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Abstract. This paper proposes a Segmentation and Key point Collabo-
ration Network (SKCN) for structure recognition of complex tables with
geometric deformations. First, we combine the cell regions of the seg-
mentation branch and the corner locations of the key point regression
branch in the SKCN to obtain more reliable detection bounding box
candidates. Then, we propose a Centroid Filtering-based Non-Maximum
Suppression algorithm (CF-NMS) to deal with the problem of overlap-
ping detected bounding boxes. After obtaining the bounding boxes of all
cells, we propose a post-processing method to predict the logical relation-
ships of cells to finally recover the structure of the table. In addition, we
design a module for online generation of tabular data by applying color,
shading and geometric transformation to enrich the sample diversity of
the existing natural scene table datasets. Experimental results show that
our method achieves state-of-the-art performance on two public bench-
marks, TAL OCR TABLE and WTW.

Keywords: table structure recognition · segmentation and key point
collaboration · centroid filtering NMS · online generation of tabular data

1 Introduction

Table is widely used as an effective representation of structured data in various
types of documents in daily life. With the rise digitalization, table recognition
has become an important research topic in the field of document understanding.
How to correctly recognize the structure of a table is an important step in table
recognition, whose main task is to identify the internal structure of a table. It
aims to locate all the physical position of cells in the table and obtain information
about the rows and columns in order to better understand the table as a whole.
However, it’s a challenging task for natural scene tables which can be complex in
structure, vary in style and content, and may cause geometric distortions or even
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bending during the image acquisition process. With the explosive growth in the
number of documents, applying table detection and table recognition techniques
to reconstruct tables from document images has become one of the important
techniques in current document understanding systems that can facilitate many
downstream tasks and has significant research value.

Early table recognition studies mainly focused on hand-crafted features and
heuristic rules [7–9]. Most of them were applied to simple table structures or
specific data formats, such as PDF. Recently, research scholars have proposed
more general models for structure recognition, such as LGPMA [22] and Flag-
Net [14]. The advantage is only one model is needed for all types of wired and
wireless tables in document and natural scenes. However, these models are gen-
erally complex and the feature that can be utilized is the intersection of features
extracted from different types of tables, thus ignoring the unique feature of each
type of table. In real life, table recognition tasks are usually applied to fixed
scenes, which require more targeted table recognition models. For example, for
distorted wired table recognition in natural scenes, in order to obtain accurate
cell boundaries, it is necessary to take full advantage of the most obvious vi-
sual features of the cells, i.e., the box lines and four corner points of each cell;
whereas generic models, in order to be applicable to both wired and wireless
table recognition, often do not take full advantage of these most salient visual
features. Therefore, it also makes sense to design a specialized table recognition
model to take full advantage of the salient features of each type of table.

Cycle-CenterNet [17] proposed a detection-based table structure recognition
method that works well for wired table recognition in seven sub-scenarios. It first
locates the four corner points of each cell and further infers the overall logical
structure of the table from the coordinates of the cell. However, it only utilizes
the corner point features of the wired tables and ignores the box line features
of the tables. For table recognition of complex natural scenes with challenges
such as geometric distortion, overlay, occlusion and blurring, it is inadequate to
completely describe the overall position information of a cell by only four corner
points. Better results can be achieved if a scheme can be proposed to extract
both corner point features and box line features of wired tables.

Based on this, we propose a Segmentation and Key point Collaboration Net-
work (SKCN) that combines the cell region of the segmentation branch and the
corner locations of the key point regression branch to obtain a more reliable de-
tection bounding box for better recognition performance. On the one hand, these
two branches can assist each other during training. On the other hand, their re-
spective results can interact and fuse to obtain refined detection results. In order
to effectively filter redundant detected bounding boxes, we propose a centroid fil-
tering algorithm based on the standard NMS algorithm, which achieves accurate
cell detection results. Base on the refined cell boxes, we design a post-processing
scheme to predict the logical relationship of the cells to recover the structure of
the table.

