Bucci, Marco;
Bluma, Marina;
Savitcheva, Irina;
Ashton, Nicholas J;
Chiotis, Konstantinos;
Matton, Anna;
Kivipelto, Miia;
... Nordberg, Agneta; + view all
(2023)
Profiling of plasma biomarkers in the context of memory assessment in a tertiary memory clinic.
Translational Psychiatry
, 13
(1)
, Article 268. 10.1038/s41398-023-02558-4.
Preview |
PDF
s41398-023-02558-4.pdf - Published Version Download (3MB) | Preview |
Abstract
Plasma biomarkers have shown promising performance in research cohorts in discriminating between different stages of Alzheimer's disease (AD). Studies in clinical populations are necessary to provide insights on the clinical utility of plasma biomarkers before their implementation in real-world settings. Here we investigated plasma biomarkers (glial fibrillary acidic protein (GFAP), tau phosphorylated at 181 and 231 (pTau181, pTau231), amyloid β (Aβ) 42/40 ratio, neurofilament light) in 126 patients (age = 65 ± 8) who were admitted to the Clinic for Cognitive Disorders, at Karolinska University Hospital. After extensive clinical assessment (including CSF analysis), patients were classified as: mild cognitive impairment (MCI) (n = 75), AD (n = 25), non-AD dementia (n = 16), no dementia (n = 9). To refine the diagnosis, patients were examined with [18F]flutemetamol PET (Aβ-PET). Aβ-PET images were visually rated for positivity/negativity and quantified in Centiloid. Accordingly, 68 Aβ+ and 54 Aβ- patients were identified. Plasma biomarkers were measured using single molecule arrays (SIMOA). Receiver-operated curve (ROC) analyses were performed to detect Aβ-PET+ using the different biomarkers. In the whole cohort, the Aβ-PET centiloid values correlated positively with plasma GFAP, pTau231, pTau181, and negatively with Aβ42/40 ratio. While in the whole MCI group, only GFAP was associated with Aβ PET centiloid. In ROC analyses, among the standalone biomarkers, GFAP showed the highest area under the curve discriminating Aβ+ and Aβ- compared to other plasma biomarkers. The combination of plasma biomarkers via regression was the most predictive of Aβ-PET, especially in the MCI group (prior to PET, n = 75) (sensitivity = 100%, specificity = 82%, negative predictive value = 100%). In our cohort of memory clinic patients (mainly MCI), the combination of plasma biomarkers was sensitive in ruling out Aβ-PET negative individuals, thus suggesting a potential role as rule-out tool in clinical practice.
Type: | Article |
---|---|
Title: | Profiling of plasma biomarkers in the context of memory assessment in a tertiary memory clinic |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1038/s41398-023-02558-4 |
Publisher version: | https://doi.org/10.1038/s41398-023-02558-4 |
Language: | English |
Additional information: | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third-party material in this article are included in the Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Brain Sciences > UCL Queen Square Institute of Neurology > Neurodegenerative Diseases |
URI: | https://discovery.ucl.ac.uk/id/eprint/10174147 |
Archive Staff Only
View Item |