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Abstract— Pipe leakage reduction is one of the top 

priorities of water companies, with many investing in 

greater sensor coverage to improve the forecasting of flow 

and detection of leaks. The majority of research on this topic 

is focused on leakage detection through the analysis of 

sensor data from district metered areas (DMAs), with the 

aim of identifying bursts after occurrence. To contribute 

towards development of ‘self-healing’ water infrastructural 

systems, this study applies the concepts of machine-

learning and deep-learning to the forecasting of water flow 

in the DMAs at various temporal scales, aiding in the health 

monitoring of water distribution systems.  The study uses 

one-year flow dataset of ~2,500 DMAs from Yorkshire. The 

data contains flow time-series recorded at every 15-minute 

interval. Firstly, the isolation forest algorithm is used to 

identify anomalies in the dataset which are verified to 

correspond to entries in water mains repair log, indicating 

the occurrence of bursts. Moving beyond leakage detection, 

this research proposes a hybrid deep-learning-based 

framework models for flow forecasting at DMA level. A 

recurrent neural network and Kalman filter provide a mean 

flow forecast and real-time residual forecast respectively. In 

addition to providing day-to-day expected flow demands, 

this framework aims to issue sufficient early warning for 

any upcoming anomalous flow or possible leakages. For a 

given forecast period, the framework can be used to 

compute the probability of flow exceeding a pre-defined 

threshold, thereby informing decision-making for any 

necessary interventions. This information can underpin 

targeted repair strategies to minimise leakage and 

associated disruption by addressing both detected and 

predicted burst events.  
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I. INTRODUCTION 

ITH climate change and rising population levels 

putting a growing pressure on water supplies, 
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efficient distribution of this increasingly scarce resource is 

crucial to meeting the needs of consumers within 

environmental constraints. For 2018-2019, in England and 

Wales, an average of 3,170 million litres (21% of the water 

entering the public supply) was lost to daily leakage. This 

equates to wastage of 53 litres per person per day [1]. A 

priority for Ofwat, the economic regulator of the water 

industry in England and Wales, is to reduce leakage across 

water distribution networks, and recent droughts have 

driven public interest in how water companies are 

addressing this crucial issue.  

In the UK, it is standard practice for water utility 

companies to divide their water distribution network into 

district meter areas (DMAs), with leakage management 

typically performed at the DMA level [2]. DMAs are 

groups of up to 2000 households which are isolated section 

of the water network. Flow is recorded by sensors at the 

inlet and outlet to each DMA.  

Leakage management can be divided into leakage 

prediction and leakage detection, with the latter being the 

subject of a significant body of research [3] [4] [5] [6] [7]. 

Leakage detection models receive data from DMA sensors 

and try to identify leaks based on changes in the flow 

profile. The most common methods for identifying leaks 

utilize the concept of minimum night flows [8]. As night-

time water usage is less variable than day-time usage, the 

average nightly minimum over a specified window can be 

used as a baseline for comparison with new flow data, and 

significant variation from this baseline can indicate a leak 

[9] [10]. However, techniques using minimum night flow 

have to deal with several uncertainties [8] and rely upon 

having sufficient knowledge to estimate several 

parameters including active night users, leakage exponent 

(which varies with system pressure), and the hour-to-day 

factor [11]. In reality, while water companies often employ 

trained operators to try to identify leakage from minimum 
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night flow, a significant proportion of leaks are actually 

reported to water companies by their customers [10]. 

More recent work conducted in the leakage 

management and detection domain has explored the 

potential of using machine learning and deep learning 

tools. These include artificial neural networks (ANNs) [12] 

[5] [7], support vector machines [13] [14] [15], Kalman 

filters (KFs) [16] [17], and wavelet analysis [7]. With 

sufficient quality and quantity of training data, these 

methods have demonstrated strong performance in 

leakage identification [12].  

Unlike leakage detection, which is concerned with the 

identification of leakage events from flow data after they 

have occurred, the domain of leakage 

prediction/forecasting aims to anticipate anomalous flow 

before it occurs, enabling early warning of potential 

leakage within a given forecasting period. Although 

leakage detection has observed several dedicated studies, 

leakage prediction/forecasting has received significantly 

less attention from the research community due to its 

complexity. Leakage forecasting at a regional level has 

been conducted over various time periods ranging from 

weeks to a year [18], while studies on leakage forecasting 

at the individual pipe level have analysed pipe properties, 

such as diameter, age, and material, as well as other 

factors, including soil type, ground movement, and traffic 

loading, to assess their impact on leakage likelihood [19] 

[20] [21]. While not directly applied to leakage, it has been 

suggested that machine learning techniques, and ANNs in 

particular, can outperform baseline methods in the 

forecasting of flow data at the DMA level [22]. 

