.
dh̄2/2µr2e .

Table 5: The individual standard deviations of the transition frequencies (cm−1) and the total
reduced standard deviation of the fits

PEF std 1 std 2 std 3 χred

PEC-R of Yorke14 [1] 7.9e-5 4.0e-3 9.2e-2 67
EMO (present study) 1.2e-6 7.7e-4 4.3e-2 1.4
EHH (present study) 1.3e-6 9.0e-4 4.7e-2 1.5

std 1, purely rotational transitions (24 lines)
std 2, all transitions excluding Ghosh81 [20] data (111 lines)
std 3, all data (122 lines)
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Now let us discuss the properties of the fitted DMFs. The irreg13 DMF is
considered as the best model function for PN. In the following, arguments are
presented in support of this statement.

Figure 4 shows the vibrational Einstein A coefficients for the v-0 R(0) tran-
sitions of PN calculated with the PEF EHH and three DMFs including irreg13
and two comparison DMFs: a six-order polynomial (poly6, fitted only to the
r = 0.8–2.2 Å ab initio data) serving as a reference and the other one called
“wrong” DMF. Based on these plots, one can judge whether they obey the NIDL
or not.

The irreg13 DMF gives a very straight NIDL-like drop-off of the transition
intensities, Eq. (9), nearly identical at high v to that of poly6. Such a coinci-
dence cannot be accidental, it testifies that the two DMFs with such different
analytic properties and, moreover, fitted to different data sets approach one
and the same true molecular function. This situation agrees with our intuitive
expectation that the intensities must be insensitive to the difference in analytic
representations of DMF under the condition that they are “correct”, see Ap-
pendix A. The rational form of Eq. (5) gives a bit larger differences with poly6
(not shown), yet it will be used to give a rough estimate of the uncertainties of
the calculated intensities.

1 2 3 4
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Figure 4: The intensities of v-0 R(0) lines generated by the EHH potential and three DMFs.
Circles, poly6 as a reference to compare with; triangles, irreg13 (the same as in Fig. 1);
squares, wrong DMF.

In contrast, the third function classified as wrong results in the wavy de-
pendence of the overtone transition probability declining from the NIDL, hence
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Figure 5: The real part of the DMFs along the line Re(r) + 0.4i parallel to the real axis. 1,
irreg13, the best DMF; 2, poly6; 3, irreg11; 4, the wrong DMF.

the intensities differ very strongly from both the reference poly6 and the irreg13
DMFs. This is the reason to consider this DMF unsatisfactory. Analysis below
shows that the wrong DMF breaks one of the necessary conditions for the “cor-
rect” behavior formulated in Sec. 5. Since such a behavior is characteristic of
the particular model rather than the true molecular function, this DMF must
be rejected.

Let us make a useful note that in practice the given DMF form can be tested
without tedious calculations of the intensities and plotting them in the NIDL
coordinates. Namely, the requirement of smooth behavior in the complex plane
formulated in Sec. 5 can be immediately verified as soon as the analytic form
with the fitted parameters is known. In Fig. 5, the real parts of four DMFs are
plotted along the line parallel to the real axis and shifted up by 0.4 Å. Curves
1-3 show smooth behavior whereas curve 4 makes a large-amplitude oscillation,
which undoubtedly indicates the defectiveness of this function.

8. The line list and the absorption spectrum of 31P14N

As part of this work, the line list for 31P14N in its X1Σ+ ground elec-
tronic state was calculated with the EHH PEF and the irreg13 DMF using
the Duo program [26], a free-access rovibronic solver for diatomic molecules
available at https://github.com/exomol/Duo/. These functions, EHH and ir-
reg13, have been implemented in Duo as part of the Duo library of functional
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forms. The spectroscopic model of PN used is given in the Supplementary ma-
terial as the Duo input file. The wavenumber range in the line list is from
0 to 51974 cm−1, J ≤ 270. Both the lower and upper state thresholds were
mapped to 51927 cm−1, which is approximately the dissociation threshold for
the ground electronic state. The line list contains 254597 transitions between
9590 vibrational-rotational states. The line list will be available via the ExoMol
website.
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Figure 6: The calculated absorption spectrum of 31P14N at 2000 K well below the bottom of
the first excited electronic state. 1, present study; 2, previous study [2]

