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Abstract

Type 2 diabetes (T2D) is a heterogeneous illness caused by genetic and environmental factors. Previous genome-wide association studies
(GWAS) have identified many genetic variants associated with T2D and found evidence of differing genetic profiles by age-at-onset.
This study seeks to explore further the genetic and environmental drivers of T2D by analyzing subgroups on the basis of age-at-onset
of diabetes and body mass index (BMI). In the UK Biobank, 36 494 T2D cases were stratified into three subgroups, and GWAS was
performed for all T2D cases and for each subgroup relative to 421 021 controls. Altogether, 18 single nucleotide polymorphisms were
significantly associated with T2D genome-wide in one or more subgroups and also showed evidence of heterogeneity between the
subgroups (Cochrane’s Q P < 0.01), with two SNPs remaining significant after multiple testing (in CDKN2B and CYTIP). Combined risk
scores, on the basis of genetic profile, BMI and age, resulted in excellent diabetes prediction [area under the ROC curve (AUC) = 0.92]. A
modest improvement in prediction (AUC = 0.93) was seen when the contribution of genetic and environmental factors was evaluated
separately for each subgroup. Increasing sample sizes of genetic studies enables us to stratify disease cases into subgroups, which have
sufficient power to highlight areas of genetic heterogeneity. Despite some evidence that optimizing combined risk scores by subgroup
improves prediction, larger sample sizes are likely needed for prediction when using a stratification approach.

Introduction
Diabetes is a metabolic disease characterized by high blood glu-
cose resulting primarily from either insufficient insulin produc-
tion or insulin resistance. Incidence of diabetes is increasing due
to both lifestyle factors, such as increasing levels of obesity, and
longer life expectancy (1). Among minority ethnic communities
in the UK, the prevalence is up to four times higher than in White
populations (2). Diabetes represents a significant health burden
because of the increased rates in individuals with diabetes of
physical disability, including blindness and limb amputation, and
comorbidities, such as kidney disease, cardiovascular disease and
cancer (3).

Glucose homeostasis involves many distinct mechanisms, and
genetic susceptibility to diabetes arises from gene variants affect-
ing different gene networks. A complex pattern of genetic sus-
ceptibility and environmental exposures by individual leads to
significant heterogeneity in the pathogenesis of type 2 diabetes
(T2D) between individuals. Better understanding of these hetero-
geneous drivers may aid in predicting both susceptibility to dia-
betes in individuals, and its downstream complications and thus

enable targeted treatments depending on whether, for example,
the driver was related to insulin signalling, beta cell function or
a combination of both. Accounting clinically for heterogeneity in
diabetes is likely to lead to personalized treatment with corre-
spondingly more reliable control of blood sugar levels. Diabetic
complications are strongly related to the level of exposure to
uncontrolled blood sugar levels, highlighting the importance of
treatments that enable individuals to manage their blood sugar
levels well.

A clear genetic component to T2D has been identified through
population, family and twin-based studies, with heritability
estimates ranging from 26% genetic heritability to 50% MZ twin
concordance (4). Many genome-wide association studies (GWAS)
of T2D have been carried out, with a large recent meta-analysis
including 62 892 diabetic cases and 596 424 controls identifying
139 loci associated with T2D (5). However, these loci only explain
around 20% of T2D heritability (6). It is becoming increasingly
clear that T2D is a disease that has different pathogenic pathways.
Most GWAS do not consider the underlying heterogeneity between
cases, but studies that stratify cases have found evidence for
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Table 1. Participant characteristics of T2D cases and controls and characteristics of the three subgroups

Diabetes cases Controls Group 1 Group 2 Group 3

Number 38 481 421 021 20 588 6328 9344
BMI (mean, SD) 31.6 (5.7) 27.0 (4.5) 35.2 (4.7) 26.8 (2.7) 26.8 (2.3)
Age-at-onset (mean, SD) 58.6 (11.1) n/a 59.0 (10.0) 51.6 (7.2) 68.1 (5.7)
Age (at 1/1/21) 71.5 (7.0) 68.0 (8.1) 70.7 (7.1) 75.1 (4.4) 68.5 (7.4)
Sex