Existing work in the area of leakage forecasting is found 

to be lacking at the DMA level, and the application of 

sophisticated data-driven machine-learning and deep-

learning techniques to this task is scarce, with no instances 

of advanced time series and sequence modelling. Hence, 

this study presents a hybrid deep learning framework for 

leakage forecasting at the DMA level, based on long-short-

term memory (LSTM) recurrent neural networks (RNNs) 

and KF. The framework is trained and tested using an 

extensive database of one year of 15-minute interval flow 

data for over 2,500 DMAs. Due to the data-driven nature 

of the proposed framework, it can be efficiently trained for 

other DMAs using available flow data and thus can be 

effectively utilized for proper water resource 

management. 

II. DATASET 

This study uses a dataset of over 2,500 DMAs provided 

by Yorkshire Water, the utility company responsible for 

water supply and distribution in North Yorkshire, UK. For 

each DMA, net flow data (in litres/second) is available at 

15-minute intervals for a year, from April 2016 to April 

2017. Yorkshire Water assigns each flow data to point to a 

validity code; ‘V’ for valid, ‘I’ for invalid, or ‘M’ for 

missing, with the vast majority of flow data assigned a ‘V’. 

Fig. 1. shows the flow data for one exemplar DMA. The 

provided dataset also contains the repair log of the DMAs 

with their repair dates.  Over 5000 repairs are reported in 

the repair log, covering over 1600 unique DMAs. Repairs 

are typically prompted either by customer leakage reports 

or identification of unusual flow data by Yorkshire Water 

operators, although the repair log does not differentiate 

between these sources of repair information. While leaks 

that are customer-reported and visible at surface level are 

often tackled within a few hours or days, leaks that are not 

visible may take several weeks to be repaired. The 

potential for delay between leakage and repair means that 

a comparison of flow and repair logs alone is insufficient 

for verifying leakage. Instead, a method is needed for the 

identification of flow data that likely corresponds to 

leakage, the timing of which can then be compared to 

recorded repairs. Repair data, in the absence of 

widespread metering, is the best alternative for the 

verification of predicting and identifying leakage events. 

 

Fig. 1.   Flow data for DMA 586 

III. METHODOLOGY 

The general procedure for training the proposed LSTM-

RNN and KF-based framework is illustrated in Fig.2. First, 

since the sensor data obtained from the DMAs contain 

missing and invalid flow data points, the flow data is 

statistically completed using Kalman smoothing. For the 

completed flow data, the points corresponding to the pipe 

leakage are identified using the anomaly detection 

algorithm of isolation forests. As the repair logs do not 

exactly correspond to the leakage timestamps, it is 

necessary to use external algorithms to label the most 

probable leakage points statistically. After the outliers, i.e., 

the leakage points (denoted as LKG) are identified, for the 

~2,500 DMAs, time-series examples of LKG and non-

leakage data (represented as NLKG) are appropriately 

selected. This leads to a total of ~10,000 flow data series for 

training the proposed framework. As the RNN model 

requires a consist number of inputs, LKG groups shorter 

than the maximum are subject to zero-padding. Next, a 

time-series decomposition is conducted for each of the 

10,000 selected flow data series to obtain its trend and 

seasonal components. These are then used as inputs to 

train an LSTM-RNN [23], which forecasts the mean flow 
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data. The forecasted mean flow data is then used to 

compute the residuals between the predictions and 

recorded values of the flow. The residuals are then further 

used to train a boosting KF that can use residuals in real-

time to forecast the future residuals and further improve 

the predictions. Finally, the forecasted residuals are added 

to the mean forecast from LSTM-RNN to obtain the final 

predictions. Hence, the two principal components of the 

trained framework include 1) LSTM-RNN, which is 

trained to forecast the expected flow for t+n points using t-

m recorded flow, and 2) KF, which provides real-time 

estimates of residuals and hence shapes the expected 

predictions of LSTM-RNN closer towards to true flow. 