The main contributions of this paper are as follows:
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1. We combine the cell region of the segmentation branch and the corner
locations of the key point regression branch to obtain a refined detected bounding
box.

2. We propose a Centroid Filtering-based Non-Maximum Suppression algo-
rithm (CF-NMS). To address the challenge of overlapping bounding boxes in
table recognition tasks, we use CF-NMS to filter out prediction results with
high IOU values that overlap with the target cell, thus improving the model
detection performance.

3. We propose a module to generate tabular data online by applying color,
shading and geometric transformation to enrich the sample diversity of existing
natural scene table datasets.

2 Related Work

Early methods for table structure recognition [7–9, 24, 26] were mainly based
on well-designed handcrafted features and heuristic rules. Most of these meth-
ods were applied to specific data formats, such as PDF files. However, in these
traditional methods, there are strong assumptions about the layout of the ta-
bles, which limits their generality. With the rapid development of deep neural
networks, image-based table structure recognition methods have shown great
potential and outperform traditional methods by a large margin. We roughly
divide these methods into four categories: image-to-token generation method,
graph-based method, segmentation-based method, and object detection-based
method.

2.1 Image-to-token generation method

This method treats table structure recognition as an image-to-token generation
problem, typically using an encoder-decoder structure that directly converts the
source table image into target token to adequately describe tabular data struc-
ture and its cell content. Existing approaches have tried several attempts to
convert table images into symbols or HTML sequences [3, 11, 30, 33]. However,
these methods usually rely on a large amount of data to train for convergence.
In some cases, especially with large and complex tables, this approach may lead
to performance degradation. Due to the limited length of the sequences ,these
methods usually adopt certain trade-off strategies for large tables and have dif-
ficulty in tuning parameter and network design with their weep explanatory.

2.2 Graph-based method

The graph-based approach [21, 23] treats the bounding boxes of cell regions or
text regions as nodes in a graph and uses graph neural networks to predict the
logical relationship of each sampled node pair. GraphTSR [1] introduces the at-
tention module to predict whether the sampled node pair belong to same row or
same column. FLAG-Net [14] combines Transformer with graph-based context
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aggregator in an adaptive way to exploit the advantages of both. NCGM [13]
leverages graphs and modality interaction to enhance the multi-modal repre-
sentation of text embeddings. However, these methods rely on bounding boxes
of cell regions or text regions used as additional input, which are not available
directly from the table images, thus bringing extra network cost.

2.3 Segmentation-based method

The segmentation-based approach first obtains the segmentation results from the
table image and then parses the segmentation results to reconstruct the table
structure. There are two broad types of this approach. One is to first obtain the
segmentation of the rows and columns, and then use the segmentation results
to grid out the cell boundaries. DeepdeSRT [25] and TableNet [19] semantically
segment rows and columns, and intersect the segmentation results of rows and
columns to obtain cell segmentation. To deal with spanning cells, SPLERGE [28]
uses the split model to segment cell boundaries and then uses the merge model
to further merge adjacent cells to obtain spanning cell boxes. SEM [31] follows
the idea of multimodality and introduces textual feature to fuse with visual fea-
ture for each cell. The other is to recover cell boundaries to obtain cell boxes
directly. CascadeTabNet [20] classifies tables into bordered and borderless ta-
bles, then predicts cell segmentation for borderless tables and extracts cells from
bordered tables using traditional algorithms. LGPMA [22] combines local and
global feature to accurately reconstruct cell boundaries by using soft pyramidal
masks. However, these methods cannot handle distorted tables because they rely
on table-axis alignment.