The Einstein A coefficients produced as part of the line list were then used
to calculate the absorption spectrum of PN for the ground state and to compare
it to our previous work. In Fig. 6, we can see the comparison of the vibrational-
rotational spectra due to the X-X transitions calculated in this work and in the
previous work by Semenov et al. [2]. The absorption spectrum is calculated at
2000 K with the Gaussian line profile of HWHM = 1 cm−1. It is seen that the
new DMF provides a significant improvement in the structure of the spectrum.
Especially large changes are observed above 7000 cm−1 due to removal of the
nonphysical saturation of the high-overtone transitions caused by the spline-
interpolated DMF.

Less dramatic, yet significant are changes in the IR region below 7000 cm−1

that are better visible in the stick spectrum of Fig. 7.
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Figure 7: The low-frequency part of the spectrum of Fig. 6. 1, present study; 2, previous
study [2].

9. Vibrational and rotational anomalies

Anomalies are very common phenomenon in the calculated line lists of di-
atomic molecules, and some of them were observed in experiment. They were
predicted, for the first time, by Le Roy and coworkers [27, 28] in the electronic
transitions of I2. It was discovered that the Franck-Condon amplitude (the ra-
dial overlap integral) as function of J crosses zero and changes sign at some
J , thereby weakening the intensities of the neighboring lines. Such kind of
anomalies are present in the H2 line list [29] calculated recently by Abgrall et
al. [30].

The anomalies in the X-X vibrational transitions were described in Ref.
[18]. They arise when the TDM as function of ∆v crosses zero and changes
its sign4, thereby making the intensities of the neighboring bands very weak as
compared to the values predicted by the NIDL. The vibrational anomalies were
predicted in HF [31], predicted and observed in CO [32, 33]. Here in Fig. 4, the
PN 3–0 band is such a vibrational anomaly calculated with the best PEF and
DMF of the present study (triangles); it is seen in Fig. 1 as well.

4The signs of TDMs depend on the choice of signs of the vibrational wave functions [18].
Here, we choose the signs by imposing the condition that the wave functions were positive at
r → 0. Under this condition and in the absence of the anomalies, the signs of TDMs do not
change in the sequence of v-0 transitions, see Appendix A, Eq. A.14.
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Table 6: The TDM values (debye) for the v–0 R(0) lines

v TDM
1 −3.4E-02
2 −9.0E-04
3 −1.8E-05
4 7.2E-06
5 2.1E-06
6 4.7E-07
7 1.0E-07
8 2.3E-08
9 5.3E-09
10 1.3E-09

An additional proof that the 3-0 band is an anomaly is presented in Table
6 and Fig. A.11 based on the well-known regularities of the sign changes in the
successive v–0 transitions [18, 34, 35]. It is seen that the TDM changes sign
between v = 3 and 4.

The 3-0 anomaly is not very deep, as is evident in Fig. 1. It is not seen in
the spectrum of Figs. 6 and 7 because there are a lot of transitions at 2000 K
superimposing on it. However, it is very sensitive to the analytic form of DMF,
which is manifested in Figs. 1 and 9, therefore it can be useful, if observed in a
linear spectrum, for refining the molecular functions.

Finally, the rotational anomalies in the vibrational bands due to sign change
of the TDM as function of J are also met very often [36]. In particular, lines
P(17) and P(18) of the PN 3-0 band shown in Fig. 8 is a rotational anomaly in-
side the vibrational anomaly 3-0. Table 7 lists several anomalies with the highest
values of A. Supplementary material contains the rotational distributions within
several PN bands with anomalies.