IV. RESULTS 

1) Kalman smoothing for missing/invalid data 

The proposed framework for leakage identification and 

prediction requires complete flow data. As raw sensor data 

can be faulty, erroneous sections of flow data are first 

corrected. Provided the DMA contains sufficient valid 

data, sections of missing or invalid flow are replaced by 

the process of Kalman smoothing. This method is found to 

replace incomplete data with realistic values, with 

fluctuation from the overall flow curve no more than is 

seen is the observed adjacent data. Thus, Kalman 

smoothing allows complete flow data to be provided to the 

leakage identification model and ensures that the anomaly 

detection stage of the framework is targeted leakage rather 

than erroneous data. 

2) Leakage detection and labelling 

Outliers are detected in the completed flow data for all 

DMAs using the isolation forest algorithm. Fig.3. presents 

the outliers detected in flow data of an exemplar DMA. 

The dashed lines in Fig.3. show the dates on which, 

according to the repair log, the DMA was repaired. The 

algorithm performs well in identifying both extreme 

outliers and extended periods of unusual flow rates. The 

detected outliers, particularly extreme outliers, correlate 

well with repair dates. Though a small number of repair 

dates are observed to be away from the outlier data, this 

can be due to the repairs being conducted for reasons other 

than pipe leakage, which are not of interest in this study. 

The algorithm can also flag some other unusual flow data 

points that do not appear to be leakages. The literature 

suggests that anomalous flow shorter than a few hours in 

length is likely not leakage but sensor error, firefighting, or 

an industrial event [10]. It is therefore important to identify 

outlier groups such that only extended periods of 

anomalous flow are flagged as possible leakage, while 

isolated individual outliers are discarded. For this reason, 

LKG groupings must be a minimum of 20 outliers in 

length.  

The assumption that outliers in flow data can act as a 

proxy for real leakage is further validated by comparing 

the time at which outliers occur and the dates of logged 

repairs. These times are not expected to directly align, and 

a degree of fluctuation between the leakage and repair 

times is expected, as leakage response times can vary 

depending on factors such as accessibility, size, and 

visibility. While many operators aim to repair leaks within 

 
Fig. 2.   Procedure for training the proposed LSTM-RNN and KF-based framework 

 

Kalman 

Smoothing

Missing/Invalid 

data 

replacement

Isolation 

Forest

Detection of 

outliers/leakage

Non-Leakage 

Data (NLKG)

Leakage 

Data 

(LKG)

Trend Component

Flow Forecast

F
lo

w
F

lo
w

Time

Time

Seasonal ComponentF
lo

w

Time

Time-Series 

Decomposition

Kalman Filter 

Forecasting

Residual 

Calculation
Residual 

Forecast

+

LSTM-RNN

R
es

id
u

al
 

C
al

cu
la

ti
o

n



MCMILLAN et al.              PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLVING CITIES (2022) 43-50 

 

 

46 

a week, this typically refers only to customer-reported 

leakage. Discussions with industry experts revealed that 

some leaks can go unrepaired for several weeks, 

depending on repair priorities.  

 

 

 
Fig. 3.   Outlier identification and repair dates for DMA 586 

For DMA 586, which has undergone 22 repairs during 

the year, it is noted that outliers largely correspond well 

with recorded repairs, with a significant number of repairs 

occurring within 24 hours of an outlier. These repairs are 

likely in response to a customer report of visible leakage. 

Almost all recorded repairs to DMA 586 took place less 

than 16 days after a period of outlier flow, with many 

taking place less than ten days after an outlier. This falls 

well within the repair timescale that would be expected for 

less urgent, non-visible leakage or leakage on land 

requiring permissions for access. These findings confirm 

that repair data is the best proxy for confirmed leakage 

events. 

Accurate identification of leakage can allow water 

companies to react effectively to minimize water losses 

and ensure supply continuation. In this study, the data 

from identified leakage is also used to train leakage 

prediction models, which can facilitate the anticipation of 

leakage and prioritization of preventative maintenance.  

3) Leakage prediction  

A. Data preparation 

The outlier data provided by the isolation forest 

algorithm is further processed to ensure it is in a suitable 

format for training the forecasting framework. Since this 

study's goal is to forecast both leakage and regular flow 

data, it is necessary to include both examples leakage 

groups (denoted as LKG) and non-leakage groups 

(denoted as NLKG). While the LKG data is obtained via 

the leakage identification stage of the framework, the 

NLKG data is randomly sampled from the ~2,300 DMAs 

in the provided dataset. The size of the LKG and NLKG 

samples can cause considerable bias in tuning the models, 

and so after experimentation, a sample size with twice the 

number of NLKG samples as LKG samples was found to 

give the best RNN performance.  