2.4 Object detection-based method

The method based on object detection first obtains the basic cells of a table from
a table image by directly detecting the bounding box of a cell or text. Heuristic
rules are then used to predict the logical relationships between detected cells
to further reconstruct the logical structure of the table. [23, 27, 32] propose to
detect the bounding boxes of table cells directly. After obtaining the bound-
ing boxes of cells, [23, 32]designed some rules for clustering cells into rows and
columns. However, the methods mentioned above assume that the table is well
aligned and the target bounding boxes are rectangular, which are not suitable
for natural scene tables. Cycle-CenterNet [17] introduces a cyclic pairing mod-
ule to predict quadrilateral bounding boxes. Our method also uses quadrilateral
bounding boxes for detection, which are more adaptable to the complexity of
natural scene tables and achieve better performance in experiments. However,
quadrilateral bounding boxes are still difficult to accurately describe curved cells
and also may bring the potential of degrading detection performance. Sequential-
free box discretization (SBD) [16] parameterizes bounding boxes as key edges
and predicts the coordinates of four key points of the box from which the box
is subsequently recovered. It can output more qualitative and accurate results
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in natural scene table recognition. Therefore, we use SBD to predict four cor-
ner points in our method. The model is built based on the box discretization
network [16], which use SBD as an additional branch to Mask-RCNN [6].

3 Methodology

Our approach consists of two main components: the Segmentation and Key point
Collaboration Network (SKCN) and the Centroid Filtering-based Non-Maximum
Suppression module(CF-NMS). The former is to obtain cell regions from both
the segmentation branch and the key point regression branch to generate refined
bounding boxes. The latter deals with the problem of overlapping cell boxes
under the natural scene table. After obtaining bounding boxes, we use a post-
processing algorithm to cluster cells into rows and columns and then parse the
table structure. The details of our approach are described separately in the
following sections.

3.1 SKCN

As shown in Fig. 1, the input image is first transformed into the output of four
branches, i.e., box classification, box regression, box segmentation and point
regression. The box regression branch outputs the minimum area bounding rect-
angle about the cell. The box classification branch predicts the category of the
cell, such as images, text, formulas and other categories. Among them, the box
segmentation branch and the point regression branch play an important role.
The box segmentation branch focuses on the box-line characteristics of the wired
table to get the segmentation result of the cell region wrapped by boundaries,
which better adapts to the arbitrary deformation of the cell. The point regression
branch mainly locates the four key points by using the key-point characteristics
of the cell. The advantage of our model is to fully capture the feature of table
elements to achieve a more accurate detection.

Since box segmentation and point regression serve for the same task of cell
detection, previous studies usually selected only one of the two in this case.
However, we believe that each of these two branches has its own characteristics.
The box segmentation branch outputs pixel-level instance segmentation of cells,
so the predicted box will be closer to ground truth. However, when it comes to
complex tables with geometrical distortions or incomplete linear characteristic,
it is difficult to separate out closely adjacent cell instances, which can easily lead
to missed detection. The point regression branch only needs to return the four
key points of the target. We first predict the eight boundary key edges of the
cell in the process of locating the key points, and then combine them into four
key points, which makes it easier to learn. The SBD branch tends to predict
cells more completely, but the drawback is also obvious. If a predicted error
occurs at one of the four key points, the detected bounding box becomes impre-
cise. Based on this, we propose to fuse results by a proper process to achieve
better performance. We give these two branches different priorities in different
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Fig. 1. The architecture of SKCN

confidence ranges. Firstly, we add a small constant of 0.03 to the segmentation
results with confidence higher than 0.9. In this way, the high confidence segmen-
tation results are preferred by the Non-Maximum Suppression. Then we select
the results of SBD with confidence higher than 0.2 and mix the results of both
branches together into the CF-NMS module to obtain the final results.

3.2 Key point prediction

Fig. 2. We visualize the results of the corner point detection method and our key point
detection method. For the cell ”Name”, both methods predict correctly. However, for
the cell ”Jim”, the corner point detection method predicts incorrectly because the cell
misses a lower-left corner point. However, our key point detection method avoids this
error by obtaining the critical point from the critical edge with the help of SBD’s edge
detection.