Female 39% 56% 41% 31% 40%
Male 61% 44% 59% 69% 60%

Smoking status
Never 42% 54% 42% 43% 41%
Ex-smoker 45% 35% 46% 41% 45%
Current 13% 10% 12% 16% 14%

different genetic profiles between subgroups of T2D cases.
Perry et al. (7) stratified T2D cases by body mass index (BMI)
in a meta-analysis of previous GWAS findings and found a
difference in the genetic profile of lean individuals compared
with obese. Stratification has also been explored by age-at-
onset (8), which showed evidence for different genetic profiles by
age. In addition, previous work clustering adult-onset diabetes
patients showed five clusters of patients from six variables,
each with distinct characteristics and risk of complications (5).
GWAS carried out on these five clusters identified three single
nucleotide polymorphisms (SNPs), which reached genome-wide
significance in at least one cluster (9). However, the small sample
size, with 9486 individuals divided over five clusters, suggests
that with greater power further heterogeneity is likely to be
detected.

In this study, we aimed to identify differences in the genetic
profiles of T2D in European-ancestry individuals, using larger
subgroups, which broadly captured genetic and environmental
drivers of diabetes. We derived three subgroups of T2D cases in
the UK Biobank, on the basis of BMI and age-at-onset of dia-
betes. In GWAS, we identified diabetes-associated SNPs in each
subgroup and tested for heterogeneous SNP-effects across the
groups. We explored the genetic correlation between subgroup-
derived genetic risk profiles and diabetes traits, including beta cell
function and insulin resistance. Finally, we investigated whether
this BMI- and age-subgroup approach improved T2D prediction
from genetics or with an integrated risk model across genetic and
environmental factors.

Results
In the UK Biobank, 36 494 European-ancestry individuals with T2D
were grouped according to BMI and age-at-onset of diabetes into
three subgroups. Group 1 consisted of individuals with BMI >30,
Group 2 with BMI <30 and age-at-onset <60 and Group 3 with
BMI <30 and age-at-onset > 60. The characteristics of study par-
ticipants and subgroups are summarized in Table 1. GWAS were
conducted for all individuals and by subgroup using the same
421 021 controls to ascertain whether there were differences in
the genetic profiles of these three subgroups.

GWAS overall and by subgroup
GWAS with T2D cases in all subgroups (36 494 cases and 421 021
controls) identified 267 lead SNPs as genome-wide significant
associations. An additional 10 SNPs showed genome-wide signif-
icant associations in subgroup-specific GWAS. Of the 277 lead
SNPs, 25 were novel with no previous evidence of association

with T2D, either at these SNPs or at SNPs in linkage disequi-
librium (LD) (Table 2), excluding SNPs from genes with known
associations with diabetes. Many of the lead SNPs had been found
previously to have suggestive associations with T2D, which did not
meet genome-wide significance. Thirteen of the novel SNPs had
previously been associated with metabolic measures, eight were
associated with other non-metabolic traits and the remaining
four were not previously associated with any traits. Two of the
novel SNPs not previously associated with metabolic traits were
annotated to genes, which have been associated with chronic
inflammatory diseases (PKIG and SBNO2). In addition, one further
SNP, rs9934018, was annotated to CLCN7 encoding a chloride
channel protein with previous work indicating a relationship
between chloride channels and beta cell health (10). Three novel
SNPs were found to be significant only in subgroup 1, defined by
BMI > 30 (1:168960001, rs17153738, rs76798800). Results for all 277
SNPs are given in Supplementary Material, Table S1. There was no
evidence of genomic inflation for either the combined or subgroup
analysis with λ1000∼1.

Given these indicators of heterogeneity, we further explored
differences in association across subgroups. Eighteen of the 277
lead SNPs significantly associated with diabetes also showed sig-
nificant heterogeneity between the subgroups using a threshold
of Cochrane’s Q with P < 0.01 (Fig. 2); two SNPs (rs72655474 in
CDKN2B, rs10166720 in CYTIP) remained significant after a Bon-
ferroni correction for multiple testing.