The anomalies are interesting because their intensities are very sensitive to
the form of the molecular functions, both potential and dipole [37]. Therefore,
when observed, they could help significantly improve the molecular functions.
In Table 7 we collected some anomalies with the highest values of A. It is
still unclear whether such anomalies can be observed in PN because even the
intensities of the PN fundamental transitions with A ≈ 1 s−1 have not been
measured yet. In the case of H2, the observed normal lines in the ∆v = 1, 2
emission bands have the A values on the order of 10−7 s−1 [38, Table 1]. In
the case of the CH+ ion, the anomalous 1–0 R(7) transition in emission was
observed with A = 0.001 s−1 [39, Table B2].

10. Discussion and conclusions

We constructed the new PEF that reproduces the known PN spectroscopic
parameters very well, as can be seen in Tables 4 and 5. We also constructed
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Figure 8: The rotational distribution within the 3-0 band.

Table 7: Examples of the rotational anomalies in the PN vibrational bands. More anomalies
and the rotational distributions within the bands with anomalies are given in Supplementary
material

∆v line ν, cm−1 A, s−1

2 2-0P(93) 2395 3e-8
3-1P(94) 2364 5e-10

3 3-0P(18) 3895 2e-9
4-1P(21) 3847 5e-9

4 9-5R(41) 4952 2e-9
14-10R(25) 4667 6e-8
16-12R(19) 4550 1e-7

5 10-5R(92) 6014 1e-9
15-10R(79) 5695 2e-8

6 20-14R(103) 6275 1e-8
7 20-13R(134) 7062 2e-10
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the new DMF, which results in a NIDL-like behaviour of the overtone transition
intensities of PN.

A few comparison functions were also developed in order to estimate the
expected errors in the intensity calculations. Shown in Fig. 9 are ratios of the
intensities calculated with various DMFs of PN to the ones calculated with our
best DMF irreg13. It is remarkable that the variations of A between five com-
parison functions are within one order of magnitude at v = 6-20 where A varies
by 10 orders of magnitude. It is important that such relatively small variations
of the predicted high-overtone intensities are made with the dipole-moment
functions built upon three absolutely different analytic forms - a polynomial,
an irregular function with branch points/no poles, and a rational function with
poles/no branch points, which testifies that all these DMFs approach one and
the same true molecular dipole-moment function. Unfortunately, there are no
experimental data on the line intensities of PN in order to make the DMF more
reliable.
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Figure 9: Ratios of the Einstein A coefficients for v–0 R(0) lines calculated with the EHH
potential and various comparison DMFs, as well as those from Ref. [1], to the ones calculated
with the best irreg13 DMF. The Yorke14 data at v > 6 are not shown because of the
saturation seen in Fig. 1.

The v–0 overtone transitions at v = 1–6 deserve special attention. Obviously,
there exists an anomaly due to sign change of the transition dipole moment [36]
between v = 3 and 4. As we know, such anomalies are very sensitive to the PEF
and DMF forms [37], therefore the variations of A between different forms are
very large for these bands. This feature gives a hope that the molecular func-
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tions can be essentially improved when the intensities of the lines belonging to
these bands will be measured. This notion relates to perspective in future since
at present even the intensities in the rotational band and in the fundamental
vibrational band have not been measured yet.
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Supplementary material

File X PN PEF DMF.f. The FORTRAN code to calculate the EHH PEF
and the irreg13 DMF.

File All X1Sigma+ PEC and dipoles.xlsx. Ab initio data of Se-
menov21.

File PN aug-cc-pV5Z-DK DMF PEF X .xlsx. Ab initio data of the
present study.

File PN CCSD(T) cc-pV6z nocore.xlsx. Ab initio data of the present
study.

File Examples of rotational anomalies in PN vibrational bands.
Rotational distributions in some bands with anomalies.

File Fit OUT 13param obs-calc. Comparison of the experimental and
ab initio data with the calculations in the present study.

File PN EHH irreg13.inp. A Duo input file containing the spectroscopic
model of PN used to produce the line list.

Note added in proof.