First, as outlier groupings separated by only a short 

period of non-outlier flow are likely to represent the same 

leakage event, outliers within six hours of each other are 

placed within the same LKG grouping and the interim 

data points are also labelled as outliers. As literature 

suggests that short periods of anomalous flow may be due 

to causes other than leakage [10], the length of each LKG 

grouping is computed and those with fewer than 20 data 

points are ignored for this study. The maximum length of 

LKG data is observed to be 335 points. These LKG 

groupings will be represented by the outputs of the 

forecasting stage of the framework. As input to the 

framework, preceding flow data is required. To have 

sufficient data for training, this input data needs to be 

equal to or greater than the LKG data in length. Any LKG 

groupings where the input data does not meet this 

requirement are discarded. The maximum length of input 

data is set to 672 data points, representing a week’s flow 

data, as this is deemed sufficiently long to give a 

representative sample of flow before an outlier.  

Since the RNNs require a set number of input and 

output data points, all inputs are required to match the 

maximum length of input, which in this case is 672 data 

points. For the same reason, all outputs must be 335 in 

length. For LKG groupings, this consistency is obtained by 

zero-padding, where zeros are added before the flow data 

for inputs and after the flow data for outputs (i.e., LKG 

data). These maximums are also used for the selection of 

all NLKG data.  

Finally, variance checks, using the coefficient of 

variation (COV), are performed for both LKG and NLKG 

groupings, to ensure that the selected information is error-

free and input data is representative of standard flow. The 

characteristics of LKG and NLKG groupings are presented 

in Table I. This dataset is then used to train and test a 

hybrid forecasting model for leakage prediction. 
TABLE I 

CHARACTERISTICS OF LKG AND NLKG GROUPINGS 

 

LKG groupings NLKG groupings 

Min 20 datapoints, max 

335 datapoints 

335 datapoints 

Preceding data length >= 

LKG length, up to a max of 

672 datapoints (one week) 

Preceding data length = 

672 datapoints (one week) 

0.1 =< COV =< 10 for input 

data 

0.1 =< COV =< 10 for input 

data and NLKG data 

3,409 groupings 6,818 groupings 

B. Mean flow forecasting 

Additive time series decomposition is used to break 

down the input data of both LKG and NLKG groupings 

into a trend, seasonal components, and the remaining 

noise [24]. The trend component shows the overall pattern 

of change in flow across a week, while the seasonal 
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component captures the daily flow pattern. A typical 

seasonal pattern shows twice-daily peaks and a significant 

drop overnight, and reflects typical water consumption 

over 24 hours. Such a pattern is seen in the seasonal 

component of most input data. The trend component is 

more variable across LKG/NLKG input groupings, as this 

is affected by factors such as which (and when) days of the 

week appear in the data and if and how leakage is reflected 

in the input data. In order to ensure all relevant patterns 

are considered, these two components are separately input 

into the RNN. 

The ~10,000 input and LKG/NLKG data groupings are 

randomly split into train (80%) and test (20%) sets, while 

making sure train and test sets consists of same ratio of 

LKG and NLKG data. The train set is used to develop the 

LSTM-RNN with several configurations and 

hyperparameters. The training is conducted with 10% 

cross-validation.  

The index of agreement (IA) [25], [26], which has been 

widely applied to the assessment of model-produced 

estimates of time-series data [27] [28] [29], is used as the 

loss function for training and testing the LSTM-RNN, and 

to compare the accuracy of forecasts before and after the 

addition of residual forecasting. The calculation of IA is 

described in Equation 1, where 𝑂 is the recorded output 

data and 𝑃  is the RNN predicted data, and 𝑛  and 𝑖 

represent the total number of forecasted timesteps and the 

timestep of interest, respectively.  

 𝐼𝐴 = 1 −
∑𝑖=1

𝑛 (𝑂𝑖 − 𝑃𝑖)2

∑𝑖=1
𝑛 (∣ 𝑃𝑖 − Ō ∣  + ∣ 𝑂𝑖 − Ō ∣)2

 (1) 

The best performing final LSTM-RNN architecture in 

terms of IA is shown in Fig.4. In particular, the LSTM-RNN 

network is trained using stochastic gradient descent [30] 

with Adam optimizer [31] and IA [25], [26] as the loss 

function. Since the values of IA range from 0 to 1, with 1 

being the best match and 0 as the worst match, the loss 

function is used negatively to allow the gradient descent 

rather than the ascent.  