Genetic differences between groups
Manhattan plots illustrating the genetic associations of each
subgroup and all T2D cases are shown in Figure 1. The genetic
correlations between the groups were high, partly driven by the
common set of controls across all GWAS analyses. The correlation
between Groups 1 and 2 was the highest at r2 = 0.97 [standard error
(SE) 0.05]. The correlations between Group 3 and both Groups 1
and 2 were similar (Groups 1–3, r2 = 0.88, SE 0.05; Groups 2–3, r2

0.85, SE 0.05). SNP heritability for each subgroup was h2 = 0.02–0.03
(Supplementary Material, Table S2).

In genetic correlation analysis with 15 predefined phenotypes
related to T2D, 11 phenotypes evaluated had significant nonzero
genetic correlations with one or more subgroups (Supplementary
Material, Table S3, Fig. 2B). Groups 1 and 2 had significant corre-
lations with fasting insulin (Group 1: r2 = 0.49; Group 2: r2 = 0.31)
and insulin resistance (Group 1: r2 = 0.52; Group 2: r2 = 0.38), with
lower, nonsignificant correlations in Group 3. The only group
showing a significant correlation with beta cell function was
Group 3 (r2 = −0.31). Longevity only showed a genetic correlation
with Group 1 (r2 = −0.39).
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Table 2. Novel SNPs that were either significant in the analysis including all groups or significant in a subgroup analysis

ID Chrom Position Gene Effect allele Effect allele
freq

Beta se P-value Previous
associations

1:168960001 1 168960001 AT 0.978861 0.118722 0.030362 9.22E-05 Unrelated
rs17153738 7 106658309 T 0.654342 −0.03904 0.008896 1.14E-05 Unrelated
rs76798800 1 154994978 DCST2 G 0.733766 0.037472 0.009505 8.08E-05 BMI/WHR
rs371649660 7 74353884 GTF2I C 0.890097 0.095554 0.014636 6.63E-11 BMI/WHR
rs2821226 1 203517292 A 0.472495 0.048463 0.008491 1.15E-08 BMI/WHR
rs199679345 6 34234953 C 0.951861 −0.13681 0.019876 5.85E-12 Related
20:43246633 20 43246633 PKIG CACAA 0.952468 0.126113 0.02029 5.11E-10 None
rs201458438 12 123801250 SBNO1 C 0.320434 −0.06178 0.00955 9.84E-11 BMI/WHR
rs38169 7 15893300 C 0.244283 0.061601 0.009802 3.28E-10 Related
rs10823909 10 73989184 ANAPC16 T 0.911994 −0.08372 0.014924 2.03E-08 BMI/WHR
rs72752197 5 44627323 C 0.780923 0.057415 0.010266 2.23E-08 Unrelated
rs11057368 12 124309574 DNAH10 G 0.633135 0.048748 0.008813 3.18E-08 BMI/WHR
rs11187152 10 94500111 G 0.923309 0.098068 0.016017 9.21E-10 Unrelated
rs1916334 12 122484294 BCL7A G 0.804831 −0.06304 0.010707 3.93E-09 BMI/WHR
rs56218834 2 25520857 DNMT3A G 0.572974 0.062063 0.008558 4.12E-13 BMI/WHR
rs556132116 17 17931884 ATPAF2 C 0.689899 −0.05928 0.0108 4.04E-08 BMI/WHR
6:19809493 6 19809493 RP1-167F1.2 TA 0.689373 0.050394 0.009156 3.71E-08 None
10:114673015 10 114673015 GGT 0.856163 0.071575 0.012742 1.94E-08 None
rs142201902 3 185153047 MAP3K13 C 0.92574 −0.09285 0.016139 8.76E-09 BMI/WHR
rs34636896 10 114647936 G 0.183938 −0.10405 0.011741 7.84E-19 Unrelated
19:1149092 19 1149092 SBNO2 GC 0.638361 0.053763 0.009113 3.65E-09 Unrelated
rs876475 9 81545012 G 0.599162 −0.04786 0.008595 2.57E-08 Unrelated
rs59521405 2 112264989 T 0.752715 0.060811 0.009975 1.09E-09 BMI/WHR
rs78535155 13 49435399 A 0.985318 0.198544 0.036376 4.81E-08 None
rs9934018 16 1504934 CLCN7 T 0.593146 0.046978 0.00857 4.22E-08 Unrelated

P-values are shown for the all group analysis.