The Referee noted that the NIDL theory was developed for the X-X tran-
sitions within an isolated X state and questioned its applicability because of
contributions from the excited states. Indeed, if there is a low-lying electronic
excited state, the exponential falloff of the intensities is broken down and the
NIDL is not obeyed at the transition energies overlapping the gap of ∆E be-
tween the ground and the first excited state. As an example, we mention CN
where ∆E = 9247 cm−1 [40] so that the upper states in the X-X transitions have
significant contributions from the excited state at the transition energies greater
than ∆E. As a result, the transition intensities become increasing at such ener-
gies (L. K. McKemmish, private communication). For transition energies below
∆E, the effect of the excited states is described by small modifications of the
PEF and the effective masses, which does not destroy the single-state model,
hence the NIDL applies.
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Appendix A. Qualitative considerations of the rovibrational X-X tran-
sitions

We start with the same trivial statement as in Ref. [4].
(i) All the input experimental and theoretical information necessary to con-

struct the molecular functions responsible for the line positions and transition
intensities is of point-wise nature, hence, some interpolation scheme is needed
to calculate the observables.

(ii) If it goes about the intensities within the 1–0 fundamental band, the
task is very simple. Since the TDM integral is of the same order of magnitude
as its integrand times a characteristic width of the integration interval, ∆r,
any interpolation method can be used, including linear interpolation, Simpson
parabolic scheme, cubic splines, analytic functions, and any other sort of the
interpolating functions; in any case, the absolute error in the calculated inte-
gral, ⟨v′′J ′′|d(r)|v′J ′⟩, arising due to the difference between the model and true
functions will be of the same order of magnitude as the error in the integrand.
For instance, if the integrand is on the order of unity and its error is ±0.05,
then the integral will have the same error of ±0.05 assuming ∆r on the order
of unity as well.

(iii) With the overtones, the situation changes dramatically. Even the first
overtone, the 2–0 band, of a molecule with no light atom (e.g., CO or PN) is
100 times weaker than the fundamental band, and the higher ones rapidly drop
down with the overtone number. This means that the transition integral is
orders of magnitude smaller than its integrand due to“fine cancellation” of the
+/− contributions caused by the oscillating wave function of the upper state; as
a result, the entire integral representing the needed TDM can be much smaller
than the above 5% absolute error. In our example, the TDM drops down by
a factor of 10, hence, the relative error increases from 5% to 50%, making the
calculation for higher overtones senseless.

(iv) The fine cancellation for high overtones occurs only when the
integrand including both the wave functions and the DMF is analytic
function, this is the first key point! To be more specific, the cancellation by
2–3 orders of magnitude for the first and second overtones still occurs with non-
analytic functions, but this “coherency” is rapidly destroyed with increasing
the overtone number, so that the cancellation by many orders of magnitude for
higher overtones can take place only with analytic functions, and this leads to
simultaneous cancellation of the above absolute difference of 5%. As a result,
the relative error remains 5% for higher overtones as well. In particular, if some
small corrections to the potential are introduced, say, caused by interactions
with the excited electronic states (see footnote 1) or other reasons, the changes
in the intensities will also be small. The non-analytic functions do not possess
such high coherency, therefore the relative error in the TDM increases with the
overtone number.

(v) In order to solve the problem formulated in (iii), we proposed, based
on (iv) and following Landau and Lifshitz [25], to use for interpolation only
the analytic functions, so much the more that the intrinsic PEF and DMF are
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actually analytic over the entire complex plane of the interatomic distance r,
and so must do their model representations. Indeed, neither the Hamiltonian
and dipole-moment operators, nor the Schrödinger equation contain terms with
discontinuous derivatives.

(vi) The second key point: Under some additional restrictions (see point
(ix) below), which are always fulfilled in real molecules, the intensities of the
overtone transitions calculated with analytic PEF and DMF are expo-
nentially decreasing with increasing the overtone number. The proof
follows from the unique properties of the analytic functions and the Landau
method to calculate small transition probabilities [25].