The most intuitive way of key point regression is to directly predict the
corner points of the target to localize it like CornerNet [10], and then Liu et
al. [16] proposed a method called SBD to solve the LC (Learning Confusion)
problem [15], which first predicts the eight boundary values of the target and
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then combines them to obtain the four key points of the target. We refer to
it to design our key point regression branch. Compared to direct corner point
prediction, our method has certain advantages. As shown in Fig. 2, the corner
characteristics of the cells may be incomplete for defective tables and wireless
tables. In this case, it is difficult for the direct corner point prediction method
to accurately predict the four corner points, which brings a large error. But for
SBD, the eight bounding key edges of the cell are obtained first. Key points
can be predicted with the help of border information, text information, not just
relying on the four corners. Our key point prediction method locates four key
points of a cell with the help of the location of eight boundaries, which is more
adaptive in natural scene table recognition.

3.3 Centroid Filtering Non Maximum Suppression (CF-NMS)

Fig. 3. Illustration of NMS and our CF-NMS. (a) is the standard NMS and (b) is our
proposed CF-NMS.

In the process of fusion of two branches of SKCN, there’s bound to be many
overlapped and redundant bounding boxes. How to effectively filter the wrong
detection boxes is the key to ensure the model performance. The process of the
standard NMS algorithm (Fig.3(a)) consists of: (1) set the confidence threshold
for the target box, (2) arrange the list of candidate boxes in descending order of
their confidence, (3) select the box A with the highest confidence and add it to
the output list,while removing it from the list of candidate boxes, (4) calculate
the IOU value of all boxes in the list of candidate boxes with A, and remove the
candidate boxes with IOU values greater than the threshold value, (5) repeat the
above process until the list of candidate boxes is empty, and return the output
list. The effectiveness of the standard NMS algorithm depends on the setting of
the IoU threshold. A relatively high threshold can result in a large number of
false positives, while a lower threshold can result in missing highly overlapped
correct results.

The standard NMS algorithm is not fully applicable to the filtering of can-
didate boxes in natural scene tables where many complexities exist. On the one
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hand, the threshold of NMS cannot be set too low, because the bounding boxes
of adjacent cells in the distorted skew table often have a large part of overlap-
ping areas. In order to ensure the integrity of cell detection, we have to set the
NMS threshold higher, which results in many redundant detection boxes not
being filtered out. On the other hand, in some large tables, the GT boxes of cells
are relatively dense and the area of each box is small. Therefore, it can also be
regarded as a dense detection task of small targets. In this case, it is easy to pre-
dict some bounding boxes that are wrapped internally or around the perimeter
of the correct box. Such errors are unavoidable due to the relatively high NMS
threshold. Therefore, in order to solve the aforementioned problems of standard
NMS in cell detection tasks, a new NMS algorithm is urgently needed to solve
the existing problems of redundant bounding box detection.

Therefore, we propose a new non-maximum suppression algorithm based on
centroid filtering (CF-NMS) to avoid threshold setting. CF-NMS filters overlap-
ping bounding boxes by centroids, as shown in Fig. 3(b). Assuming that box A
is the correct bounding box to be picked out, if the center of box B is inside box
A, or conversely the center of box A is inside box B, then box B is judged to be
redundant. This can effectively eliminate the case of nested detection boxes and
make the detection results more accurate.