The trained RNN uses flow data's trend and seasonal 

components as inputs and predicts the flow for future 335-

time-steps (i.e., LKG/NLKG data for 335 15-minute 

intervals). IA values are calculated for each grouping to 

assess how well these predictions align with the observed 

LKG/NLKG data. The left part of Fig.5. presents the 

distribution of IA values for all the groupings. Overall, this 

IA profile indicates good performance by the RNN, with 

predicted values and observed flow in good agreement. 

The vast majority of groupings have an IA value over 0.5, 

with the first peak between 0.5 and 0.6 and a second, more 

prominent peak between 0.8 and 0.9. The reason for these 

peaks may be differences in the ‘type’ of grouping, so 

factors that vary between groupings are further 

investigated. Even at the 25th percentile, the IA value 

exceeds 0.5, with IA rising to over 0.7 at the 50th percentile. 

Forecast accuracy, and thus IA values, can be expected to 

improve with the addition of residual forecasting.  

Due to different magnitudes of outliers, LKG groupings 

vary significantly in length and volatility (i.e., the variance 

of LKG flow compared to the conflict of preceding input 

flow). Hence, it is necessary to ensure that the RNN 

predictions are not biased towards LKG groupings with 

little volatility compared to the significant volatility 

groupings. This is done by computing the Z values for the 

peak flow value in each output grouping (i.e., LKG/NLKG 

groupings) using Equation 2. In this equation, 𝑝𝑒𝑎𝑘𝑜𝑢𝑡 and 

𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝑛 are the largest value in the LKG/NLKG section 

of flow and the median value in the input flow, 

respectively, while 𝜎𝑖𝑛  is the standard deviation of the 

input data. The Z value thus compares the size of the 

output peak to the size and variability of the preceding 

input data. Computing the Z values and comparing them 

against corresponding IA values allows the detection of 

any unintended bias in the model. 

 𝑍 =
∣ (𝑝𝑒𝑎𝑘𝑜𝑢𝑡 −  𝑚𝑒𝑑𝑖𝑎𝑛𝑖𝑛) ∣

𝜎𝑖𝑛
2  (2) 

 

 
Fig. 4. Architecture of the trained LSTM-RNN 
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Furthermore, since the LKG/NLKG part of the 

groupings vary in length and are zero-padded (as 

described in previous sections), it is essential to check any 

potential bias in LSTM-RNN predictions concerning the 

non-zero padded length of the output data. The right side 

of Fig.5. shows the IA values for all the 10,000 examples 

compared to the output data's Z values and non-zero 

padded length.  The colour of each dot represents the Z 

value of each grouping. As the most extended LKG group 

was 335 data points in length, many groupings possess this 

length without any zero padding (particularly the NLKG 

data). While higher values of IA are observed across 

different LKG group lengths, the concentration of higher Z 

values in the top left of the plot suggests that the proposed 

model performs particularly well on leakages with large 

flow magnitudes and shorter LKG lengths. This may 

indicate that the preceding flow data for such LKG groups 

follow a more identifiable pattern captured by the LSTM-

RNN. Conversely, the lower IA scores seen in LKG groups 

with common Z values suggest that the LSTM-RNN 

struggles to forecast accurately if the peak values are small 

and the variability in the preceding flow is high.  

C. Residual forecasting 

As the LSTM-RNN model is trained to estimate the 

mean flow using the known trend and stationary 

components of the preceding flow, the weights of the 

LSTM-RNN network are pretrained. They are expected to 

perform the flow forecasting with known causality. 

However, to improve the proposed framework's real-time 

performance, the residuals obtained in the real time are 

further used to develop state-space model using KF and 

appropriately forecast the future residuals. Using the pre-

trained LSTM-RNN, the flow forecast is obtained from 

current time t to n time-steps ahead to t+n time, and then 

as the true values of flow are observed in real-time for 

time-steps t to t+k, where k<n, KF is used to model the 

residuals by finding the difference between the LSTM-

RNN forecast and the recorded flow. Due to the recursive 

nature of KF estimates, this process is expected to provide 

the framework with real-time deviations of the data and 

improve the accuracy of the hybrid forecasting system.  