Genetic and environmental contributions
To determine whether the subgroups provided better prediction
of diabetes case status, polygenic scores from each subgroup
were generated and their predictive ability compared with the
full dataset. The polygenic risk scores (PRSs) calculated using
the GWAS summary statistics from the full dataset were more
predictive of diabetes than those from each subgroup (Fig. 3).

As diabetes risk is a combination of genetic and environmental
factors including ageing, a combined risk score (CRS) was opti-
mized for the training set using both an overall and subgroup
approach. This combined risk score included the genetic risk (GR)
score, a BMI score and a smoothed age score (Fig. 4). CRSs based
on the optimized parameters were calculated in the test set, and
diabetes was predicted using the R predict function and an area
under the ROC curve (AUC) determined.

The AUC prediction including all subgroup components for
the full dataset, which included 7300 test cases, was 0.92. Also
in the full dataset, a model utilizing only the PRS component
had an AUC of 0.87 compared with an AUC of 0.74 for a model
using only BMI and an AUC of 0.78 when both BMI and age
were included. Further analysis was then undertaken to assess
the impact of using subgroup-specific GR scores and subgroup
optimization of the contribution to the risk score of genetics, BMI
and Age (Table 3). We found an increase in prediction when using
the GR score calculated on the full group but with the weighting
of genetic and environmental factors by subgroup. For Group 1,
this increased the AUC from 0.92 to 0.93.

Discussion
In this study, we explored the different genetic profiles amongst
individuals with T2D on the basis of 457 515 European-ancestry

participants from the UK Biobank (36 494 diabetes cases and
421 021 controls). Individuals with T2D were grouped on the basis
of age-at-onset and BMI, where Group 1 comprised all individuals
with BMI ≥ 30 (Group 1), then Groups 2 and 3 had BMI < 30 with
an age-at-onset < 60 (Group 2) or age-at-onset over 60 (Group 3).
Our study builds on Noordam et al. (8), which found that the
genetic profile of individuals with diabetes varies by age, and
previous studies have found differences between lean and obese
individuals and have identified distinct groups in terms of patient
characteristics and risk of complications when clustering adult-
onset diabetes(5). Our study found novel SNPs associated with
T2D in the overall dataset, differing genetic profiles among the
subgroups and SNPs with high heterogeneity between subgroups.
The study further found that the contribution to overall risk
between genetic and environmental factors varied by subgroup.

This study analyzed a larger sample size than previous UK
Biobank Diabetes GWAS, by including related individuals using a
mixed model implemented in regenie. Case–control studies with
a small number of cases relative to the number of controls can
suffer from bias that regenie addresses using the Firth correction
method. This improved power enabled the identification of 25
novel SNPs. Four of the novel SNPs were annotated to genes with
no annotated SNPs previously associated with diabetes including
genes associated with chronic inflammatory diseases (PKIG and
SBNO2) and CLCN7 encoding a chloride channel protein. PKIG is a
protein kinase inhibitor, blocking protein kinases from phospho-
rylating proteins, which affects the level of activity and function.
Specifically, it inhibits cAMP-dependent protein kinase (PKA) and
the cAMP/PKA signalling pathway is important for regulating
glucose homeostasis in a wide range of processes including both
insulin and glucagon secretion and glucose uptake (11). SBNO2
regulates inflammatory processes (12) and has been found to be
differentially methylated with BMI (13). Finally, CLCN7 is part of
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Figure 1. Genome wide association study results by subgroup. Manhattan plots GWAS results from T2D cases and controls from (A) Group 1, (B) Group
2, (C) Group 3 and (D) all groups combined.

Figure 2. Genetic differences between subgroups. (A) Heterogeneity between SNPs showing SNPs with Cochrane’s Q P < 0.01. SNPs which are genome-
wide significant in a subgroup but not genome-wide significant overall marked with an asterisk. (B) Genetic correlations between subgroups and genetic
profiles of other phenotypes.

the family of chloride channel proteins. Beta cells contain chloride
channels, which respond to glucose concentration and, in turn,
lead to insulin secretion (14).