3.4 Tabular data augmentation

To address the lack of tabular datasets, we propose a tabular data enhancement
module (TabSynth) to expand the number and diversity of tables and improve
the performance of the model online. We propose three types of enhancement
methods. The first is color variation, whose change is achieved by changing the
HSV value of the table image. The second is shading transformation, which
changes the lighting conditions of the table by combining the collected shadow
photos with the table image to get a new table image with shading. And the
third is geometric transformation that changes the degree of tilt and distortion of
the table. The steps to achieve it are similar to the document image composition
process described in DocUNet [18]. Our enhancement is not a random enhance-
ment, but a targeted solution to two problems. Firstly, the distribution of various
types of tables in the existing datasets is not uniform. Some types of tables with
larger percentages are better trained and therefore more likely to yield better
results than others, while some types of tables with smaller percentages are not
sufficiently trained, which often leads to poorer performance. Therefore, we ad-
dress the problem of data distribution by using TabSynth to enrich the sample
diversity of the existing natural scene table datasets to enable each type of table
to be adequately trained. Secondly, the existing datasets also have some tables
with extreme aspect ratios, distortions and skews, and the structure recogni-
tion of these tables is also very challenging with existing methods. Therefore,
our augmentation module can increase the number of these difficult samples in
a targeted manner, so that the structure recognition model can fully learn the
characteristics of the difficult samples and achieve better performance.
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Fig. 4. Example of some augmented tabular data.

3.5 Table structure recovery

After obtaining refined detection cells, we further designed an adaptive adja-
cency matching algorithm to reconstruct the table structure. First, the four
corner points of all cells in the table are arranged in the order of top-left, top-
right, bottom-right and bottom-left. Then, we propose a center line matching
strategy to perform row/column matching on these cells. For example, in row
matching we first use the center point of the right boundary to match the rights,
and adjust the coordinates of the right boundary used for matching according
to the size of the matched cells, and then pass them to the right side one by
one. Left row matching is similarly. Since cells in natural scenes are not usu-
ally aligned, and the idea of dealing with cross-row and cross-column cases is
to use small cells to match large cells, we use an adaptive boundary matching
strategy, which means that the current cell boundary used for matching will be
adjusted according to the matched cells. For paired cell boxes in right match-
ing, {(x1, y1), (x2, y2), (x3, y3), (x4, y4)} and {(x′

1, y
′
1), (x

′
2, y

′
2), (x

′
3, y

′
3), (x

′
4, y

′
4)},

if y2+y3

2 >= y′1 and y2+y3

2 <= y′4, the paired boxes are predicted to belong to
the same row. Then the coordinates of the right border used for matching are
adjusted by y2 = min(y2, y

′
2) and y3 = max(y3, y

′
3).

4 Experiments

In this section, we conducted experiments on two publicly available natural scene
table datasets to evaluate the performance of our proposed table structure recog-
nition method. To verify the effectiveness of the SKCN and the CF-NMS for the
table structure recognition task, we conducted ablation experiments. The fol-
lowing are the relevant details of the experiments.

4.1 Datasets and Evaluation Metrics

Datasets. We evaluate our method on two publicly available natural scene table
datasets, WTW and TAL OCR TABLE.

WTW [17] is a challenging and complex dataset for table structure recog-
nition in the wild with 10970 training images and 3611 testing images, a sum
of 14581 images. WTW divides the data into 7 cases by their own characteris-
tics and unique challenges: simple, inclined, extreme aspect ratio, occluded and
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blurred, overlaid, multi-color and gird, and curved. The dataset annotation con-
tains table ids, table coordinates, cell coordinates and row/column information
about cells. We cropped out table regions from the original images and used the
tilt angle of the table regions obtained by Hough Transform to rotation correction
for training and testing. We followed [17] using the cell adjacency relationship
(IoU = 0.6) [4] as the evaluation metric for this dataset. There are two versions
of the evaluation metric for cell adjacent relationship, ICDAR2013 [5] and IC-
DAR2019 [4]. Because some tabular datasets do not have textual annotations,
such as WTW, the previous version cannot be used in this case. We used the
more general version of ICDAR2019 without exact text-matching.