As the observed values are considered to be the sum of 

the underlying state plus noise, KF is performed on known 

residuals (time-steps ≤ t) before forecasting so that the 

prediction can be based on the estimated state rather than 

the observed values. KF is then used to obtain a forecast 

for n time-steps ahead. As more data points for the flow 

are recorded, the residuals are computed, and the updated 

model is used to forecast the residuals for a future time 

window. It is observed that forecasting power is improved 

as more residuals are provided to the model, although this 

can be verified through checking improvements in IA. The 

KF demonstrates strong performance in both state 

estimation of known residual data and forecasting 

unknown residual data. The state estimation step smooths 

the observed data, with the estimated states showing less 

volatility than the observed residual values. 

Similarly, while the forecast can predict changes in the 

overall trend of residual data, many peaks in the observed 

residual data appear less extreme in the forecasted data. 

Although huge spikes in residual data may be 

underestimated in the forecast, the KF effectively captures 

the overall pattern of residuals. Therefore, adding residual 

forecasting to mean flow forecasting will allow real-time 

updates to the forecasting and improve the accuracy of the 

final combined prediction. 

D. Final flow forecasting 

Finally, the results of mean flow forecasting from the 

LSTM-RNN and residual forecasting from KF are 

combined for a final flow forecast. This is presented for an 

 
Fig. 5.   IA values, Z values, and output length (without zero padding) of all groupings 
 

 

 

 
Fig. 6.   Forecast for DMA 1316 outlier 1 (IA = 0.9240). Note that the x-axis is split to provide greater detail for the forecasted section of flow. 

In this example, 60 residuals are provided for a forecast window of 24 residuals. 
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example case in Fig.6. For the LKG group shown in Fig.6., 

the LSTM-RNN mean flow forecast has an IA of 0.8466. 

When combined with the residual forecast, however, the 

IA for this group rises to 0.9240. This improvement 

demonstrates the value of this hybrid modelling method. 

The prediction aligns well with the recorded outlier, 

anticipating both minor fluctuations and steep changes in 

flow profile. For example, a drop is seen in both the 

recorded and predicted lines at the transition to the 

overnight period. This prediction shows strong agreement 

with the recorded data throughout the outlier period, not 

just the overnight section, showing that this method does 

not require a full day’s worth of flow data to identify 

leakage, unlike many traditional leakage identification 

methods. Instead, anomalous flow behaviour can be 

accurately determined and anticipated during daytime 

hours. This can enable leakage to be flagged more rapidly 

and thus repairs can be conducted more efficiently.  

V. FUTURE WORK 

The proposed method could be further optimised by 

exploring different ratios of LKG and NLKG data. The 

maximum outlier length could also be cut to see how the 

model performs with reduced variation in outlier length. 

Though currently limited to the DMA level, with 

additional parameters such as the pipe properties of age, 

diameter, and material, this work could be extended to 

address leakage localisation by exploring the prediction of 

leakage at pipe level. This can then inform targeted repair 

strategies, as well as contribute to effective preventative 

maintenance policies. The leakage predicted by either the 

current method or a pipe level alternative could be linked 

to a repair prioritisation method. Single-criterion methods 

may focus on minimising water loss, while other multi-

criteria methods may consider other parameters such as 

water supply to critical infrastructure. By linking the 

proposed framework with repair scheduling, this work 

can form part of a ‘self-healing’ approach to leakage in 

water distribution systems [32]. 

VI. CONCLUSION 

This study presents a hybrid machine learning-based 

method for detecting and predicting leakage at the DMA 

level, which is tested on a database of over 2,500 DMAs 

managed by Yorkshire Water. For leakage detection, 

which uses the isolation forest algorithm, results indicate 

that the outliers identified by the model correlate well with 

known repairs. This method can flag outliers regardless of 

the time of day or status of preceding flow data, allowing 

potential leakage be noticed more rapidly. This may help 

to raise the proportion of leaks detected first by water 

companies rather than customers. 

For leakage prediction, a LSTM-RNN is combined with 

KF for flow forecasting. The value of the hybrid approach 

is validated through the improvements in accuracy 

provided by the addition of residual forecasting. Leakage 

prediction is relatively new field of study, and it is hoped 

that this framework will demonstrate the potential of 

anticipatory leakage management. Accurate prediction of 

leakage can allow time-efficient and cost-efficient 

preventative maintenance, reducing water loss and 

customer disruption. 
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