We remind that the analytic functions, by definition, are continuous with
all their derivatives at any value of the complex variable r except for singular-
ities like poles and branch points. The great advantage of such functions over
splines and other functions with discontinuous derivatives stems in three strict
theorems: 1) any analytic function can be extended from the real axis into the
complex plane in a unique fashion, which permits using powerful methods un-
available for non-analytic functions; 2) the integration path C can be shifted,
without changing the integral, from the real half-axis, r = 0−∞, into the com-
plex plane keeping the end point r = 0 fixed, which can be used to decrease the
integrand to the level of the whole integral under condition that the integrand
does not increase in the upper half-plane; and 3) if path C is shifted in the
upper half-plane as proposed in theorem 2 above, the dominant contribution to
the integral along the new path C comes from either one of the singular points
of the integrand or the end point r = 0.

Theorem 2 cannot help decrease the integrand in the original TDM integral
since both wavefunctions are increasing in the complex plane. Therefore the
second innovation of the Landau-Lifshitz approach was a transformation of the
original integral into an equivalent form based on the expansion of the upper-
state wavefunction into a sum of two functions, ψv′ = ψ+

v′ + ψ−
v′ , which are

also solutions of the Schrödinger equation (complex-conjugated to each other
on the real axis) that are decreasing in the upper and lower half-planes, re-
spectively. Both of them are increasing, rather than decreasing, beyond the
turning points on the real axis, still the integral remains convergent because
the lower-state function, ψv′′ , decays faster than ψ+

v′ increases [4]. As a result,
in the transformed integral, the integrand, 2Re ψv′′d(r)ψ+

v′ , decays much more
slowly over the under-barrier regions than the original integrand and therefore
has reasonably small value in a vicinity of r = 0; in fact, this small value times
the corresponding ∆r is on the order of the TDM itself, which is an important
feature to be used below. Note, just in case, that the technique of “fine cancel-
lation” of two exponentially increasing functions to give a physically justified
decreasing one is alien to numerical calculations.

(vii) In the transformed integral, the ψ+
v′ function of the upper state decreases

in the upper half-plane faster than the lower-state function increases. Therefore,
we can shift C, while keeping its start point fixed at r = 0, in such a way as to
decrease the integrand as much as possible in order to make the integrand on
the order of the integral itself. If done successfully, the integrand first increases
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from zero at r = 0, then reaches a maximum somewhere at path C in a vicinity
of the physical Coulomb singularity, r = 0, and then decreases when moving
away along path C. Thus, as mentioned above, the value at this maximum times
the corresponding length of convergence, ∆r, is the desirable TDM. In such a
case, the above 5% error in the integrand will again result in a 5% relative error
in the whole integral because the integrand and the integral are again of one
and the same order of magnitude.

(viii) Theorem 3 implies that analysis of singularities of the PEF and
DMF becomes crucial. There exists a single physical pole of the PEF at
r = 0 due to the Coulomb nuclear repulsion that gives rise to the repulsive
branch of the PEF. As was shown by one of us (see references in [4]), under the
very weak restriction of the repulsive branch being exponential, the intensities
of the v−0 (v > 1) vibrational overtone transitions associated with the repulsive
branch of the potential obey the so-called Normal Intensity Distribution Law
(NIDL), which reads that the logarithm of the intensity is linear function of the
square root of the energy of the upper state in units of the vibrational quantum.
Anomalies can occur at isolated transitions whose intensities drop well below
the NIDL straight line.

(ix) All other singularities of the model PEF and DMF are artificial, i.e.,
they are characteristic of the model rather than the molecule. Therefore, as soon
as such a singularity provides for the principal contribution to the TDM, the
corresponding PEF or DMF must be rejected. In particular, the DMF should
not increase or oscillate in the upper right half of the complex plane, because
such behavior is definitely manifestation of a singularity either in a finite part
of complex plane or at infinity. This singularity can also make shifting the
integration path useless.

(x) Since the only singularity at r = 0 is permitted to contribute to the
TDM, we come to the third key point: The calculated intensities must
follow the NIDL.

(xii) In order to further decrease the errors, the model functions must
follow the intrinsic functions as closely as possible, including ab initio
data points over the entire r axis and the theoretical limits of the
united and separated atoms.