TAL OCR TABLE (TAL) [2] is a natural scene table dataset provided in
the PRCV2021 TAL table recognition competition, which focuses on wired tables
for educational scenarios. The dataset contains 18,000 images, 16,000 of which
have provided annotations for training and 2,000 for testing. The annotation of
the dataset includes the physical location of the cells and the HTML code of the
table. The physical location of the table is annotated by the four vertices of the
quadrilateral. We also cropped out the table regions from the original images for
training and testing.

Evaluation Metrics. There are two common evaluation metrics used in table
recognition tasks, TEDS and cell adjacent relationship.

Tree Edit Distance based Similarity (TEDS) [33] represents the logi-
cal structure of a table with a tree structure and examines the table structure
recognition results at the global tree-structure level. It uses the tree edit distance
to evaluate the accuracy of table structure recognition, with higher values be-
ing better. The TEDS results contain the extra results of text recognition, and
taking OCR errors into account may lead to unfair comparisons, since previous
work used different OCR models. Therefore, the TEDS metrics in this paper only
calculate the results for the logical structure of the table, without considering
the OCR recognition results.

Cell adjacent relationship [4] is used to evaluate the effectiveness of struc-
ture recognition by the accuracy of the physical location and the row/column
coordinates of each sampled adjacent cell pair. The adjacency relationship of
each cell is generated with its horizontal and vertical adjacent cells. Then preci-
sion, recall and F1 scores are calculated to compare the predicted relationships
with the ground truth.

4.2 Implementation details

All experiments were implemented in PyTorch with 4x2080Ti GPUs. In Table 1,
we compared the experimental results of different backbones. Since the difference
between them is not very significant, we regard ResNet-50 as the backbone of
network by default in the subsequent experiments. From the comparison of the
results of different cell detection strategies, the accuracy of the box segmentation
branch is higher than that of the key point regression branch, while the recall is
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Table 1. Results with different backbones and cell detection strategies on TAL dataset.
Here, * denotes using our online tabular data generation module TabSynth. SEG refers
to the box segmentation. KEY refers to the key point regression.

Training data Backbone Strategy Prec.(%) Rec. (%) F1.(%)

SEG 99.5 98.89 99.2
TAL ResNet-50 KEY 99.12 99.41 99.27

SKCN 99.54 99.4 99.47

SEG 99.6 98.89 99.24
TAL ResNet-101 KEY 99.18 99.43 99.31

SKCN 99.6 99.39 99.49

SEG 99.87 99.36 99.61
TAL* ResNet-50 KEY 99.78 99.84 99.81

SKCN 99.88 99.82 99.86

lower. We further find that the SKCN after the collaborative processing of these
two strategies can improve the prediction results synthetically. After adding
our TabSynth module for training, the detection performance is also further
improved, and the effect of this improvement is greater than replacing ResNet-
50 with ResNet-101. This module allows us to adequately explore the potential
of the model and achieve better results with a smaller cost for the model.

4.3 Comparisons with prior arts

We have compared our proposed method with several state-of-the-art methods
on the public datasets TAL and WTW. our method achieves a state-of-the-art
performance of 99.35% in terms of TEDS, as shown in Table 2. The experiments
for SPLERGE [28] and CascadeTabNet [20] were reproduced based on the au-
thors’ original design. Since they are designed for scanned tables, they could not
perform well in natural scenarios. To validate the effectiveness of our method
on boundary warping or bending tables in natural scenarios, we conducted ex-
periments on the WTW dataset. The results in Table 3 show that our method
outperforms existing methods in terms of F1 scores for cell adjacent relation-
ship, improving by 1.2% over Cycle-CenterNet, designed specifically for natural
scenes, and by 0.2% over TSRFormer [12], which is able to robustly identify the
structure of distorted tables with and without borders.