The three subgroups of T2D cases differed in size, which makes
comparisons of the number of significant SNPs detected difficult.
However, Group 3, despite being around half the size of Group

1, showed a greater predictive GR score (AUC = 0.83) than Group
1 (AUC = 0.74). This may indicate that the pathogenesis of dia-
betes in the obese group has a greater environmental component
than the nonobese group. A high degree of genetic correlation
was seen between groups but with statistically significant dif-
ferences for individual SNPs. This observation is in line with
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Table 3. Predicting diabetes using CRSs within groups and across groups

Training and test set Genetic risk population AUC (95% CI)

All groups All groups 0.921 (0.918–0.924)
Group 1 All groups 0.932 (0.929–0.934)
Group 1 Group 1 0.883 (0.880–0.882)
Group 2 All groups 0.915 (0.912–0.918)
Group 2 Group 2 0.825 (0.820–0.829)
Group 3 All groups 0.916 (0.913–0.919)
Group 3 Group 3 0.894 (0.890–0.898)

Figure 3. ROC curves for PRSs by subgroup. All group analysis AUC = 0.87,
Group 1 AUC = 0.74, Group 2 AUC = 0.78, Group 3 AUC = 0.83.

the results obtained by stratifying by age (8), which found dif-
ferent genetic profiles between older age-at-onset and younger
age-at-onset. TCF7L2 that contained SNPs more strongly associ-
ated with different age of diagnosis in the previous study also
contained SNPs heterogeneous between the three groups in the
current study. Aly et al. (9) also identified a variant in TCF7L2
(rs7903146) as being significantly associated with only three of
their five clusters, finding it not to be associated with severe
insulin-resistant patients (characterized by late onset and obesity)
or severe autoimmune diabetes. In this study, rs4917644 was not
even nominally significantly associated with T2D in Group 3, but
it was with Groups 1 and 2. In addition, 17 further SNPs had
significant heterogeneity between the groups with four of these
significant only in a subgroup and not genome-wide significant
overall. Two SNPs met a multiple testing threshold for significance
for heterogeneity. An SNP in CDKN2B, a gene that previous work
has suggested plays a role in beta cell physiology and diabetes risk
(15), and an SNP in CYTIP, a gene that has been found in animal
models to have significantly different expression in mice deficient
in insulin receptor substrate-2 (16). These links to physiological
processes suggest that the underlying genetic heterogeneity may
be reflected in the variation in disease pathogenesis by individual.

There were differences between the groups in their genetic
correlation with other traits. Only Groups 1 and 2 had significant
genetic correlations with insulin resistance and fasting insulin
with the older age-at-onset group showing no significant corre-
lation. This group instead showed a significant negative genetic
correlation with beta cell function, which neither Group 1 or 2 did.
This suggests that older age-at-onset diabetes for those who are
not obese has a different pathogenesis from those whose diabetes
develops at a younger age or who are obese. Previous work by
Udler et al. (17) clustered individuals on the basis of previously
identified GWAS variants and diabetic traits, identifying five clus-
ters (Beta cell, Proinsulin, Obesity, Lipodystrophy and Liver). In
the current study, we found differences between the subgroups in

loci identified by Udler et al. in their Proinsulin and Lipodystrophy
clusters; there were also differences with ARAP, CCND2, HNF4A,
PPARG and FAF1 only significant in Group 1 and ARAP, HNF4A and
CMP only significant in Group 2.

T2D is a complex disease driven by both genetic and environ-
mental factors. The study sought to assess the contribution by
subgroup of genetic and environmental factors to the overall risk
by computing CRSs for a training dataset and assessing their pre-
dictive ability in a test dataset. Genetic risk was determined using
polygenetic risk scores, and the study found that the most predic-
tive GR scores for each subgroup were those that were calculated
on all T2D cases, rather than by subgroup. PRSs were calculated
using all nominally significant SNPs, but the power may be too low
within subgroups given the modest sample sizes. The CRS using
all subgroups had an excellent level of prediction with an AUC
of 0.92, but this was improved for Group 1 by using only Group 1
to optimize the balance between genetic and environmental risk
factors. Group 1 consists of obese individuals, and the GR score
prediction for this group is not strong (AUC 0.74), suggesting a
greater environmental component to the pathogenesis. However,
by utilizing the power of the significantly larger overall group, the
improvement in GR score prediction combined with the weighting
for BMI leads to an improvement in the prediction for this group.