Figures 1 and 4 illustrate the notions of the “correct” and “wrong” model
functions: the former provide for the intensity distributions obeying the NIDL,
as curves 3–5 in the Fig. 1, circles and triangles in Fig. 4; in contrast, the latter
result in the wavy distributions declining from the NIDL, squares in Fig. 4.

An additional validation check can be provided based on the quasi-classical
approximation to the TDM, see Ref. [4, Appendix] (paper I; we will add I to
the equation numbers cited). The TDM is calculated by Eq. (IA.2),

TDM = 2Re

∫
C

ψv′′J′′d(r)ψ+
v′J′dr (A.1)

(we restore the rotational quantum numbers omitted in paper I), where the in-
tegration path C starts at r = 0 and goes in the upper half-plane circumventing

24



the turning points. The quasi-classical approximation leads to Eq. (IA.13),

TDMqcl = B0T0. (A.2)

The pace of the intensity fall-off with the overtone number at ∆v = v′−v′′ ≫ 1
is given by factor T 2

0 that depends only on the potential and can be easily
calculated by the formula

T0 = exp (−∆Φ0) , (A.3)

where

∆Φ0 =

√
2µ

h̄

{∫ r−
v′′J′′

r0

√
UJ′′(r)− Ev′′J′′dr −

∫ r−
v′J′

r0

√
UJ′(r)− Ev′J′dr

}
.

(A.4)
Point r0 is chosen at the real axis deep enough in the repulsive region,

UJ (r0) ≫ EvJ , (A.5)

so that ∆Φ0 is nearly independent of r0 (see below); r−v′J′ and r
−
v′′J′′ are the left

turning points at the corresponding energies. We will see that

B0 = C0/∆v, (A.6)

where C0 is on the order of 1 debye.
As seen in Fig. A.10, the quasi-classical approximation excellently repro-

duces the exponential fall-off of the intensity of the R(0) line with the overtone
number despite the fact that factor T0 in Eqs. (A.2)-(A.4) responsible for such
behavior does not contain the DMF at all. Remarkably, the pace of the inten-
sity fall-off, which any DMF must provide for, can be established with such a
simple means. Indeed, the calculation in Eq. (A.4) is as simple as two-by-two:
one needs only the potential, and only in the repulsive region, and even in an
arbitrary form including a set of spline-interpolated ab initio points.

Finally, we derive the explicit expression for pre-factor B0. In Eq. (A.1),
path C is shifted far enough from the turning points, so that the wave functions
can be replaced with their quasi-classical expressions given by Eqs. (IA.3-9). In
order to simplify notations, we introduce the functions

πvJ(r) ≡ −ipvJ(r) =
√

2µ [UJ(r)− EvJ ],

ΦvJ(r) = h̄−1

∫ r

r−vJ

πvJ(r)dr.

The square root is defined to be positive at the real axis at r < r−vJ where
UJ(r) ≫ EvJ . The square roots in the denominators of Eqs. (IA.3,4) are
defined this way, too. When these functions are numerically integrated in the
complex plane, the code must verify the continuity of their changes between
adjacent points at path C in order to avoid jumps between two branches of the
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Figure A.10: Comparison of the quasi-classical approximation to the Einstein A coefficients
(pluses) with the exact ones (circles). The quasi-classical TDMs for v–0 R(0) intensities were
calculated by Eqs. (A.2) and (A.6) in which C0 is put to 1 debye.
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square-root functions. Inserting Eqs. (IA.3,4) into Eq. (IA.2), we obtain

TDMqcl = 2Av′J′Av′′J′′

√
qv′

qv′′
Re(−i)

∫
C

d(r)dr√
πv′J′(r)πv′′J′′(r)

e−∆Φ(r), (A.7)