To better verify the robustness of our approach to complex situations, we
analyzed the F1 scores of different types of tables on WTW, as shown in Ta-
ble 3. Although our performance is slightly lower than Cycle-CenterNet on three
ordinary table subsets, our method shows significant improvements on complex
scenarios. In particular, for the subset ”overlaid”, we achieve a 14% improvement
with the mainly contribution of CF-NMS. The experiments on these subsets fully
demonstrate the superiority of our method and the ability to deal with complex
scenarios in table structure recognition.
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Table 2. Comparison of TEDS on TAL dataset

Method TEDS(%)

SPLERGE [28] 53.14
CascadeTabNet [20] 66.71
Table-Master [30] 94.30

SCAN [29] 98.45
TAL First Place [2] 99.20

Ours 99.35

Table 3. Comparison of cell adjacent relationship on WTW dataset

Method Curved Overlaid Simple
Occluded Extreme

Inclined
Multi color

All
and blurred aspect ratio and grid

F1.(%) Prec.(%) Rec.(%) F1.(%)

Cycle-CenterNet [17] 76.1 84.1 99.3 77.4 91.9 97.7 93.7 93.3 91.5 92.4
FLAG-Net [14] - - - - - - - 91.6 89.5 90.5
TSRFormer [12] - - - - - - - 93.7 93.2 93.4

Ours 83.4 98.1 98.9 82.6 96.3 97.2 92.7 94.2 93.1 93.6

Table 4. Ablation experiments on TAL dataset

Training data TabSynth SEG KEY CF-NMS TEDS(%)

TAL

✓ 93.2
✓ ✓ 97.7
✓ ✓ 98.5
✓ ✓ ✓ 98.7
✓ ✓ ✓ ✓ 99.4
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4.4 Ablation studies

We conducted a series of experiments on the TAL and WTW datasets to verify
the effectiveness of the proposed modules, and the experimental results are shown
in Table 4. For TAL dataset, after adding our tabular data generation module
TabSynth for training, the training data of the model can simulate complex
scenarios with random distortions, random light and multi-color background
to overcome the difficulty of the lack of natural scene dataset, thus making the
model more robust and achieving a 4.5% improvement. We thus use TabSynth to
assist in training by default. The results show that the TEDS metric of the KEY
branch is higher than that of the SEG branch, and the interactive results of the
two branches outperform the results of the two branches individually, providing
support for our method and demonstrating that our method is more suitable for
challenging table structure recognition tasks in natural scenes. What’s more, our
CF-NMS module, designed for the dense detection in table scenes, contributes a
0.7% improvement over the standard NMS, whose threshold is set to 0.5 in our
experiment.

Fig. 5. Qualitative results of our approach.
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Table 5. Ablation experiments on WTW dataset for cell detection(IOU=0.6)

Training data SEG KEY CF-NMS Prec.(%) Rec.(%) F1.(%)

WTW

✓ 87.0 91.67 89.27
✓ 89.44 94.01 91.67

✓ ✓ 93.4 93.59 93.5
✓ ✓ ✓ 96.87 93.84 95.28

For the WTW dataset, our approach also achieves considerable improvements
in F1 scores. Replacing the standard NMS with our CF-NMS can effectively han-
dle the challenges of dense cell detection scenarios and can yield improvements
in precision and recall, improving the F1 score by nearly 1.8%. This also shows
that the CF-NMS is designed to be very friendly for cell detection tasks. Fig. 5
gives a demonstration of the qualitative results of our method, and it can be seen
that for large dense table detection tasks, the collaboration of the SEG and KEY
branches outperforms both in terms of refinement results. Our proposed SKCN
and CF-NMS modules can even be applied to other dense target detection tasks
in the future.

5 Conclusion

In this paper, we consider that existing networks do not fully exploit the fea-
tures of tables and propose a segmentation and key point collaboration network
(SKCN) for table structure recognition in the wild. Unlike previous detection
methods, the two branches of our model can complement each other during
training process and the results of each branch can be fused to obtain a re-
fined result. To better cope with complex table scenarios, we further propose
CF-NMS and a tabular data generation module. Experimental results show that
our method achieves state-of-the-art performance on two public benchmarks,
including TAL and WTW.
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