Although the study had a relatively large discovery sample, the
clustering process meant that each subgroup contained around
10 000 individuals with diabetes. This results in a lower statis-
tical power for analyses within subgroups. The process used to
group individuals also resulted in different sized groups leading
to differing statistical power, making it harder to compare the
resulting genetic profiles. Because of the low numbers of diverse
ancestry participants in the UK Biobank, analyses were restricted
to individuals of European-ancestry. Diabetes incidence varies
substantially by ethnicity both in terms of the level and age of
incidence, and results may therefore not be generalizable to other
ancestries.

In summary, by stratifying T2D cases by age-at-onset and BMI,
we found subgroup-specific genetic variation and furthermore
differing contributions to disease pathogenesis from genetic and
environmental risk by subgroup. However, larger sample sizes
than those currently available are likely needed to optimize pre-
diction of T2D in a stratification approach.

Materials and Methods
Study participants
This study included participants from the UK Biobank, which
includes over 500 000 individuals aged 40–69 at the time of recruit-
ment. Participants were recruited from across the UK between
2006 and 2010 (18), and genotype data are available for all individ-
uals (19). Data up until 1 January 2021 were included in the study.
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Figure 4. CRS components. (A) Genetic risk at each percentile category for polygenic risk calculated for the combined group. (B) Diabetes risk due to BMI
calculated at each percentile category. (C) Diabetes risk due to age calculated at each percentile category.

Ethical approval was provided by the Research Ethics Committee
(REC reference 20/NW/0382).

Data on participants’ diabetes status were based primarily
on hospital admission data but also included primary care data
and self-reported status. A combination of data fields was used
to determine diabetes status including self-reported ‘Diabetes
diagnosed by a doctor’ (data field #2443) and the existence of
the first reported date in data fields #130706 (insulin-dependent
diabetes mellitus), #130708 (non-insulin-dependent diabetes
mellitus), #130710 (malnutrition-related diabetes mellitus) and
#130712 (other specified diabetes mellitus). For age-at-onset, self-
reported responses to ‘Age diabetes diagnosed’ (data field #2976)
were used along with the first occurrence of diabetes reporting
in data fields #130706, #130708, #130710 and #130710. Individuals
with missing BMI were not included in the study. Two further
exclusions were made to remove type 1 diabetes (T1D) cases
and individuals of non-European ancestry. The exclusions made
for T1D were as follows: all cases with an age-at-onset of 18
or younger in recognition that cases arising at these ages are
predominantly T1D (20) and those cases where the individual
progressed to insulin treatment within 1 year identified in data
field #2986. Previous work by Thomas et al. (21) indicates that 90%
over T1D cases can be identified by this indicator. Individuals with
no records of diabetes were used as controls. The same group
of controls was used for all subgroup analyses for consistency
to ensure results arising were due only to differences in cases.
Individuals with non-European ancestry were identified through
4-means clustering of the first two genetic principal components
(PCs) as supplied by the UK Biobank and excluded from analysis.
Of the remaining individuals, 96% identified as white in data field
#21000.

Subgroups
Individuals were put into groups on the basis of BMI and age-
at-onset. Given the number of overweight T2D cases, the BMI
threshold for grouping was chosen as obesity (BMI > 30 kg/m2).
Group 1 included all individuals who had a BMI ≥ 30. To establish
the differences between onset as age-related disease and onset
at earlier ages, the age-at-onset was set to be 60. Groups 2 and
3 consisted of the remaining individuals divided by age-at-onset
with Group 2 individuals having an age-at-onset < 60 and Group
3 with an age-at-onset ≥ 60.

Genetic data
UK Biobank profiled the genotypes using Affymetrix UK BiLEVE
Axiom and Affymetrix UK Biobank Axiom arrays (https://biobank.

ndph.ox.ac.uk/showcase/label.cgi?id=263). UK Biobank also car-
ried out genotype imputation and preliminary QC on the resulting
genetic data (see Supplementary Note). The first 20 PCs were
recalculated for the individuals to be included in the genome-
wide association study (following exclusions for ancestry, juvenile
diabetes and QC) using FlashPCA v2.0 (22).

