UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Tracking Treatment Response in Cardiac Light-Chain Amyloidosis With Native T1 Mapping

Ioannou, Adam; Patel, Rishi K; Martinez-Naharro, Ana; Razvi, Yousuf; Porcari, Aldostefano; Rauf, Muhammad U; Bolhuis, Roos E; ... Fontana, Marianna; + view all (2023) Tracking Treatment Response in Cardiac Light-Chain Amyloidosis With Native T1 Mapping. JAMA Cardiology 10.1001/jamacardio.2023.2010. (In press). Green open access

[thumbnail of jamacardiology_ioannou_2023_br_230011_1687537028.1217.pdf]
Preview
PDF
jamacardiology_ioannou_2023_br_230011_1687537028.1217.pdf - Published Version

Download (688kB) | Preview

Abstract

IMPORTANCE: Cardiac magnetic resonance (CMR) imaging-derived extracellular volume (ECV) mapping, generated from precontrast and postcontrast T1, accurately determines treatment response in cardiac light-chain amyloidosis. Native T1 mapping, which can be derived without the need for contrast, has demonstrated accuracy in diagnosis and prognostication, but it is unclear whether serial native T1 measurements could also track the cardiac treatment response. OBJECTIVE: To assess whether native T1 mapping can measure the cardiac treatment response and the association between changes in native T1 and prognosis. DESIGN, SETTING, AND PARTICIPANTS: This single-center cohort study evaluated patients diagnosed with cardiac light-chain amyloidosis (January 2016 to December 2020) who underwent CMR scans at diagnosis and a repeat scan following chemotherapy. Analysis took place between January 2016 and October 2022. MAIN OUTCOMES AND MEASURES: Comparison of biomarkers and cardiac imaging parameters between patients with a reduced, stable, or increased native T1 and association between changes in native T1 and mortality. RESULTS: The study comprised 221 patients (mean [SD] age, 64.7 [10.6] years; 130 male [59%]). At 6 months, 183 patients (mean [SD] age, 64.8 [10.5] years; 110 male [60%]) underwent repeat CMR imaging. Reduced native T1 of 50 milliseconds or more occurred in 8 patients (4%), all of whom had a good hematological response; by contrast, an increased native T1 of 50 milliseconds or more occurred in 42 patients (23%), most of whom had a poor hematological response (27 [68%]). At 12 months, 160 patients (mean [SD] age, 63.8 [11.1] years; 94 male [59%]) had a repeat CMR scan. A reduced native T1 occurred in 24 patients (15%), all of whom had a good hematological response, and was associated with a reduction in N-terminal pro-brain natriuretic peptide (median [IQR], 2638 [913-5767] vs 423 [128-1777] ng/L; P < .001), maximal wall thickness (mean [SD], 14.8 [3.6] vs 13.6 [3.9] mm; P = .009), and E/e' (mean [SD], 14.9 [6.8] vs 12.0 [4.0]; P = .007), improved longitudinal strain (mean [SD], -14.8% [4.0%] vs -16.7% [4.0%]; P = .004), and reduction in both myocardial T2 (mean [SD], 52.3 [2.9] vs 49.4 [2.0] milliseconds; P < .001) and ECV (mean [SD], 0.47 [0.07] vs 0.42 [0.08]; P < .001). At 12 months, an increased native T1 occurred in 24 patients (15%), most of whom had a poor hematological response (17 [71%]), and was associated with an increased N-terminal pro-brain natriuretic peptide (median [IQR], 1622 [554-5487] vs 3150 [1161-8745] ng/L; P = .007), reduced left ventricular ejection fraction (mean [SD], 65.8% [11.4%] vs 61.5% [12.4%]; P = .009), and an increase in both myocardial T2 (mean [SD], 52.5 [2.7] vs 55.3 [4.2] milliseconds; P < .001) and ECV (mean [SD], 0.48 [0.09] vs 0.56 [0.09]; P < .001). Change in myocardial native T1 at 6 months was independently associated with mortality (hazard ratio, 2.41 [95% CI, 1.36-4.27]; P = .003). CONCLUSIONS AND RELEVANCE: Changes in native T1 in response to treatment, reflecting a composite of changes in T2 and ECV, are associated with in changes in traditional markers of cardiac response and associated with mortality. However, as a single-center study, these results require external validation in a larger cohort.

Type: Article
Title: Tracking Treatment Response in Cardiac Light-Chain Amyloidosis With Native T1 Mapping
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1001/jamacardio.2023.2010
Publisher version: https://doi.org/10.1001/jamacardio.2023.2010
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Inflammation
URI: https://discovery.ucl.ac.uk/id/eprint/10174150
Downloads since deposit
20Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item