∆Φ(r) ≡ Φv′J′(r)− Φv′′J′′(r) = ∆Φ0 + h̄−1

∫
C0

[πv′J′(r)− πv′′J′′(r)] dr, (A.8)

where AvJ and qv are quasi-classical normalizing coefficients and harmonic cor-
rections, respectively, explicitly given by Eqs. (IA.6-9), and ∆Φ0 is given by
Eq. (A.4); path C0 in Eq. (A.8) starts at some real point r0 satisfying condition
(A.5) and ends at a given r belonging to path C. The choice of r0 is arbitrary
as long as condition (A.5) is fulfilled. This uncertainty reflects the fact that
separation of TDM into the exponential part and the pre-factor is not unique:
one can always move a part of T0 into B0 provided this part slowly varies with
∆v. Note that path C in Eq. (A.7) can also start at r0 because the integrand is
real-valued at 0 < r < r0, and, in what follows, this will be implicitly assumed.

For the pre-factor, we obtain

B0 = 2Av′J′Av′′J′′

√
qv′

qv′′
Im

∫
C

d(r)dr√
πv′J′(r)πv′′J′′(r)

e−φ(r), (A.9)

φ(r) = h̄−1

∫
C0

[πv′J′(r)− πv′′J′′(r)] dr. (A.10)

For calculation of curve 5 in Fig. 1, path C was chosen to consist of two line
segments: r0 + ix (0 ≤ x ≤ 0.4) and x+ i0.4 (r0 ≤ x <∞).

In order to estimate B0, we will calculate it for d(r) ≡ const = d̄, where d̄ is
generally a complex number whose absolute value is on the order of the average
dipole moment over C, say 1 debye; in particular, B0 is merely the overlap
integral if const = 1. We also will neglect the difference between J ′ and J ′′.
Along path C, the potential energy is very high according to (A.5), therefore
Eq. (A.10) is easily converted to

φ(r) =
∆E

√
2µ

2h̄
y(r), (A.11)

y(r) =

∫
C0

dr√
UJ(r)

, (A.12)

where ∆E = Ev′J′ −Ev′′J′′ . The potential has zero at equilibrium, its phase ϕ
is defined to be 0 at r0, and ϕ decreases by 2π when r moves along C to infinity,
hence

√
UJ(r) becomes negative and tending to −

√
De; thus, y(r) vanishes at

r = r0 and y(r) → −∞ at the far end of C0. Equation (A.9) transforms to the
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approximate relation

B0 ≈ 2Av′J′Av′′J′′

√
qv′

2µqv′′
Im d̄

∫
C

dr√
UJ(r)

exp

[
∆E

√
2µ

2h̄
y(r)

]
= 2Av′J′Av′′J′′

√
qv′

2µqv′′
Im d̄

∫ −∞

0

exp

[
∆E

√
2µ

2h̄
y

]
dy

= −2h̄Av′J′Av′′J′′

µ∆E

√
qv′

qv′′
Im d̄. (A.13)

For the overlap integral, const = 1, hence B0 = 0, as should be for the overlap
between the wave functions of the states belonging to a common potential UJ(r).
Substitution of the normalization constants5 of Eqs. (IA.7,8) into Eq. (A.13)
gives

B0 ≈ − 2h̄

∆E
√
tv′J′tv′′J′′

Im d̄ ∝ h̄ωe

∆E
Im d̄ ≈ 1

π∆v
Im d̄, (A.14)

where tvJ is period of vibrations and we neglected the small differences between
qv and unity. We see that Eq. (A.14) has the form of Eq. (A.6).
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Figure A.11: The calculated values of the TDM (in debye) for the R(0) line in the v–0 bands.

5The signs of these constants were based on the convention that the wave functions are
positive at large r. Here, the convention is changed according to footnote 4 so that factor
(−1)v disappears.
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The uncertainties introduced to Eq. (A.13) in the above derivation come
from neglecting EvJ as compared to UJ(r) and the difference between J ′ and J ′′

in the integral. Omitting the energies has little impact on the integral because
the potential at path C is actually much larger than the energies. The errors
due to putting J ′ = J ′′ = J are beyond 3-4 significant digits.

Figure A.11 demonstrates the effect of the TDM sign change at the anomaly
3-0 on condition that the signs of the wave functions were selected according to
footnote 4.
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