Genome-wide association analyses
GWAS was conducted using logistic regression models using
regenie, a C++ program for whole-genome regression modelling
of large GWAS (23). Covariates included the first 20 PCs to account
for population structure, sex and batch. In addition, further
covariates were included to account for risk factors of diabetes
including age, BMI and smoking. Analysis was restricted to SNPs
on the autosomes, with a minimum allele frequency (MAF) > 1%
and an imputation information score > 0.6. FUMA, a platform to
annotate, prioritize, visualize and interpret GWAS results (24),
was used to identify independent lead SNPs on the basis of a P-
value threshold of 5 × 10−8, r2 < 0.6 and LD < 0.1. LDlink software
program (25) was used to check for novel sites that were not in
linkage disequilibirum (LD) with sites previously associated with
diabetes or measures of blood glucose. For SNPs not in LDlink,
a manual check of the GWAS catalogue (26) was carried out for
all sites with LD < 0.2 within a 0.5 MB window. Lead SNPs were
determined to be significant only in one subgroup if the P-values
for that SNP in the GWAS of the other subgroups and combined
analysis were all greater than 5 × 10−8.

Analyzing genetic differences in the subgroups
To assess the heterogeneity of each SNP across the GWAS
results for the subgroups, we used a fixed effects meta-analysis
implemented through GWAMA (Genome-Wide Association Meta-
Analysis) software (27) to calculate heterogeneity statistics. Het-
erogeneity was determined on the basis of Cochrane’s Q P-value
at a threshold of 1% with I2 > 50% and further with adjustment
for multiple testing at a Bonferroni threshold 1.9 × 10−4. Genetic
correlations and SNP heritability were calculated using the LDSC
software (28), on the basis of LD score regression. This is in
line with previously reported subgroup GWAS (8), and LDSC has
been reported to be unbiased with sample overlap (28). Genetic
correlations between the subgroups were calculated to determine
the extent to which genetic profiles for each group overlapped.
Correlations were also calculated between GWAS results from
each subgroup and 15 other phenotypes (Supplementary Material,
Table S4), including five related to diabetes (2-h glucose, fasting
insulin, HbA1c, insulin resistance and beta cell function), four
metabolic phenotypes (waist–hip ratio adjusted for BMI, Visceral
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Fat, Body Fat percentage), a longevity measure (longest 10%
survival), four psychiatric phenotypes (anxiety, depression,
Alzheimer’s disease, autism) and two inflammatory phenotypes
(inflammatory bowel disease and rheumatoid arthritis). GWAS
summary statistics for these phenotypes were accessed from LD
hub (29). A 95% confidence interval was constructed to test the
significance between the correlations observed.

PRSs
PRSs for the combined groups and each individual diabetes sub-
group were calculated on the basis of GWAS results after first
rerunning the GWAS using a split training/test (80%/20%) set
approach. GWAS were carried out as above in the training set.
PRSs were calculated overall and for each diabetes subgroup using
Polygenic Risk Score software, PRSice v2 (30,31). This software uti-
lized the GWAS summary statistics from the training set analysis,
including clumping (r2 < 0.1 and 500 kb window) and a P-value
threshold of 0.05 [on the basis of a previous study in UK Biobank
(32)].

CRSs
CRSs were calculated using methodology described in Moldovan
et al. (33), on the basis of the three risk factors of PRS, BMI
and age. Each of these risk factors was transformed to account
for the nonlinear relationship between diabetes risk across risk
factor percentiles. After transformation of each risk factor, each
individual then had an assigned GR score, a BMI risk score (BR) and
an age risk score (AR). CRSs were then calculated as in the formula
below with regression model parameters estimated as described
in Moldovan et al. (33).

CRS = α GR + β BR + γ AR

The ability of the CRSs to predict diabetes was then assessed
in the test set using the AUC. The AUC was calculated using the
pROC package in R (34). The CRSs were calculated twice for each
subgroup. Once using GR scores on the basis of the subgroup PRS
with optimization by subgroup for α, β and γ and once using
the GR scores on the basis of the overall data set also with
optimization by subgroup. The AUC was determined using PRS
alone, BMI alone and BMI and age to assess the impact of including
genetics in the score.

Supplementary Material
Supplementary Material is available at HMG online.
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